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Summary: In the fast developing world of telecommunications, it may prove useful to be able to analyse any protocol one 

comes across, even if it is unknown. To that end, one needs to get the state machine and the frame format of the protocol. 

These can be extracted from network and/or execution traces via Protocol Reverse Engineering (PRE). In this paper, we aim 

to evaluate and compare the performance of three algorithms used as part of three different PRE systems of the literature: 

Aho-Corasick (AC), Variance of the Distribution of Variances (VDV), and Latent Dirichlet Allocation (LDA). In order to do 

so, we suggest a new meaningful metric complementary to precision and recall: the fields detection ratio. We implemented 

and simulated these algorithms in an Internet of Things (IoT) context, and more precisely on Zigbee Data Link Layer frames. 

The results obtained clearly show that the LDA algorithm outperforms AC and VDV. 
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1. Introduction 

With the ever growing development of 

telecommunications, and especially Internet of Things 

(IoT), a lot of new protocols are constantly appearing. 

In order to know what they are used for, we need to 

understand how they work. 

In this paper, we place ourselves in the context of 

a communicating object coming into an unknown 

environment and wanting to establish a 

communication with the existing networks. To that 

end, the object needs to have 'generic', or 'multi-

standard' behavior, i. e. to be able to adapt itself to 

whichever standard is used in the target environment. 

It is the same goal as the one pursued by Software 

Defined Radio, except that in our case, we propose to 

learn the unknown protocol of the environment, and 

not just identify it from a database. 

This is the goal of Protocol Reverse Engineering 

(PRE), a family of techniques which aims at 

reconstructing the frame formats and/or the state 

machine of a target unknown protocol through 

analyzing execution traces and/or network traces. 

There is no precisely defined procedure to 

perform PRE, but the most encountered one [1] is a 

five-step process. (i) Firstly, the radio traffic is 

intercepted and the frames issued by the targeted 

protocol are isolated. (ii) Next, the meaningful binary 

sequences (features) of these frames are identified, 

(iii) and then the frames are grouped by format via the 

use of these features. (iv) Within each group, 

sequence alignment is performed, and, finally, (v) the 

frame formats and/or the state machine of the targeted 

protocol are reconstructed. 

In this paper, we focus solely on the second step, 

the identification of remarkable sequences. This step 

aims at reducing the quantity of information needed 

to label a frame. This is achieved by identifying the 

remarkable sections of the frames, i. e. in our case by 

spotting the recurring sequences and their positions. 

Such sequences are most probably keywords. Our 

goal is to evaluate and compare the performance of 

different techniques achieving this, in order to obtain 

useful data for choosing a technique or a family of 

techniques to be used in a real-life system. To this 

end, we selected the Variance of the Distribution of 

Variances (VDV) [2], Aho-Corasick (AC) [3], and 

Latent Dirichlet Allocation (LDA) [4] techniques. 

The simulation context in which we will simulate 

the performance of these techniques lies in the 

analysis of Data Link Layer (DLL) frames of the 

Zigbee protocol. 

Most of the surveys in the PRE domain involve 

comparing a rather narrow range of tools and their 

approaches without delving into the exact mechanics 

or presenting their performance, like in [5]. However, 

some of them are more exhaustive, and present in 

detail the techniques used by the tools [6] and the 

protocols they are able to reverse engineer [7]. 

Nevertheless, these surveys do not refer to the 

performance of the different tools in a quantifiable 

way, and they also do not present the individual 

performance of the techniques used in each tool. Such 

an approach is legitimate, as they browse a wide 

range of PRE tools, but this is where the particularity 

of our paper stands. We select only three techniques 

as opposed to the dozens present in the previous 

surveys, and we evaluate their performance through 

simulations, which has not been done in the previous 

papers. 

The rest of this paper is organized as follows: 

section 2 presents the theory related to the three 

techniques studied; in section 3, we simulate and 

compare them; and finally, we conclude in section 4. 
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2. State of the Art of the Three Techniques 

 
In this section, we present the principle and 

mechanisms of each of the sequence identification 

techniques, as well as the practical algorithms 

designed from them to fit our context. 
 

 
2.1 Variance of the Distribution of Variances 

 
This technique aims at statistically identifying in a 

population the parts which offer the least variability. 

The following presentation is based on the approach 

proposed by A. Trifilò et al [2]. 

The VDV technique considers a population 

formed of groups of individuals. The latter are 

themselves composed of elements which can take 

different numerical values. The technique unfolds in 

five steps: 

 For each group, calculating the average, then 

the variance of the value of each element 

across all the individuals in a given group. 

 Across groups, calculating the average, then 

the variance of these variances. 

 Retaining the elements whose variance of 

the variances is less than a given filtration 

threshold. 

The actual algorithm used in our context derives 

from the technique above, with some modifications. 

The groups of individuals previously considered 

are now replaced by flows composed of DLL frames 

to be analysed, and the base unit is switched from 

element to 'token', a n-bit long position slot on the 

frames which can assume different sequences of n 

consecutive bits. 

To be able to detect fields regardless of their 

position, all the possible tokens obtainable from a 

frame are created. 

The filtration threshold actually used for filtering 

(     ) is not a fixed value, but a value proportional 

to the average variance of the variances. The 

proportionality coefficient is called filtration 

threshold coefficient (     
 ), and the formula linking 

      and      
  is: 

 

                   
 , (1) 

 

with       the variance of the variances of token i. 

The frames being collected on a radio link, it is 

not possible to clearly identify flows, so we create 

them by randomly attributing frames to flows 

following a discrete uniform law. 

To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. token lengths, and all the 

single sequences extracted from these runs are kept 

for metrics computation. 

 

 

2.2 Aho-Corasick 

 

This technique was designed by A. Aho and M. 

Corasick in order to identify a string of characters in a 

text [3]. However, its use can be extended to identify 

any pattern composed of a sequence of elements 

taking values from a discrete finite space. The search 

is then run on a sequence of these elements whose 

length is superior or equal to the targeted pattern. The 

following presentation is based on the approach 

proposed by Y. Wang et al. [8]. 

The particularity of AC is that it is based on a 

state machine to optimize the processing speed. 

The technique operates in two major steps: 

 Constructing the state machine based on the 

strings to search in the text. 

 Scanning the whole text character by 

character, and notifying, for each character, 

the strings ending on that character. 

The actual algorithm used in our context derives 

from the one above, with some modifications. 

The text considered in the AC technique is now 

replaced by the DLL trace to be analysed, and the 

base unit is switched from character to bit. Moreover, 

the strings to be identified are now all the possible n-

bit sequences. 

An occurrence counter of the sequences was 

added, in order to perform filtering. The sequences 

under a threshold      proportional to the average 

number of appearances of any sequence considering a 

uniform distribution are filtered out.      is given by: 

 

       
     

         
 , (2) 

 

with n the number of bits of the trace, L the length of 

the searched sequences, and     
  the proportionality 

coefficient called filtration threshold coefficient. This 

filtering is done to keep only the frequent enough 

sequences. 

The sequences with a similarity level superior to a 

given threshold are fused. By fusion, we mean that in 

a group of similar enough sequences, we retain the 

one best representing all the other ones. We achieve 

that through unsupervised ascendant hierarchical 

clustering of the sequences, using the similarity as the 

distance metric, defined by:  

 

           
              

      
, (3) 

 

with X and Y representing any two sequences, l(X,Y) 

the average length of X and Y, and ed(X,Y) the 

minimal edition distance between X and Y, i. e. the 

minimal number of operations to apply on one of the 

sequences to obtain the other one. All the sequences 

being the same length, the average length of X and Y, 

l(X,Y), equals those of X and Y. 

To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. lengths of sequences, and all 

the single sequences extracted from these runs are 



 

kept for metrics computation. 

 

 

2.3 Latent Dirichlet Allocation 

 

This technique comes from the machine learning 

domain of Information Retrieval (IR), which aims at 

modeling a text mathematically, in order to extract its 

meaning. It was designed with the objective to 

identify topics from a document corpus, and to 

associate terms coming from a dictionary with them. 

However, its use can be extended to regrouping 

sequences of single elements taking values in a finite 

discrete space, from a collection of data. The 

following presentation is based on the approach 

proposed by Y. Wang et al [9]. 

The LDA technique is first and foremost a 

generative model for a corpus based on a Bayesian 

network; the actual implemented algorithm is 

deduced from it upon inference. 

Let us introduce the necessary notions and 

parameters needed to understand the generative 

model and the inference based on it: 

 a word w is an element taking value from a 

dictionary v gathering all the known 

vocabulary. 

 a document m is a set of words w, modeled 

by a vector. 

 a corpus W is a set of documents m, modeled 

by a vector. 

 a term t is the base element of the 

vocabulary. 

 V is the set of terms of the dictionary or its 

cardinal. 

 K is the set of topics desired or its cardinal. 

 M is the set of documents in the corpus or its 

cardinal. 

 α and β are the Dirichlet prior parameters of 

the topics over documents and the words 

over topics distributions, respectively. 

 ξ is the parameter of the Poisson law 

determining the number of words in each 

document. 

   
⃗⃗⃗⃗  ⃗ is the vector characterizing the topics 

distribution for the document m.   

 {  
⃗⃗⃗⃗  ⃗}

   

 
 is the matrix     characterizing 

the topics distribution over the documents. 

   ⃗⃗⃗⃗  ⃗ is the vector characterizing the terms of v 

distribution for the topic k.    {  ⃗⃗⃗⃗  ⃗}   
  is 

the matrix     characterizing the terms 

distribution over the topics. 

    represents the number of words in 

document m. 

      represents the     word of document 

m. The vector   ⃗⃗⃗⃗ ⃗⃗  represents the words of 

document m. The vector of vectors   
     ⃗⃗⃗⃗ , represents the words of the corpus. 

      represents the topic associated to the 

    word of document m. The vector   ⃗⃗⃗⃗  ⃗ 
represents the topics respectively attibuted to 

each word of document m. The vector of 

vectors        ⃗⃗ , represents the topics 

respectively attributed to each word of the 

corpus. 

In LDA, we consider that a corpus is a set of 

documents, each of those being composed of a 

random number of words, where the number is drawn 

following a Poisson law of parameter ξ. Each of the 

words takes a value within the dictionary. 

In the generative model, to begin, Θ and Φ are 

randomly generated following a Dirichlet law of 

parameters α and β, respectively. 

Firstly, for each word to be generated of each 

document to be generated, the topic associated to it is 

randomly drawn following a multinomial law 

parameterized by Θ, knowing the document the word 

is in. Next, the value of the word is drawn from the 

dictionary, following a multinomial law 

parameterized by Φ, knowing the previously drawn 

topic associated with the word. 

The goal of the LDA technique is to infer the 

words over topics and topics over documents 

distributions, i. e. the matrices Θ and Φ, from the 

corpus of documents. 

These distributions are intractable, so they will be 

estimated through Gibbs sampling [10]. 

The Gibbs sampling technique comes from 

observing that it is impossible to simultaneously infer 

all the latent variables of the model (i. e. the topics). 

So, instead, one at a time, their distributions are 

inferred conditionally to all the other ones, then a new 

realization of the inferred distribution is drawn. When 

repeating this operation over all the variables a large 

number of times, theory shows that the realizations 

drawn (i. e. the sample) eventually converge towards 

what would be sampled from the target distribution. 

Then, the properties of the distribution can be 

statistically computed from the sample. 

The actual algorithm used in our context derives 

from the above, with some modifications. 

The documents considered in the LDA technique 

are replaced by the DLL frames to be analysed, so the 

corpus consequently becomes the DLL trace. The 

topics are replaced by keywords of the protocol, and 

the words by n-grams, groups of n consecutive bits. 

The n-grams having no natural delimiters, like spaces 

for words, all the possible n-grams obtainable from a 

frame are created. The terms become the different 

possible sequences of n bits. 

The dictionary is composed of all the possible n-

grams with n bits. 

The gradient of perplexity is used as the stopping 

criterion of the Gibbs sampler. The perplexity [11] 

expresses the ability of a model to generalize to 

unknown data. The perplexity P of a learning corpus 

W is calculated as follows:  

 

 
       

 
∑       ⃗⃗⃗⃗ ⃗⃗ ⃗⃗      

∑      , (4) 

 

with M the set of frames from the learning DLL trace, 

   the number of n-grams in the DLL frame m, and  



 

 

     ⃗⃗⃗⃗ ⃗⃗    ∏  ∑                
  

 

, (5) 

 

with V the set of the single n-grams, K the set of the 

keywords, and   
  the number of occurrences in 

document m of the single n-gram t. 

We calculate the perplexity gradient    between 

two consecutive time indexes n-1 and n as follows:  

 

            
|           |

    
. (6) 

 

The sampling continues as long as the perplexity 

gradient is above a threshold defined as the maximal 

perplexity gradient divided by the number of frames 

in the DLL trace. 

Once the matrices Θ and Φ are calculated, for each 

keyword, the n-grams with the highest appearance 

probabilities are selected. For that purpose, the n-

grams are ordered by descending probabilities, then 

iterated through, calculating the gradient within each 

pair of consecutive n-gram probabilities. 

Mathematically, if we consider a keyword k, and its 

associated n-gram distribution vector,   ⃗⃗⃗⃗  ⃗, in 

descending order, the probability gradient     of a n-

gram in position   [   ] is:  

 

         
|             |

     
. (7) 

 

The first n-gram is always selected, and the others 

are selected if their probability gradient is under the 

threshold defined as the maximal probability gradient. 

 To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. n-gram lengths, and all the 

single sequences extracted from these runs are kept 

for metrics computation. 

 

 

3. Comparative Simulations 
 

In this section, we present the metrics (including 

new ones proposed in this paper) used to quantify the 

performance of the algorithms, as well as the 

parameterization for the simulations. We then discuss 

the results produced. 

 

 

3.1. Performance Metrics 
 

In order to define the metrics quantifying the 

performance of the algorithms, we introduce the 

notions of sequence, field, and matching condition as 

follows: 

 Sequence: a sequence s is characterized by 

its length l, value v, and the set of its 

positions    {  }   . A sequence is then 

represented by         . The list of the 

detected sequences    { } is given by the 

identification algorithms. 

 Field: a field c is characterized by its 

possible lengths L, characteristic values V 

(null if absent), and possible positions 

   {  }   . A field is then represented by 

        . The list of the fields    { } is 

obtained from the Zigbee specification. A 

field can be either detectable (     ) or not 

detectable (     ). 

 Matching condition: the sequence          

and the field          match if the 

following property is verified: 

 

 
{
                    

                
 (8) 

 

As metrics, we first use a tradeoff between precision 

and recall, the F score [12] which is the harmonic 

mean of the two. This metric quantifies the quality of 

the sequence detection, i. e. the performance of the 

algorithm. It is given by:  

 

    
     

   
, (9) 

 

with P the precision, quantifying the part of what was 

correctly detected from the totality of what was 

detected, given by:  

 

    
  

     
, (10) 

 

with    the true positives, which are the sequences 

correctly detected, and    the false positives, which 

are the sequences incorrectly detected. 

R is the recall, quantifying the part of what was 

correctly detected from what was supposed to be 

detected, given by:  

 

    
  

     
, (11) 

 

with    the false negatives, which are the sequences 

incorrectly not detected. 

Each sequence counts as one true positive if its 

properties match at least one detectable field, it 

counts as one false positive in all other cases. 

The number of false negatives is equal to the 

difference between the number of remarkable 

sequences across all fields and the number of true 

positives. 

In addition to the quality of the sequence 

detection, we want to quantify the quality of the field 

detection, as it is more reprensentative of the 

usefulness of the algorithm. 

To the best of our knowledge, a metric serving 

that purpose does not exist, so we introduce our own, 

the fields detection ratio. It quantifies the detected 

information of a field, and comes in three different 

forms:    for lengths,    for values, and    for 

positions. 

Let us consider     {   |      } the set of 

sequences matching at least one field, and 

               , a generic field, with     {   }   , 



 

    {   }   ,     {   }   , and I the set of all 

existing fields, and              a generic sequence. 

 

 
   

 
    (  
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    (  

 )

        
    

 
    (  

 )

        
   (12) 

 

are, respectively, the ratios between the number of 

possible lengths, values, and positions of    detected 

and the total number of possible lengths, values, and 

positions of   , with   
   {   |      |      }, 

  
   {   |      |      },   

   {   |    

  |   |         }. 

For each of the previous ratios, the average over all 

fields is calculated as follows:  

 

     ∑
  

          , (13) 

 

with    representing the different ratios presented in 

(12). 

These averages are the metrics we use for our 

simulations. 

 

 

3.2. Simulation Context 

 

In order to evaluate the performance of the 

algorithms VDV, AC, and LDA, we simulate them 

with a DLL trace of a protocol widespread in the IoT: 

Zigbee [13]. This protocol is based on the standard 

IEEE 802.15.4 [14], widely used in the IoT for 

physical and data link layers. 

The DLL traces to be analysed are generated by 

randomly creating frames from a data frame formats 

base we created according to Zigbee specification. 

The trace generation process is run at each single 

simulation, so the traces analysed are never the same 

(although they respect the same statistical properties). 

The traces are then processed by the algorithms in an 

offline procedure. 

The comparative simulation was done in two 

steps. (i) Observing the influence of each of the 

algorithms parameters by simulating them over an 

arbitrary but wisely chosen parameters set domain. 

(ii) Choosing the best performing parameter set 

among all the ones simulated, and comparing the 

performance achieved. 

This method allowed us to get parameter sets 

yielding good performance, but not the best that could 

be achieved by the algorithms. This is due to the fact 

that we used a simple optimization approach, 

considering that all the parameters influence the 

algorithms in an independent manner. 

We chose to simulate all the algorithms with a 

number of frames varying from 1 to 1000 with a 

logarithmic step, and with a maximal length of the 

searched sequences of 4. 

For the VDV algorithm, we set the number of 

flows randomly generated to 10 and the filtration 

threshold coefficient to 1. 

For the AC algorithm, we set the fusion threshold 

and the filtration threshold to 1. 

For the LDA algorithm, we set the number of 

keywords to 10, the maximal perplexity gradient to 1, 

the maximal probability gradient to 0.1, alpha to 1, 

and beta to 0.0001. 

Note that each curve point is calculated by 

averaging over 100 runs of the simulation 

corresponding to this point parameter set. 

We limited ourselves to 1000 frame traces for 

processing power and memory usage limitations of 

our simulating hardware.  

 

 

3.3. Simulation Results 

 

We first get the F score graph of the Figure 1. 

 

 
The F score synthesizing the precision and recall 

shows that VDV grows quickly until around 10 

frames, then stabilizes around 25-30% of F score, and 

drops after 100 frames in the trace. On the other hand, 

we can observe that AC and LDA both have very 

near curves displaying slow linear growth, capping 

around 45-50% of F score, which is the best 

performance achieved. LDA is apparently slightly 

better by a small margin, but it presents a slow 

decrease above 400 frames. 

The performances of all the algorithms grow at 

first because they are based on laws of large numbers, 

so they perform better with larger data sets to analyse. 

The VDV algorithm performance drop is due to 

the actual filtration threshold being a value depending 

only on the average variance of variances, and not on 

the trace size, so it is appropriated only for an interval 

of a given number of frames. On the other hand, the 

AC algorithm threshold      depends on the number 

of bits in the trace, and the LDA does not use a 

frequency threshold to filtrate sequences, so their 

performances do not display a sudden drop after a 

certain number of frames. 

The LDA slow decrease can be explained by an 

insufficient number of keywords, which tends to 

make the algorithm converge towards a smaller 

number of different sequences when provided with 

large traces, hence lower recall, so lower F score. 

Let us now switch from the quality of the 

sequence detection to its usefulness for field 

detection. We draw the average fields detection ratios 

of the lengths, on the graph of Figure 2.  

Figure 1. Best F score of the algorithms VDV, AC, 

and LDA 



 

 

 
We omit the other fields detection ratios as they 

present an identical behavior. 

We can see that the VDV algorithm average fields 

length detection ratio presents the same behavior as 

its previous curve. The AC algorithm performance 

presents the same linear growth then stabilization 

behavior as its F score curve, while capping earlier, 

around 10 frames. LDA has the exact same behavior 

as its F score curve as well, with the decreasing phase 

beginning around 100 frames. It shows the best 

performance, with an average fields length detection 

ratio slightly less than 60%. 

We summarize the relative performance of the 

three algorithms in Table 1. The number of stars 

stands, by decreasing order, for the best, average, and 

worst. 

 

 
 

We clearly see that the LDA algorithm offers the 

best performance, followed by the AC algorithm, and 

lastly the VDV algorithm. 

 

4. Conclusion 
 

We wanted a communicating object to be able to 

communicate in an unknown environment, so we 

needed it to learn the protocols in that environment. 

We chose to study and evaluate the performance of 

three possible sequence identification techniques 

which could be used in that learning procedure: VDV, 

AC, and LDA. To that end, we simulated them 

applied to the analysis of Zigbee DLL traces, and 

compared them. 

For the purpose of comparison, in addition to the 

classic metric F score, we defined our own, the fields 

detection ratio. 

From the simulations results, we can clearly state 

that in this context the LDA technique offers the best 

results, followed by the AC technique, and eventually 

the VDV technique. 

 A more powerful hardware could have allowed us 

to see if we could push further the performance of the 

LDA algorithm, and a more formal parameter 

optimization would have given us more precise 

maximal performance of the algorithms. 

Nonetheless, with the results of the comparative 

simulation, we can now state that a technique based 

on Bayesian networks performs better than ones 

simply based on statistics or occurrences counting. 

This encourages us to further engage in Bayesian 

theory in the future. 
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