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I. INTRODUCTION

Around 65 million people worldwide are affected by epilepsy which can be characterized by recurrent seizures [1]. However, more than 30% of patients are drug resistant and a surgical resection of the Epileptogenic Zone (EZ) stands for the best therapeutic solution to reduce the occurrence of such seizures [START_REF] Jacobs | High frequency oscillations (HFOs) in clinical epilepsy[END_REF]. The success of resection surgery mainly depends on the localization of the EZ. The epilepsy can be diagnosed through different neuroimaging modalities (functional and structural) [START_REF] Shoeibi | Applications of epileptic seizures detection in neuroimaging modalities using deep learning techniques: methods, challenges, and future works[END_REF]. In this context, recent studies have proposed various algorithms [START_REF] Shoeibi | A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals[END_REF], [START_REF] Shoeibi | Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies[END_REF] to diagnose epileptic seizures. More recently, High Frequency Oscillations (HFOs) have gained particular attention as promising biomarkers of the EZ [START_REF] Jacobs | High frequency oscillations (HFOs) in clinical epilepsy[END_REF], [START_REF] Zijlmans | High-frequency oscillations as a new biomarker in epilepsy[END_REF]. HFOs, occurring in epileptic human intracranial ElectroEncephaloGraphic (iEEG) signals, are non-stationary oscillations with consecutive oscillations in the frequency band that can be distinguished from the baseline [START_REF] Zijlmans | High-frequency oscillations as a new biomarker in epilepsy[END_REF]. Frequently, researchers divide the HFOs into two bands, namely Ripples (Rs, [80-250 Hz]) and Fast Ripples (FRs, [250-500 Hz]) [START_REF] Jacobs | High frequency oscillations (HFOs) in clinical epilepsy[END_REF], [START_REF] Zijlmans | High-frequency oscillations as a new biomarker in epilepsy[END_REF]. Actually, in some studies, authors have proven that HFOs bands also include Gamma ( , ) [START_REF] Uhlhaas | A new look at gamma? highlight-(>60 Hz) γ-band activity in Accepted manuscript / Final version cortical networks: Function, mechanisms and impairment[END_REF], [START_REF] Park | Ictal high-gamma oscillation (60-99Hz) in intracranial electroencephalography and postoperative seizure outcome in neocortical epilepsy[END_REF] and High-Gamma (  H , [80-120 Hz]) [START_REF] Uhlhaas | A new look at gamma? highlight-(>60 Hz) γ-band activity in Accepted manuscript / Final version cortical networks: Function, mechanisms and impairment[END_REF], [START_REF] Park | Ictal high-gamma oscillation (60-99Hz) in intracranial electroencephalography and postoperative seizure outcome in neocortical epilepsy[END_REF] bands. Thus, HFOs can be divided into four bands:  ([30-80 Hz]),  H ([80-120 Hz]), Rs ) and FRs ). HFOs detection is traditionally performed by experts through a visual inspection from long hours of iEEG recordings [START_REF] Jacobs | High frequency oscillations (HFOs) in clinical epilepsy[END_REF]. However, such marking remains timeconsuming and subjective [START_REF] Zijlmans | High-frequency oscillations as a new biomarker in epilepsy[END_REF]. To cope with this issue, several approaches [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF], [START_REF] Birot | Automatic detection of fast ripples[END_REF], [START_REF] Staba | Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex[END_REF], [START_REF] Gardner | Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings[END_REF], [START_REF] Crépon | Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy[END_REF], [START_REF] Krikid | A comparative study between three epileptic high frequency oscillations detection strategies[END_REF], [START_REF] Roehri | Are highfrequency oscillations better biomarkers of the epileptogenic zone than spikes?[END_REF] have been proposed in the literature aiming at providing automatic identification of these particular cerebral activities, and especially their discrimination from other transient events like Interictal Epileptic Spikes (IESs). Commonly, the HFOs detection procedures are split into detection and classification [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF], [START_REF] Birot | Automatic detection of fast ripples[END_REF], [START_REF] Staba | Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex[END_REF], [START_REF] Gardner | Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings[END_REF], [START_REF] Crépon | Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy[END_REF], [START_REF] Roehri | Are highfrequency oscillations better biomarkers of the epileptogenic zone than spikes?[END_REF] to cite a few, but, in the present study only the classification stage is considered. Therefore, existing approaches on detection and estimation of HFOs are out of the scope of this paper. A recent study [START_REF] Roehri | Are highfrequency oscillations better biomarkers of the epileptogenic zone than spikes?[END_REF] showed that HFOs and IESs are complementary biomarkers of the EZ. Hence, identifying relevant features for those biomarkers is a real need. The present study focuses on the prominent features for a multi-classification task with the aim of discriminating among the different HFOs and IESs. Until now, various algorithms have been developed for the classification of HFOs events. The principle of these algorithms involves machine learning approaches to extract relevant features and use them for HFOs classification. In this context, supervised and unsupervised machine learning algorithms (see Table 1) have been widely used. Firpi et al. [START_REF] Firpi | Highfrequency oscillations detected in epileptic networks using swarmed neural-network features[END_REF] proposed an algorithm based on particle swarm optimization and neural networks to generate relevant features that separate HFOs and a baseline activity. An unsupervised cluster has been provided by Blanco et al. [17] to discriminate between HFOs and artifacts based on a k -medoids approach and some features in the time and frequency domains. To distinguish between true and false HFOs, Dümpelmann et al. [START_REF] Dümpelmann | Automatic 80 -250 Hz "ripple" high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network[END_REF] employed time features and radial basis function neural networks. Moreover, for a binary classification between physiological and pathological HFOs, Matsumoto et al. [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF] employed a cascade of time and frequency features as an input to a Support Vector Machine (SVM) classifier. Chaibi et al. [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF] associated several features with decision trees classifier to distinguish HFOs and background activity. To increase the discrimination among HFOs events and noise, Liu et al. [START_REF] Liu | Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy[END_REF] provided a Gaussian Mixture Model (GMM) based clustering. Approximate entropy [START_REF] López-Cuevas | An algorithm for online detection of high frequency oscillations related to epilepsy[END_REF] and fuzzy entropy [START_REF] Ting | Automatic detection of high frequency oscillations based on Fuzzy entropy and Fuzzy neural network[END_REF] were also used to separate HFOs from normal activity. In the context of multiclassification of the HFOs events, Jrad et al. [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF] considered energy ratio between bands and time duration as features. Recently, wavelet entropy and Teager energy were used in [START_REF] Yuxiao | A method for detecting highfrequency oscillations using semisupervised k-means and mean shift clustering[END_REF] for HFOs clustering using kmeans and mean shift algorithms. More recently, other studies focused on the discrimination between different HFOs bands using root mean square energy [START_REF] Lachner-Piza | Automatic detection of highfrequency-oscillations and their subgroups co-occurring with interictalepileptic-spikes[END_REF], line length energy [START_REF] Lachner-Piza | Automatic detection of highfrequency-oscillations and their subgroups co-occurring with interictalepileptic-spikes[END_REF], [26], short time energy [26] and Teager energy [START_REF] Lachner-Piza | Automatic detection of highfrequency-oscillations and their subgroups co-occurring with interictalepileptic-spikes[END_REF] as features. for a complete review of conventional time, frequency and energy-based features, the reader can refer to [START_REF] Park | High frequency oscillations in epilepsy: Detection methods and considerations in clinical application[END_REF].

As listed in Table 1, it is clear that the most frequent features in the literature come either from the time domain or from the frequency domain. However, a main drawback of those domains is the difficulty in providing any information about frequency variations over time. Hence, since HFOs are non-stationary, it is essential to describe their spectral change in time. Thus, the time frequency (TF) representation presents the advantage of merging both time and frequency information. Moreover, the TF representation has shown to be efficient in a number of neuroscience applications, for instance Alzheimer's disease identification [START_REF] Fiscon | Combining EEG signal processing with supervised methods for Alzheimer's patients classification[END_REF], sleep stage classification [START_REF] Ghasemzadeh | Sleep stages classification from eeg signal based on Stockwell transform[END_REF], [START_REF] Tsinalis | Automatic sleep stage scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders[END_REF], or epileptic seizure classification [START_REF] Krishnan | Automated EEG seizure detection based on Stransform[END_REF], [START_REF] Shoeibi | Epileptic seizures detection using deep learning techniques: a review[END_REF]. Recently, several studies have addressed the relevance of the TF representation in the context of HFOs classification [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF], [START_REF] Liu | Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy[END_REF]. More particularly, Migliorelli et al. [START_REF] Migliorelli | SGM: a novel timefrequency algorithm based on unsupervised learning improves highfrequency oscillation detection in epilepsy[END_REF] proposed a set of relevant TF-based features for a binary classification of HFOs (i.e., HFOs vs no HFOs). However, no study has addressed the shape of HFOs events in the TF plane as a way to characterize them. Such shape related features can further be relevant for a complete description of HFOs events. Therefore, the novelty of the present contribution resides in combining TF and image related features derived from TF representations of HFOs as an adequate mean towards a complete characterization of HFOs and hence a more robust HFOs multiclassification task. To achieve high classification performances, extracting relevant TF features requires powerful TF representation tool. Most TF representations are based on short time Fourier transform (STFT), wavelet analysis such as the continuous wavelet transform (CWT) or Wigner Ville distribution (WVD). The major drawback of these TF representations is the cross-term which may cause noise in TF signal analysis. Hence, the Stockwell transform (S-transform) [START_REF] Stockwell | Localization of the complex spectrum:the S transform[END_REF] has been developed to overcome the limits of the conventional representations. Thanks to its TF resolution, the S-transform provides a better visualization. This advantage makes this representation an appropriate tool in our study.

In this paper, we propose a new approach to discriminate between five classes, namely  ,  H , Rs, FRs and IESs. More precisely, we proposed to firstly extract diverse features from a TF based S-transform representation [START_REF] Stockwell | Localization of the complex spectrum:the S transform[END_REF] with the aim of tracking the energy distribution of the different five classes. Likewise, relevant image-based features derived from image processing tools such as image binarization and image gradient, commonly used in computer vision, are also used in this study to characterize the events of interest. Finally, the constructed feature vector, including both TF and image-related features, is provided as an input to a multiclass SVM classifier.

The remainder of the paper is organized as follows: Section II is dedicated to methodology. Numerical experiments are presented in Section III, discussion is given in Section IV and finally the conclusion in Section V.

II. METHODOLOGY

The present work proposes a new approach for the classification of  ,  H , Rs, FRs (i.e., HFOs) and IESs activities. It relies mainly on employing relevant features extracted, for each event of interest, from the corresponding TF representation and its associated TF grayscale image. These characteristics are then used to learn the classifier. A flow chart describing the main steps of the proposed approach is given in Fig. 1. More details regarding each step are presented in the subsequent subsections.

II.1. Notations

In the sequel, matrices are denoted by italic boldface capital letters, e.g., A , vectors are denoted by italic boldface lowercase letters, e.g., a , and scalars are denoted by italic lowercase letters, e.g., a . In addition, the ( )

, i j
th entry of a matrix A is denoted by ( ) , A i j . Besides, . will denote either the absolute value function of real numbers or the magnitude in case of complex argument. In addition, and  stand for the transposition and the convolution operators, respectively.

II.2. Data preprocessing

As the labeled segments of interest (SOIs) in our dataset are not of equal duration, the data preprocessing step consists in reframing each SOI into a 200 ms length one. This time period (i.e., 200 ms ) corresponds to the average of all periods of labeled events in our dataset. Then, each 200 ms -length SOI was first centered around 0 ms such that each event lasted from -100 ms to + 100 ms. Besides, in order to assess the relevance of the chosen time period of each SOI (i.e., 200 ms ), the performance of the proposed approach was also evaluated using different time periods (60 ms and 600 ms). The time period of 60 ms corresponds to the one of the shortest labelled SOI in our data set while the time period of 600 ms is the one of the largest labelled SOI. Numerical simulations have shown a highest performance of the proposed approach when a time period of 200 ms was Accepted manuscript / Final version used. An extensive description of this comparative study is provided as supplementary materials. Finally, in order to avoid the edge effect in each segment during the S-transform step, the obtained SOI was multiplied with a Hanning window of 200 ms length.

II.3. Time-Frequency representation

Once the SOIs have all the same duration, a TF representation of each SOI is then performed using the S-transform [START_REF] Stockwell | Localization of the complex spectrum:the S transform[END_REF]. Let 

  =- , 0,1,2
  -0, , 1 mM
, where M stands for the number of frequency bins, is defined as follows:

        - - = = -  1 2 0 m N ik M n S k,m x n k n,m e (1)
where    , nm is a specific mother wavelet function given by: 

    - = 22 

II.4. Feature extraction

In this step which is the core of the proposed approach, features are extracted not only from conventional raw TF representation [START_REF] Boashash | Principles of time-frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality Accepted manuscript / Final version detection[END_REF] of each SOI but also from its associated TF grayscale image. Such transformed representation permits to employ specific features in the field of image analysis and processing as described below. For the sake of convenience, we note from now on 

II.4.2. Time-frequency image feature

In addition to the above TF features, other image-related ones are also employed. To this end, two transformations of the initial TF plane are performed: (i) binarization and (ii) binarization followed by an image gradient computation [START_REF] Abudhamid Mohamed | Gradient Based Image Edge Detection[END_REF]. Image related features are then extracted from these two representations.

II.4.2.1. Binary image features

The TF representation of each SOI is transformed into a 8-bit grayscale image. Then, the obtained grayscale image is binarized using Otsu's method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. This method is widely used in image processing for image segmentation or binarization. For each obtained binary image, denoted here by  , geometric features are extracted. These features can be calculated using the image moment, The moment based geometric features considered in our study are:

• The area: the number of pixels constituting the SOI in the image 0,0 Area = M

• The perimeter: the number of image pixels constituting the SOI boundary

( ) ( ) ( ) = + + + 2 2 3,0 1,2 0,3 2,1 Perimeter M M M M
• The compactness: a measure reflecting the SOI shape in the considered plane 2

Perimeter

Compactness = Area

• The centroid: the pixel at the center of the SOI shape with TF coordinates given by

   

1,0 0,1 0,0 0,0 ; MM MM .

II.4.2.2. Image gradient features

For each considered SOI, the gradient of its binarized TF representation is computed by convolving its associated binary image  with the gradient operator

  = -1 0 1 h
. This convolution is performed through the time and frequency directions separately: =  t Gh [START_REF] Gardner | Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings[END_REF] =  f Gh [START_REF] Crépon | Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy[END_REF] where t G and f G are respectively the image gradients following the time and frequency axes. Then, the magnitude of the obtained gradient image [START_REF] Abudhamid Mohamed | Gradient Based Image Edge Detection[END_REF],  , is computed as follows:

 = + 22 tf GG (14) 
Once the gradient image is computed, its 1 Lnorm can be considered as a feature quantifying the sparsity of the resulting contour. This A summary list of the TF extracted features is given in Table 2.

II.5. Multi-class SVM classification

Once the aforementioned features are computed, they are used to learn the classifier. In this study, the SVM algorithm is used for the multi-classification of the different events in our dataset. The choice of this algorithm comes from its efficiency which has been reported earlier in several EEG based multi-classification studies [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF], [START_REF] Lachner-Piza | Automatic detection of highfrequency-oscillations and their subgroups co-occurring with interictalepileptic-spikes[END_REF], [26]. In this work, the radial basis function (RBF) widely used in the context of multiclassification problems is employed as a kernel for the SVM algorithm [START_REF] Fu | Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM[END_REF]. The RBF 
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Type Name Formula Specificity

Raw TF feature the margins between classes. To minimize the risk of model overfitting, the abovementioned parameters are wisely defined using the grid search method [START_REF] Chao | The Construction of Support Vector Machine Classifier Using the Firefly algorithm[END_REF].

TF flux       ---- = = = + + -  1 1 0 0 , , , N l M
Besides, the widely used One-Against-All (OAA) technique [START_REF] Chao | The Construction of Support Vector Machine Classifier Using the Firefly algorithm[END_REF] is employed to adapt the SVM algorithm, initially proposed for binary classification, to multi-classification tasks.
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III. NUMERICAL EXPERIMENTS

III.1. iEEG dataset

Both simulated and real iEEG signals are used in this study. More details regarding the description of these signals can be found in [START_REF] Jrad | Automatic detection and classification of high frequency oscillations in depth-EEG signals[END_REF].

Briefly, the real iEEG signals were recorded in the Neurology Department of the University Hospital of Rennes, France from five patients who suffered from refractory epilepsy. All patients gave informed consent for participation in research studies. A 256-Brain Quick (Micromed, Italy) recording system with a sampling rate of 2048 Hz was used for data acquisition. The visual marking of HFOs events was done by two reviewers independently in LTSI, University of Rennes 1. A total number of 5174 marked events were employed in the present study. In fact, five classes  ,  H , Rs, FRs and IESs are taken into consideration in the annotation procedure and labeled as  (1015),  H (1032), Rs (1053), FRs (1071), and IESs (1003).

To assess the performance of the proposed classification system, a study on simulated signals was also conducted. These signals were generated by adding simulated cerebral background activity to the real annotated events described above. The background activity was simulated by means of a computational model of neural population where sigmoid weights were used to control the background activity level. A signal to noise ratio (SNR) was defined to control the ratio between the event of interest and the background activity. This permits to evaluate the robustness of the proposed approach to several SNR values (-10, -5, 0, 5, 10 and 15 dB).

III.2. Performance measures

Several performance criteria are used in this study to evaluate the classification performance of the proposed approach. These criteria are the sensitivity (SEN), the specificity (SPE), the accuracy (ACC) and F1score defined respectively as follows:

( ) Moreover, the SEN and SPE metrics are used to design a receiver operating characteristic (ROC) curve, from which the area under the ROC curve (AUC) is computed as a measure to assess the relevance of the SVM classifier.

All experiments and simulations in the present study were performed using MATLAB (Mathworks Inc., Natick, MA) for iEEG database processing and Python software for classification through the scikit-learn library (https://scikit-learn.org). Different simulations were run on an Intel(R) Xeon (R), 2.7 GHz (2 processors) with 32 Go memory.

III.3. Feature extraction and analysis

As mentioned previously (Section II.5), for each SOI, both TF and image-based features are used to learn the classifier. Fig. 2 shows for each SOI in our dataset (first row) (i) the TF plane (second row), (ii) the TF plane in a grayscale image form (third row), (iii) the binarized version of the TF grayscale image (fourth row) and (iv) the gradient representation of the TF grayscale image (fifth row). Each representation has its own specificity to characterize the considered SOI. For example, while the TF representation provides information regarding the energy distribution over the time and frequency domains, which can be revealed by adequate TF features such as , the image gradient based TF representation helps in shedding light upon the event contour which can be quantified using the 1 L -norm. Features described previously are extracted for each SOI in our dataset. Then, in order to analyze the relevance of the selected features, a feature analysis based on violin plot representation [START_REF] Waskom | Seaborn: Statistical Data Visualization Seaborn[END_REF] is adopted as depicted in Fig. 3. Such representation combines statistical information that can be given by a simple boxplot representation with the distribution of the considered feature over the entire dataset. Furthermore, for the sake of comparability between all violin representations, a min-max normalization approach is applied to all computed features. Fig. 3 shows generally that, for each event (i.e.,  ,  H , Rs, FRs and IESs), the selected features are discriminant since their corresponding violin plots are different in terms of both statistical information (median and quartiles) and feature distribution. Besides, even for those features with quasisimilar feature distributions (i.e., case of features ku and cv ), their corresponding expected to provide a good classification of the segments of interest. 
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III.4. Events classification

Once the features are computed, the next step consists in evaluating the performance of the proposed approach in classifying the five events  ,  H , Rs, FRs and IESs. This classification step is performed using the SVM classifier since the proposed approach has shown higher performance using such classifier compared to the other well-known knearest neighbor (KNN), naive Bayes (NB) and random forest (RF) ones. For a detailed description of this comparative study, the reader can refer to the provided supplementary materials. The performance evaluation study is conducted first using only simulated data and then using only real data. Here, each dataset (simulated and real data) is split into a training set (70%) and a test set (30%). Then, the training set is used to learn the optimal SVM-RBF hyperparameters 𝐶 and 𝛽 using the grid search method with a 5fold cross validation scheme. Indeed, the retained couple (𝐶, 𝛽), among a set of (𝐶, 𝛽) candidates ((𝐶, 𝛽) ∈ {1,10,100,1000,100000} × {10 -5 , 10 -4 , 0.01, 0.1, 1}) defined over the search grid, is the one for which the smallest model prediction error is obtained. Once the optimal hyperparameters are found, the test set is then used to evaluate the model performance in terms of sensitivity, specificity, accuracy, AUC and F1-score. The above steps are repeated over 100 trials where, at each trial, the training and test sets are randomly reshuffled. Regarding the couple (𝐶, 𝛽) of hyperparameters, the optimal value was (10 ,1) for the simulated data and (1,0.1) for the real ones.

III.4.1. Case of simulated events

The behavior of the proposed classification approach is first evaluated on a simulated dataset generated as described in subsection III.1 for several SNRs (-10, -5, 0, 5, 10 and 15 dB) and then compared to conventional methods where only time, frequency [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF], [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF] or energy-based [26] features are used.

Obtained classification results in terms of SEN, SPE, ACC, AUC and F1-score criteria are given in Table 3 for the different SNR values. The mean and the standard deviation (STD) of the different computed performance metrics were provided for each class of the HFOs events. In addition, an averaged performance score for each metric was used as suggested in [START_REF] Alhudhaif | A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach[END_REF] and [START_REF] Memar | A Novel Multi-Class EEG-Based Sleep Stage Classification System[END_REF]. The goal of this latter score is to get an overview on the performance of the proposed method. According to Table 3, a good classification performance can be observed for the proposed approach for all classes and for all SNR values. More particularly, at first glance, we note that SEN, SPE, ACC, AUC and F1score criteria show, for all event types and SNR values, averaged values around 0.970, 0.990, 0.990, 0.990 and 0.970, respectively.

From a SNR point of view, the proposed classification strategy shows slightly lower performance for lower SNR values (i.e., -5 and -10 dB) compared to the case of relatively high SNR values (10 and 15 dB). For instance, for SNR of 15 dB, values of 0.990 (0.001), 0.996 (0.003), 0.995 (0.004), 0.993 (0.002) and 0.990 (0.001), are obtained respectively, for SEN, SPE, ACC AUC and F1-score criteria. However, for SNR value of -10 dB, these criteria have values of 0.978 (0.003), 0.988 (0.004), 0.983 (0.005), 0.994 (0.002) and 0.980 (0.002), respectively. This is probably due the fact that, for low SNR, events of interest are drowned in the background activity or at least their amplitude is very comparable to the one of the background activity. Regarding the comparison of the proposed approach with the abovementioned conventional methods [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF], [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF], [26], Fig. 4 shows the performance of the proposed approach in terms of SEN, SPE, ACC, AUC and F1-score for different SNR values i.e.,-10, -5, 0, 5, 10 and 15 dB. According to this figure, a higher classification performance of the proposed approach compared to the conventional methods can be noticed, especially for low SNR values. For instance, while the approach in [START_REF] Lachner-Piza | Automatic detection of highfrequency-oscillations and their subgroups co-occurring with interictalepileptic-spikes[END_REF] shows, for SNR equal to -10 dB, values of 0.854, 0.752, 0.711, 0.800 and 0.800 for SEN, SPE, ACC, AUC and F1-score, respectively, the proposed approach provides values of 0.978, 0.998, 0.983, 0.994 and 0.980 for the same criteria. Similarly, the proposed approach provides also higher classification scores compared to [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF] and [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF].

III.4.2. Case of real data

The proposed approach has been also evaluated on real data in terms of SEN, SPE, ACC, AUC and F1-score. Hence, the mean and the STD of the different performance metrics are provided in Table 4 for each class of the HFOs events. According to this table, the proposed approach shows an averaged classification performance of 0.765 (0.025), 0.941 (0.006), 0.906 (0.006), 0.929 (0.005) and 0.768 (0.016), respectively. The relatively low value of the SEN criterion (0.765) compared to the one of the SPE (0.941) and ACC (0.906) is probably due to a lack of class separability in the trained classifier. However, despite the relatively low value of the SEN criterion, a high AUC value (0.929) is obtained. Furthermore, from event point of view, Table 4 shows that the best classification results are obtained for  and FRs events with SEN value of 0.846 (0.025) and 0.825 (0.025), respectively.

Regarding the comparison of the proposed approach with conventional approaches [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF], [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF], [26], results in terms of SEN, SPE, ACC, AUC and F1-score are depicted in Fig. 5. According to this figure, we note again a higher classification performance for the proposed approach. For instance, while averaged values of 0.765, 0.941, 0.906, 0.929 and 0.768 of SEN, SPE, ACC AUC and F1score criteria are respectively obtained for the proposed approach, lower values respectively equal to 0.529, 0.811, 0.852, 0.807, and 0.697 are obtained using the method proposed in [26]. Similarly, methods proposed in [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF] and [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF] show lower multiclassification performance compared to the proposed approach. In fact, the lowest behavior is noticed for the method developed in [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF] as depicted in Fig. 5. 

IV. DISCUSSION

In this study a new approach for the classification of HFOs (  ,  H , Rs, FRs) and IESs activities was proposed. This approach relies mainly on employing relevant TF and image-based features to characterize the events of interest. These features allow for a complete characterization of these events in both time and frequency domains, simultaneously.

On the methodological level, thanks to its efficiency [START_REF] Migliorelli | SGM: a novel timefrequency algorithm based on unsupervised learning improves highfrequency oscillation detection in epilepsy[END_REF], [START_REF] Burnos | Human intracranial high frequency oscillations (HFOs) detected by automatic timefrequency analysis[END_REF], the S-transform was used to compute the TF representation of each SOI. This transform provides an efficient TF representation to reveal different TF and related image-based features. To the best of our knowledge, no study has yet addressed HFOs and IESs classification by employing simultaneously TF and image-based features. Such combination of TF and image-based features as proposed in this paper led to a very competitive classification performance in terms of SEN, SPE, ACC, AUC and F1-score, as shown in the previous section. More particularly, the proposed approach provides generally good performance results using simulated data as shown in Table 3, for all considered SNR values. However, a slight decrease in performance has been noticed in the case of low SNRs (i.e., -10 dB and -5 dB). Regarding the performance of the proposed approach on real iEEG recordings, a good behavior was still observed compared to the conventional approaches [START_REF] Matsumoto | Pathological and physiological high-frequency oscillations in focal human epilepsy[END_REF], [START_REF] Chaibi | Detection of high frequency oscillations (HFOs) in the 80-500 Hz range in epilepsy recordings using decision tree analysis[END_REF] and [26] which is based only on time, frequency and energy features. Indeed, the proposed method achieved a good specificity across all HFOs classes with a good averaged value of 0.929 for the AUC criterion.

In fact, the good behavior of the proposed approach brings out the relevance of the employed TF and image-based features. This fact holds true for both simulated and real data.

The major finding in our work concerns the fact that TF features combined with imagebased ones are a promising tool for multiclassification of HFOs and IESs. However, there are some limitations in the present study, which should be highlighted for future research. On the one hand, the proposed approach could suffer from the curse of dimensionality problem. This is mainly due to the dimensionality of the input feature vector which is proportional to the number of TF and image-based features. Such an issue can be dealt with by resorting to deep learning that allows for an automatic extraction of the most Accepted manuscript / Final version relevant TF and image-based features. In fact, deep learning has proved its relevance in image and signal processing areas. Even for HFOs classification, some studies such as [START_REF] Zuo | Automated detection of high-frequency oscillations in epilepsy based on a convolutional neural network[END_REF], [START_REF] Zhao | Integrated automatic detection, classification and imaging of high frequency oscillations with stereoelectroencephalography[END_REF], to cite a few, have employed the CNN as a powerful deep learning tool. However, resorting to deep learning requires the data set to be large enough for a reliable network training step. Such condition is not fulfilled in the current study and stands, on the second hand, for an another limitation to be pointed out here. Therefore, future work would concern the collect of more clinical data for a more complete assessment.

V. Conclusion

The present paper investigated a new approach for HFOs classification method based on TF representation of events of interest. Several SOIs are projected in the TF domain using S-transform and from which several TF and image-based features were extracted. The efficiency of the proposed approach in terms of SEN, SPE, ACC, AUC and F1-score has been assessed through numerical experiments using simulated and real iEEG recordings. Obtained results support our claim that combining TF and image-based features are a promising tool to characterize events of interest in time and frequency domains, simultaneously and consequently to provide a powerful multiclassification of HFOs and IESs.

Fig. 1 .

 1 Fig. 1. Flowchart of the proposed HFOs classification method.

••

  . II.4.1. Raw Time-frequency features • Time-frequency flux () flux TF: a measure of the variation of the signal energy in the TF plane. It is defined by: r are the direction of the signal energy through the time and frequency axes, respectively. Three possible directions are considered in this study: (i) along the time axis (i.e., = l 1 , Energy concentration() EC : a measure to quantify the concentration of the signal energy in the TF plane: Statistical features: statistical features such as the mean  (), standard deviation  () , skewness () sk , kurtosis () ku and the coefficient of variation () cv , are also considered. Conventionally, those features are employed separately either in the time or in the frequency domain. Recently, they have been extended to the TF domain and defined as follows[START_REF] Boashash | Principles of time-frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality Accepted manuscript / Final version detection[END_REF]:

   and  are two training samples and  denotes the width of the RBF function. Another important parameter to be taken into account for the SVM algorithm is the regularization parameter C , which is used to balance the relative importance of minimizing the training error and maximizing

Fig. 2 .

 2 Fig. 2. Representation of HFOs and IESs patterns in time domain (first row) (i) TF plane (second row), (ii) TF based grayscale image (third row), (iii) binarized TF based grayscale image (fourth row) and (iv) TF based grayscale image gradient (fifth row).

Fig. 3 .

 3 Fig. 3. Violin plots of the considered features of the five classes: (a):  , (b):  H , (c): Rs, (d): FRs

Fig. 4 .

 4 Fig. 4. Classification performance of the proposed approach compared to conventional ones using simulated data for different SNR values: (a): -10 dB, (b): -5 dB, (c): 0 dB, (d): 5 dB, (e): 10 dB and (f): 15 dB.

Table 1 .

 1 An overview on HFOs classification methods.

	Study	Features	Classification techniques	Context
	Firpi et al.	Particle swarm	Supervised/neural	Separation between HFOs and
	2007 [16]	optimization	networks	baseline activity

Table 2 .

 2 List of extracted TF and image-related features.

Table 3 .

 3 Classification performance of the proposed approach using simulated data, the mean (STD) of SEN, SPE, ACC, AUC and F1-score are reported.

	SNR (dB)	SOI class 	SEN 0.999 (0.003)	SPE 0.999 (0.002)	ACC 0.999 (0.001)	AUC 0.997 (0.004) 0.998 (0.005) F1-score
		 H	0.987 (0.002)	0.996 (0.005)	0.995 (0.006)	0.990 (0.004) 0.987 (0.001)
	+15	Rs FRs	0.981 (0.002) 0.985 (0.002)	0.994 (0.006) 0.995 (0.006)	0.991 (0.007) 0.993 (0.007)	0.990(0.001) 0.991 (0.003) 0.985 (0.001) 0.982 (0.001)
		IESs	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1 (0.000)	1.000 (0.000)
		Average	0.990 (0.001)	0.996 (0.003)	0.995 (0.004)	0.993 (0.002) 0.990 (0.001)
			1.000 (0.000)	0.999 (0.000)	0.999 (0.000)	0.999 (0.000) 0.999 (0.001)
		 H	0.987 (0.002)	0.997 (0.004)	0.995 (0.000)	0.990 (0.004) 0.989 (0.001)
	+10	Rs FRs	0.987 (0.001) 0.986 (0.002)	0.994 (0.000) 0.997 (0.006)	0.992 (0.000) 0.994 (0.006)	0.992 (0.001) 0.983 (0.001) 0.992 (0.006) 0.988 (0.001)
		IESs	0.999 (0.003)	0.999 (0.001)	0.999 (0.001)	0.989 (0.001) 0.999 (0.003)
		Average	0.991 (0.001)	0.997 (0.002)	0.995 (0.001)	0.992 (0.002) 0.991 (0.001)
			0.999 (0.001)	0.998 (0.000)	0.998 (0.000)	0.999 (0.004) 0.996 (0.001)
		 H	0.973 (0.005)	0.995 (0.001)	0.986 (0.001)	0.991 (0.001) 0.977 (0.004)
		Rs	0.976 (0.005)	0.989 (0.001)	0.993 (0.006)	0.993 (0.007) 0.971 (0.003)
	+5	FRs	0.980 (0.004)	0.994 (0.001)	0.988 (0.001)	0.995 (0.001) 0.975 (0.003)
		IESs	0.998 (0.001)	0.999 (0.000)	0.999 (0.000)	0.999 (0.000) 0.998 (0.001)
		Average	0.985 (0.003)	0.995 (0.000)	0.992 (0.001)	0.995 (0.002) 0.983 (0.002)
			0.998 (0.001)	0.999 (0.000)	0.998 (0.000)	0.990 (0.007) 0.996 (0.001)
		 H	0.976 (0.005)	0.995 (0.001)	0.991 (0.001)	0.978 (0.001) 0.979 (0.003)
	0	Rs FRs	0.973 (0.004) 0.976 (0.004)	0.991 (0.001) 0.992 (0.001)	0.987 (0.007) 0.988 (0.001)	0.998 (0.006) 0.972 (0.003) 0.990 (0.002) 0.976 (0.003)
		IESs	0.999 (0.001)	0.999 (0.000)	0.999 (0.000)	0.999 (0.001) 0.998 (0.003)
		Average	0.984 (0.003)	0.995 (0.000)	0.992 (0.001)	0.992 (0.003) 0.984 (0.002)
			0.998 (0.001)	0.998 (0.000)	0.998 (0.000)	1.000 (0.007) 0.996 (0.001)
		 H	0.967 (0.006)	0.993 (0.001)	0.994 (0.007)	0.994 (0.007) 0.980 (0.001)
		Rs	0.988 (0.001)	0.971 (0.004)	0.964 (0.006)	0.999 (0.006) 0.966 (0.004)
	-5	FRs	0.974 (0.005)	0.990 (0.001)	0.986 (0.001)	0.995 (0.002) 0.972 (0.003)
		IESs	0.991 (0.001)	0.999 (0.000)	0.999 (0.000)	0.998 (0.001) 0.998 (0.001)
		Average	0.			

983 (0.002) 0.990 (0.001) 0.988 (0.002) 0.997 (0.004) 0.982 (0.002)

  

			0.999 (0.005)	0.999 (0.001)	0.991 (0.001)	0.997 (0.004) 0.990 (0.004)
		 H	0.954 (0.002)	0.996 (0.005)	0.993 (0.006)	0.989 (0.001) 0.982 (0.001)
		Rs	0.980 (0.002)	0.961 (0.008)	0.961 (0.009)	0.992 (0.007) 0.967 (0.002)
	-10	FRs	0.973 (0.002)	0.993 (0.007)	0.977 (0.008)	0.993 (0.001) 0.969 (0.001)
		IESs	0.988 (0.008)	0.991 (0.000)	0.994 (0.001)	0.999 (0.000) 0.992 (0.004)
		Average	0.978 (0.003)	0.988 (0.004)	0.983 (0.005)	0.994 (0.002) 0.980 (0.002)
			Accepted manuscript / Final version	

Table 4 .

 4 Classification performance of the proposed approach using real data, the mean (STD) of SEN, SPE, ACC, AUC and F1-score are reported.

	SOI class	SEN	SPE	ACC	AUC	F1-score
		0.846 (0.025)	0.963 (0.005)	0.940 (0.006)	0.970 (0.001)	0.848 (0.016)
	 H	0.717 (0.025)	0.882 (0.010)	0.849 (0.008)	0.866 (0.006)	0.655 (0.017)
	Rs	0.694 (0.024)	0.939 (0.007)	0.889 (0.007)	0.877 (0.012)	0.719 (0.018)
	FRs	0.825 (0.025)	0.965 (0.005)	0.936 (0.006)	0.953 (0.004)	0.843 (0.015)
	IESs	0.747 (0.026)	0.956 (0.005)	0.916 (0.006)	0.982 (0.006)	0.775 (0.017)

Average 0.765 (0.025) 0.941 (0.006) 0.906 (0.006) 0.929 (0.005) 0.768 (0.016) Accepted

  

manuscript / Final version Fig 5. Classification performance of the proposed approach compared to conventional ones using real data.
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