
HAL Id: hal-03514867
https://hal.science/hal-03514867

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparative Study of Sequence Identification
Algorithms in IoT Context

Pierre-Samuel Greau-Hamard, Moïse Djoko-Kouam, Yves Louët

To cite this version:
Pierre-Samuel Greau-Hamard, Moïse Djoko-Kouam, Yves Louët. A Comparative Study of Sequence
Identification Algorithms in IoT Context. 2nd International Conference on Advances in Signal Process-
ing and Artificial Intelligence (ASPAI’ 2020), Apr 2020, Berlin, Germany. pp.137-143. �hal-03514867�

https://hal.science/hal-03514867
https://hal.archives-ouvertes.fr

A Comparative Study of Sequence Identification Algorithms in IoT Context

P. -S. Gréau-Hamard
1,2

, M. Djoko-Kouam
1
 and Y. Louet

2

1
Informatics and Telecommunications Laboratory, ECAM Rennes Louis de Broglie, Bruz, France
2
 Signal, Communication, and Embedded Electronics (SCEE) team, Institute of Electronic and

Telecommunications of Rennes (IETR), CentraleSupélec, Rennes, France

E-mail: {pierre-samuel.greau-hamard, moise.djoko-kouam}@ecam-rennes.com,

Yves.Louet@centralesupelec.fr

Summary: In the fast developing world of telecommunications, it may prove useful to be able to analyse any protocol one

comes across, even if it is unknown. To that end, one needs to get the state machine and the frame format of the protocol.

These can be extracted from network and/or execution traces via Protocol Reverse Engineering (PRE). In this paper, we aim

to evaluate and compare the performance of three algorithms used as part of three different PRE systems of the literature:

Aho-Corasick (AC), Variance of the Distribution of Variances (VDV), and Latent Dirichlet Allocation (LDA). In order to do

so, we suggest a new meaningful metric complementary to precision and recall: the fields detection ratio. We implemented

and simulated these algorithms in an Internet of Things (IoT) context, and more precisely on Zigbee Data Link Layer frames.

The results obtained clearly show that the LDA algorithm outperforms AC and VDV.

Keywords: Protocol Reverse Engineering, AC, VDV, LDA, Zigbee, IoT, Data Link Layer, Performance Comparison.

1. Introduction

With the ever growing development of

telecommunications, and especially Internet of Things

(IoT), a lot of new protocols are constantly appearing.

In order to know what they are used for, we need to

understand how they work.

In this paper, we place ourselves in the context of

a communicating object coming into an unknown

environment and wanting to establish a

communication with the existing networks. To that

end, the object needs to have 'generic', or 'multi-

standard' behavior, i. e. to be able to adapt itself to

whichever standard is used in the target environment.

It is the same goal as the one pursued by Software

Defined Radio, except that in our case, we propose to

learn the unknown protocol of the environment, and

not just identify it from a database.

This is the goal of Protocol Reverse Engineering

(PRE), a family of techniques which aims at

reconstructing the frame formats and/or the state

machine of a target unknown protocol through

analyzing execution traces and/or network traces.

There is no precisely defined procedure to

perform PRE, but the most encountered one [1] is a

five-step process. (i) Firstly, the radio traffic is

intercepted and the frames issued by the targeted

protocol are isolated. (ii) Next, the meaningful binary

sequences (features) of these frames are identified,

(iii) and then the frames are grouped by format via the

use of these features. (iv) Within each group,

sequence alignment is performed, and, finally, (v) the

frame formats and/or the state machine of the targeted

protocol are reconstructed.

In this paper, we focus solely on the second step,

the identification of remarkable sequences. This step

aims at reducing the quantity of information needed

to label a frame. This is achieved by identifying the

remarkable sections of the frames, i. e. in our case by

spotting the recurring sequences and their positions.

Such sequences are most probably keywords. Our

goal is to evaluate and compare the performance of

different techniques achieving this, in order to obtain

useful data for choosing a technique or a family of

techniques to be used in a real-life system. To this

end, we selected the Variance of the Distribution of

Variances (VDV) [2], Aho-Corasick (AC) [3], and

Latent Dirichlet Allocation (LDA) [4] techniques.

The simulation context in which we will simulate

the performance of these techniques lies in the

analysis of Data Link Layer (DLL) frames of the

Zigbee protocol.

Most of the surveys in the PRE domain involve

comparing a rather narrow range of tools and their

approaches without delving into the exact mechanics

or presenting their performance, like in [5]. However,

some of them are more exhaustive, and present in

detail the techniques used by the tools [6] and the

protocols they are able to reverse engineer [7].

Nevertheless, these surveys do not refer to the

performance of the different tools in a quantifiable

way, and they also do not present the individual

performance of the techniques used in each tool. Such

an approach is legitimate, as they browse a wide

range of PRE tools, but this is where the particularity

of our paper stands. We select only three techniques

as opposed to the dozens present in the previous

surveys, and we evaluate their performance through

simulations, which has not been done in the previous

papers.

The rest of this paper is organized as follows:

section 2 presents the theory related to the three

techniques studied; in section 3, we simulate and

compare them; and finally, we conclude in section 4.

mailto:Yves.Louet@centralesupelec.fr

2. State of the Art of the Three Techniques

In this section, we present the principle and

mechanisms of each of the sequence identification

techniques, as well as the practical algorithms

designed from them to fit our context.

2.1 Variance of the Distribution of Variances

This technique aims at statistically identifying in a

population the parts which offer the least variability.

The following presentation is based on the approach

proposed by A. Trifilò et al [2].

The VDV technique considers a population

formed of groups of individuals. The latter are

themselves composed of elements which can take

different numerical values. The technique unfolds in

five steps:

 For each group, calculating the average, then

the variance of the value of each element

across all the individuals in a given group.

 Across groups, calculating the average, then

the variance of these variances.

 Retaining the elements whose variance of

the variances is less than a given filtration

threshold.

The actual algorithm used in our context derives

from the technique above, with some modifications.

The groups of individuals previously considered

are now replaced by flows composed of DLL frames

to be analysed, and the base unit is switched from

element to 'token', a n-bit long position slot on the

frames which can assume different sequences of n

consecutive bits.

To be able to detect fields regardless of their

position, all the possible tokens obtainable from a

frame are created.

The filtration threshold actually used for filtering

() is not a fixed value, but a value proportional

to the average variance of the variances. The

proportionality coefficient is called filtration

threshold coefficient (
), and the formula linking

 and
 is:

 , (1)

with the variance of the variances of token i.

The frames being collected on a radio link, it is

not possible to clearly identify flows, so we create

them by randomly attributing frames to flows

following a discrete uniform law.

To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. token lengths, and all the

single sequences extracted from these runs are kept

for metrics computation.

2.2 Aho-Corasick

This technique was designed by A. Aho and M.

Corasick in order to identify a string of characters in a

text [3]. However, its use can be extended to identify

any pattern composed of a sequence of elements

taking values from a discrete finite space. The search

is then run on a sequence of these elements whose

length is superior or equal to the targeted pattern. The

following presentation is based on the approach

proposed by Y. Wang et al. [8].

The particularity of AC is that it is based on a

state machine to optimize the processing speed.

The technique operates in two major steps:

 Constructing the state machine based on the

strings to search in the text.

 Scanning the whole text character by

character, and notifying, for each character,

the strings ending on that character.

The actual algorithm used in our context derives

from the one above, with some modifications.

The text considered in the AC technique is now

replaced by the DLL trace to be analysed, and the

base unit is switched from character to bit. Moreover,

the strings to be identified are now all the possible n-

bit sequences.

An occurrence counter of the sequences was

added, in order to perform filtering. The sequences

under a threshold proportional to the average

number of appearances of any sequence considering a

uniform distribution are filtered out. is given by:

 , (2)

with n the number of bits of the trace, L the length of

the searched sequences, and
 the proportionality

coefficient called filtration threshold coefficient. This

filtering is done to keep only the frequent enough

sequences.

The sequences with a similarity level superior to a

given threshold are fused. By fusion, we mean that in

a group of similar enough sequences, we retain the

one best representing all the other ones. We achieve

that through unsupervised ascendant hierarchical

clustering of the sequences, using the similarity as the

distance metric, defined by:

, (3)

with X and Y representing any two sequences, l(X,Y)

the average length of X and Y, and ed(X,Y) the

minimal edition distance between X and Y, i. e. the

minimal number of operations to apply on one of the

sequences to obtain the other one. All the sequences

being the same length, the average length of X and Y,

l(X,Y), equals those of X and Y.

To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. lengths of sequences, and all

the single sequences extracted from these runs are

kept for metrics computation.

2.3 Latent Dirichlet Allocation

This technique comes from the machine learning

domain of Information Retrieval (IR), which aims at

modeling a text mathematically, in order to extract its

meaning. It was designed with the objective to

identify topics from a document corpus, and to

associate terms coming from a dictionary with them.

However, its use can be extended to regrouping

sequences of single elements taking values in a finite

discrete space, from a collection of data. The

following presentation is based on the approach

proposed by Y. Wang et al [9].

The LDA technique is first and foremost a

generative model for a corpus based on a Bayesian

network; the actual implemented algorithm is

deduced from it upon inference.

Let us introduce the necessary notions and

parameters needed to understand the generative

model and the inference based on it:

 a word w is an element taking value from a

dictionary v gathering all the known

vocabulary.

 a document m is a set of words w, modeled

by a vector.

 a corpus W is a set of documents m, modeled

by a vector.

 a term t is the base element of the

vocabulary.

 V is the set of terms of the dictionary or its

cardinal.

 K is the set of topics desired or its cardinal.

 M is the set of documents in the corpus or its

cardinal.

 α and β are the Dirichlet prior parameters of

the topics over documents and the words

over topics distributions, respectively.

 ξ is the parameter of the Poisson law

determining the number of words in each

document.


⃗⃗⃗⃗ ⃗ is the vector characterizing the topics

distribution for the document m.

 {
⃗⃗⃗⃗ ⃗}

 is the matrix characterizing

the topics distribution over the documents.

 ⃗⃗⃗⃗ ⃗ is the vector characterizing the terms of v

distribution for the topic k. { ⃗⃗⃗⃗ ⃗}
 is

the matrix characterizing the terms

distribution over the topics.

 represents the number of words in

document m.

 represents the word of document

m. The vector ⃗⃗⃗⃗ ⃗⃗ represents the words of

document m. The vector of vectors
 ⃗⃗⃗⃗ , represents the words of the corpus.

 represents the topic associated to the

 word of document m. The vector ⃗⃗⃗⃗ ⃗
represents the topics respectively attibuted to

each word of document m. The vector of

vectors ⃗⃗ , represents the topics

respectively attributed to each word of the

corpus.

In LDA, we consider that a corpus is a set of

documents, each of those being composed of a

random number of words, where the number is drawn

following a Poisson law of parameter ξ. Each of the

words takes a value within the dictionary.

In the generative model, to begin, Θ and Φ are

randomly generated following a Dirichlet law of

parameters α and β, respectively.

Firstly, for each word to be generated of each

document to be generated, the topic associated to it is

randomly drawn following a multinomial law

parameterized by Θ, knowing the document the word

is in. Next, the value of the word is drawn from the

dictionary, following a multinomial law

parameterized by Φ, knowing the previously drawn

topic associated with the word.

The goal of the LDA technique is to infer the

words over topics and topics over documents

distributions, i. e. the matrices Θ and Φ, from the

corpus of documents.

These distributions are intractable, so they will be

estimated through Gibbs sampling [10].

The Gibbs sampling technique comes from

observing that it is impossible to simultaneously infer

all the latent variables of the model (i. e. the topics).

So, instead, one at a time, their distributions are

inferred conditionally to all the other ones, then a new

realization of the inferred distribution is drawn. When

repeating this operation over all the variables a large

number of times, theory shows that the realizations

drawn (i. e. the sample) eventually converge towards

what would be sampled from the target distribution.

Then, the properties of the distribution can be

statistically computed from the sample.

The actual algorithm used in our context derives

from the above, with some modifications.

The documents considered in the LDA technique

are replaced by the DLL frames to be analysed, so the

corpus consequently becomes the DLL trace. The

topics are replaced by keywords of the protocol, and

the words by n-grams, groups of n consecutive bits.

The n-grams having no natural delimiters, like spaces

for words, all the possible n-grams obtainable from a

frame are created. The terms become the different

possible sequences of n bits.

The dictionary is composed of all the possible n-

grams with n bits.

The gradient of perplexity is used as the stopping

criterion of the Gibbs sampler. The perplexity [11]

expresses the ability of a model to generalize to

unknown data. The perplexity P of a learning corpus

W is calculated as follows:

∑ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

∑ , (4)

with M the set of frames from the learning DLL trace,

 the number of n-grams in the DLL frame m, and

 ⃗⃗⃗⃗ ⃗⃗ ∏ ∑

, (5)

with V the set of the single n-grams, K the set of the

keywords, and
 the number of occurrences in

document m of the single n-gram t.

We calculate the perplexity gradient between

two consecutive time indexes n-1 and n as follows:

| |

. (6)

The sampling continues as long as the perplexity

gradient is above a threshold defined as the maximal

perplexity gradient divided by the number of frames

in the DLL trace.

Once the matrices Θ and Φ are calculated, for each

keyword, the n-grams with the highest appearance

probabilities are selected. For that purpose, the n-

grams are ordered by descending probabilities, then

iterated through, calculating the gradient within each

pair of consecutive n-gram probabilities.

Mathematically, if we consider a keyword k, and its

associated n-gram distribution vector, ⃗⃗⃗⃗ ⃗, in

descending order, the probability gradient of a n-

gram in position [] is:

| |

. (7)

The first n-gram is always selected, and the others

are selected if their probability gradient is under the

threshold defined as the maximal probability gradient.

 To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. n-gram lengths, and all the

single sequences extracted from these runs are kept

for metrics computation.

3. Comparative Simulations

In this section, we present the metrics (including

new ones proposed in this paper) used to quantify the

performance of the algorithms, as well as the

parameterization for the simulations. We then discuss

the results produced.

3.1. Performance Metrics

In order to define the metrics quantifying the

performance of the algorithms, we introduce the

notions of sequence, field, and matching condition as

follows:

 Sequence: a sequence s is characterized by

its length l, value v, and the set of its

positions { } . A sequence is then

represented by . The list of the

detected sequences { } is given by the

identification algorithms.

 Field: a field c is characterized by its

possible lengths L, characteristic values V

(null if absent), and possible positions

 { } . A field is then represented by

 . The list of the fields { } is

obtained from the Zigbee specification. A

field can be either detectable () or not

detectable ().

 Matching condition: the sequence

and the field match if the

following property is verified:

{

 (8)

As metrics, we first use a tradeoff between precision

and recall, the F score [12] which is the harmonic

mean of the two. This metric quantifies the quality of

the sequence detection, i. e. the performance of the

algorithm. It is given by:

, (9)

with P the precision, quantifying the part of what was

correctly detected from the totality of what was

detected, given by:

, (10)

with the true positives, which are the sequences

correctly detected, and the false positives, which

are the sequences incorrectly detected.

R is the recall, quantifying the part of what was

correctly detected from what was supposed to be

detected, given by:

, (11)

with the false negatives, which are the sequences

incorrectly not detected.

Each sequence counts as one true positive if its

properties match at least one detectable field, it

counts as one false positive in all other cases.

The number of false negatives is equal to the

difference between the number of remarkable

sequences across all fields and the number of true

positives.

In addition to the quality of the sequence

detection, we want to quantify the quality of the field

detection, as it is more reprensentative of the

usefulness of the algorithm.

To the best of our knowledge, a metric serving

that purpose does not exist, so we introduce our own,

the fields detection ratio. It quantifies the detected

information of a field, and comes in three different

forms: for lengths, for values, and for

positions.

Let us consider { | } the set of

sequences matching at least one field, and

 , a generic field, with { } ,

 { } , { } , and I the set of all

existing fields, and a generic sequence.

 (

)

 (

)

 (

)

 (12)

are, respectively, the ratios between the number of

possible lengths, values, and positions of detected

and the total number of possible lengths, values, and

positions of , with
 { | | },

 { | | },

 { |

 | | }.

For each of the previous ratios, the average over all

fields is calculated as follows:

 ∑

 , (13)

with representing the different ratios presented in

(12).

These averages are the metrics we use for our

simulations.

3.2. Simulation Context

In order to evaluate the performance of the

algorithms VDV, AC, and LDA, we simulate them

with a DLL trace of a protocol widespread in the IoT:

Zigbee [13]. This protocol is based on the standard

IEEE 802.15.4 [14], widely used in the IoT for

physical and data link layers.

The DLL traces to be analysed are generated by

randomly creating frames from a data frame formats

base we created according to Zigbee specification.

The trace generation process is run at each single

simulation, so the traces analysed are never the same

(although they respect the same statistical properties).

The traces are then processed by the algorithms in an

offline procedure.

The comparative simulation was done in two

steps. (i) Observing the influence of each of the

algorithms parameters by simulating them over an

arbitrary but wisely chosen parameters set domain.

(ii) Choosing the best performing parameter set

among all the ones simulated, and comparing the

performance achieved.

This method allowed us to get parameter sets

yielding good performance, but not the best that could

be achieved by the algorithms. This is due to the fact

that we used a simple optimization approach,

considering that all the parameters influence the

algorithms in an independent manner.

We chose to simulate all the algorithms with a

number of frames varying from 1 to 1000 with a

logarithmic step, and with a maximal length of the

searched sequences of 4.

For the VDV algorithm, we set the number of

flows randomly generated to 10 and the filtration

threshold coefficient to 1.

For the AC algorithm, we set the fusion threshold

and the filtration threshold to 1.

For the LDA algorithm, we set the number of

keywords to 10, the maximal perplexity gradient to 1,

the maximal probability gradient to 0.1, alpha to 1,

and beta to 0.0001.

Note that each curve point is calculated by

averaging over 100 runs of the simulation

corresponding to this point parameter set.

We limited ourselves to 1000 frame traces for

processing power and memory usage limitations of

our simulating hardware.

3.3. Simulation Results

We first get the F score graph of the Figure 1.

The F score synthesizing the precision and recall

shows that VDV grows quickly until around 10

frames, then stabilizes around 25-30% of F score, and

drops after 100 frames in the trace. On the other hand,

we can observe that AC and LDA both have very

near curves displaying slow linear growth, capping

around 45-50% of F score, which is the best

performance achieved. LDA is apparently slightly

better by a small margin, but it presents a slow

decrease above 400 frames.

The performances of all the algorithms grow at

first because they are based on laws of large numbers,

so they perform better with larger data sets to analyse.

The VDV algorithm performance drop is due to

the actual filtration threshold being a value depending

only on the average variance of variances, and not on

the trace size, so it is appropriated only for an interval

of a given number of frames. On the other hand, the

AC algorithm threshold depends on the number

of bits in the trace, and the LDA does not use a

frequency threshold to filtrate sequences, so their

performances do not display a sudden drop after a

certain number of frames.

The LDA slow decrease can be explained by an

insufficient number of keywords, which tends to

make the algorithm converge towards a smaller

number of different sequences when provided with

large traces, hence lower recall, so lower F score.

Let us now switch from the quality of the

sequence detection to its usefulness for field

detection. We draw the average fields detection ratios

of the lengths, on the graph of Figure 2.

Figure 1. Best F score of the algorithms VDV, AC,

and LDA

We omit the other fields detection ratios as they

present an identical behavior.

We can see that the VDV algorithm average fields

length detection ratio presents the same behavior as

its previous curve. The AC algorithm performance

presents the same linear growth then stabilization

behavior as its F score curve, while capping earlier,

around 10 frames. LDA has the exact same behavior

as its F score curve as well, with the decreasing phase

beginning around 100 frames. It shows the best

performance, with an average fields length detection

ratio slightly less than 60%.

We summarize the relative performance of the

three algorithms in Table 1. The number of stars

stands, by decreasing order, for the best, average, and

worst.

We clearly see that the LDA algorithm offers the

best performance, followed by the AC algorithm, and

lastly the VDV algorithm.

4. Conclusion

We wanted a communicating object to be able to

communicate in an unknown environment, so we

needed it to learn the protocols in that environment.

We chose to study and evaluate the performance of

three possible sequence identification techniques

which could be used in that learning procedure: VDV,

AC, and LDA. To that end, we simulated them

applied to the analysis of Zigbee DLL traces, and

compared them.

For the purpose of comparison, in addition to the

classic metric F score, we defined our own, the fields

detection ratio.

From the simulations results, we can clearly state

that in this context the LDA technique offers the best

results, followed by the AC technique, and eventually

the VDV technique.

 A more powerful hardware could have allowed us

to see if we could push further the performance of the

LDA algorithm, and a more formal parameter

optimization would have given us more precise

maximal performance of the algorithms.

Nonetheless, with the results of the comparative

simulation, we can now state that a technique based

on Bayesian networks performs better than ones

simply based on statistics or occurrences counting.

This encourages us to further engage in Bayesian

theory in the future.

References

[1]. O. Esoul, N. Walkinshaw, Finding clustering

configurations to accurately infer packet structures from

network data, in ArXiv, October 2016.

[2]. A. Trifilò, S. Burschka, E. Biersack, Traffic to protocol

reverse engineering, in 2009 Proceedings of the IEEE

Symposium on Computational Intelligence in Security and

Defense Applications, July 2009, pp. 1-8.

[3]. A. V. Aho and M. J. Corasick, Efficient string

matching: An aid to bibliographic search, Commun. ACM,

vol. 18, no. 6, June 1975, pp. 333-340.

[4]. D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet

allocation, Journal of machine Learning research, vol. 3,

May 2003, pp. 993-1022.

[5]. A. Li, C. Dong, S. Tang, F. wu, C. Tian, B. Tao, H.

Wang, Demodulation-free protocol identification in

heterogeneous wireless networks, Computer

Communications, vol. 55, September 2014, pp. 102-111.

[6]. S. Kleber, L. Maile, F. Kargl, Survey of protocol

reverse engineering algorithms: Decomposition of tools for

static traffic analysis, IEEE Communications Surveys and

Tutorials, vol. 21, August 2018, pp. 526-561.

[7]. B. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, M.-S.

Kim, A survey of automatic protocol reverse engineering

approaches, methods, and tools on the inputs and outputs

view, Security and Communication Networks, vol. 2018,

February 2018, pp. 1-17.

[8]. Y.Wang, N. Zhang, Y.-M.Wu, B.-B. Su, Y.-J. Liao,

Protocol formats reverse engineering based on association

rules in wireless environment, in 2013 Proceedings of the

12th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, July 2013, pp.

134-141.

[9]. Y. Wang, X. Yun, M. Shafiq, L. Wang, A. Liu, Z.

Zhang, D. Yao, Y. Zhang, L. Guo, A semantics aware

approach to automated reverse engineering unknown

protocols, in 2012 Proceedings of the 20th IEEE

International Conference on Network Protocols (ICNP),

October 2012, pp. 1-10.

[10]. E. I. George, G. Casella, Explaining the gibbs

sampler, The American Statistician, vol. 46, No. 3, August

1992, pp. 167-174.

[11]. G. Heinrich, Parameter estimation for text analysis,

University of Leipzig, Germany, Technical Note, 2008.

[12]. C. A. Haydar, Trust-based recommender systems,

Theses, Université de Lorraine, September 2014.

[13]. Zigbee Specification, ZigBee Standards Organization

Std.

[14]. IEEE Std 802.15.-2003, IEEE Std.

Figure 2. Best average fields lengths detection ratio of

the algorithms VDV, AC, and LDA

Table 1. Relative performance summary of the

algorithms VDV, AC, and LDA

