
HAL Id: hal-03514819
https://hal.science/hal-03514819v2

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the length of the shortest path in a sparse
Barak-Erdős graph

Bastien Mallein, Pavel Tesemnikov

To cite this version:
Bastien Mallein, Pavel Tesemnikov. On the length of the shortest path in a sparse Barak-Erdős graph.
Statistics and Probability Letters, 2022, 190, pp.ID 109634. �hal-03514819v2�

https://hal.science/hal-03514819v2
https://hal.archives-ouvertes.fr


On the length of the shortest path in a sparse
Barak-Erdős graph
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Abstract

We consider an inhomogeneous version of the Barak-Erdős graph, i.e.
a directed Erdős-Rényi random graph on {1, . . . , n} with no loop. Given
f a Riemann-integrable non-negative function on [0, 1]2 and γ > 0, we
define G(n, f, γ) as the random graph with vertex set {1, . . . , n} such
that for each i < j the directed edge (i, j) is present with probability
p

(n)
i,j = f(i/n,j/n)

nγ
, independently of any other edge. We denote by Ln the

length of the shortest path between vertices 1 and n, and take interest in
the asymptotic behaviour of Ln as n → ∞.

1 Introduction
The Barak-Erdős graph, introduced by Barak and Erdős in [1], is a random
directed graph with no loop constructed as follows. Given n ∈ N and p ∈ (0, 1),
the Barak-Erdős graph G(n, p) is a graph with vertex set {1, . . . , n} such that
for each i < j, the edge (i, j) from vertex i to vertex j is present with probability
p, independently of any other directed edge. This graph is a directed acyclic
version of the well-known Erdős-Rényi graph, introduced by Erdős and Rényi
in [4]. It can be used to model community food webs in ecology [14], or the task
graph for parallel processing in computer sciences [8].

In particular, the length (number of edges) of the longest (directed) path,
denoted Mn, has been the subject of multiple studies, as Mn + 1 is the num-
ber of steps needed to complete the task graph assuming maximal paralleliza-
tion. Newman [15] proved that Mn

n converges in law to a deterministic function
p 7→ C(p). Increasingly precise bounds were obtained on this function and its
generalizations by [5, 3, 6, 12, 13, 7].

In the present article, we take interest in the length Ln of the shortest path
between vertices 1 and n in this graph, which has been much less studied. It is
worth noting that for fixed value of p, one has

P(Ln = 1) = p and lim
n→∞

P(Ln = 2) = 1− p,
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as with probability 1− (1−p2)n−2, there is a vertex j ∈ {2, . . . n−1} connected
to both 1 and n, hence Ln is equal to 1 or 2 with high probability. In particular,
the length of the shortest path in dense graphs remains tight.

This fact is mentioned in [17], which takes interest in the asymptotic be-
haviour of L(γ)

n , the length of the shortest path between vertices 1 and n in a
graph with connexion constant pn = n−γ , i.e. in the limit of sparse graphs.
There, it is shown that for all k ≥ 2,

lim
n→∞

P(L(γ)
n ≤ k) = 0 if 1− 1

k
< γ.

We extend this result in the present article by obtaining the convergence in
distribution of L(γ)

n for all γ ∈ (0, 1).
We consider here the asymptotic behaviour of the length of the shortest path

between 1 and n in a space-inhomogeneous version of the Barak-Erdős graph,
defined as follows. Let f be a Riemann-integrable positive function on [0, 1]2

and γ ∈ (0, 1). For each n ∈ N and i < j, we set p(n)
i,j = f(i/n,j/n)

nγ . The space-
inhomogeneous sparse Barak-Erdős graph G(n, f, γ) is defined as a graph with
vertex set {1, . . . , n} such that for each i < j, the directed edge (i, j) is present
with probability p(n)

i,j .
We remark that for γ = 0, the sequence G(n, f, 0) is a sequence of graphs

converging to a graphon (a scaling limit of random graphs introduced by Lovász
and Szegedy [11]). More generally, putting a mass nγ to each edge of the graph
G(n, f, γ), the sequence of weighted graphs converges to the graphon f . We
refer to [10] for definitions and results linked to graphons, and to [9] for a short
self-contained introduction.

The main result of the article is the following estimate on the asymptotic
behaviour of Ln for γ = 1− 1

k .

Theorem 1.1. Let f be a Riemann-integrable non-negative function on [0, 1]2
and k ∈ N. We fix γ = 1− 1

k and we set

ck(f) =
∫

0<u1<...<uk−1<1

k−1∏
j=0

f(uj , uj+1)du1 · · · duk−1 ∈ [0,∞],

with u0 = 0 and uk = 1. Writing Ln for the length of the shortest path between
vertices 1 and n in G(n, f, γ), we have

lim
n→∞

P(Ln = k + 1) = 1−P(Ln = k) = exp (−ck(f)) .

By coupling arguments, Theorem 1.1 can be extended to describe the conver-
gence in distribution of Ln as n→∞ for any space-inhomogeneous Barak-Erdős
graph.

Corollary 1.2. Let f be a Riemann-integrable positive function on [0, 1]2 and
γ > 0. For k ≥ 2, we have

lim
n→∞

P(Ln ≤ k) =


0 if k < 1

1−γ ,

1− e−ck(f) if k = 1
1−γ ,

1 otherwise.
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Observe that for γ = 1, the Barak-Erdős graph becomes unconnected, so
that Ln = ∞ with positive probability. In the present article, we do not treat
the case npn →∞ with n1−εpn → 0 for all ε > 0. However, a phase transition
should be observed for the asymptotic behaviour of Ln when pn ≈ logn

n , as the
graph becomes disconnected.

1.1 Some examples and applications
A class of inhomogeneous Barak-Erdős graphs previously studied are strongly
inhomogeneous graphs. In this class of graphs, the probability of presence of
the edge (i, j) is given by θ (j−i)α

nβ
, with θ > 0, β > 0 and α ∈ (−1, β). This

model can be constructed as an inhomogeneous Barak-Erdős graph, setting
f(x, y) = θ(y− x)α and γ = β−α. Applying Corollary 1.2, we observe that for
any k ≥ 2, if 1− 1

k−1 < β−α < 1− 1
k , we have Ln → k in probability. Similarly,

if β − α = 1− 1
k , we set

ck = θk
∫
Sk

k∏
j=1

tαj dt1 · · · dtk−1 = θkΓ(1 + α)k

Γ(k(1 + α)) ,

where Sk = {(t1, . . . tk) ∈ [0, 1]k : t1+· · ·+tk = 1}. We conclude by Theorem 1.1
that Ln converges in distribution to e−ckδk + (1− e−ck)δk+1 as n→∞.

Remark that using the coupling given in Proposition 2.3, for a similar model
with α ≤ −1, we can obtain

lim
n→∞

Ln = k in probability if β − α =
[
1− 1

k − 1 , 1−
1
k

)
.

This result is an extension of Tesemnikov’s [17] estimates on the length of the
shortest path in the inhomogeneous Barak-Erdős graph, setting β = 0. Outside
of the boundary cases, the convergence in probability of Ln to k ∈ N can be
obtained through first- and second-moment methods, with using Lemma 2.1.
We handle the boundary cases by using the Chen-Stein method, showing in
Lemma 2.2 that the law of the number of paths of length k is close to a Poisson
distribution for n large enough.

Another example of interest in the case of Barak-Erdős graphs with exponen-
tial density of connexion. Setting λ, µ ∈ R and γ > 0, we consider a Barak-Erdős
graph with p

(n)
i,j = eλ(j−i)/n+µ

nγ . In this case, we have

ck(f) =
∫

0<u1<...<uk−1<1

k−1∏
j=0

eλ(uj+1−uj)+µdu1 · · · duk−1 = eλ+kµ

(k − 1)! ,

and Theorem 1.1 and Corollary 1.2 apply.

2 Proof of the main result
For each k ≤ n, we denote by

Γk(n) = {ρ ∈ Nk+1 : ρ0 = 1 < ρ1 < · · · < ρk−1 < ρk = n}
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the set of increasing paths of length k from 1 to n. As a first step towards
estimating the length of the shortest path in a space-inhomogeneous Barak-
Erdős graph, we compute the mean number of paths of length k.

Lemma 2.1. Let γ > 0 and f a Riemann-integrable non-negative function. For
n ∈ N, we write Zn(k) for the number of paths of length k between 1 and n in
G(n, f, γ), we have

E(Zn(k)) ∼ n(k−1)−kγck(f) as n→∞.

Proof. By linearity of the expectation, we have

E(Zn(k)) =
∑

ρ∈Γk(n)

k−1∏
j=0

p(n)
ρj ,ρj+1

= n(k−1)−kγ 1
nk−1

∑
ρ∈Γk(n)

k−1∏
j=0

f
(ρj
n ,

ρj+1
n

)
.

Then limn→∞
1

nk−1

∑
ρ∈Γk(n)

∏k−1
j=0 f

(ρj
n ,

ρj+1
n

)
= ck(f), by Riemann integra-

tion, which completes the proof.

In particular, we remark that under the assumptions of Theorem 1.1, the
mean number of paths of length k in G(n, f, γ) converges to ck(f). Using this
observation, we now prove that the number of paths of length k converges to a
Poisson-distributed random variable.

Lemma 2.2. With the notation and assumptions of Theorem 1.1, we have

lim
n→∞

Zn(k) = P (ck(f)) in distribution.

Proof. We use the Chen-Stein method [2, 16] to prove the convergence in dis-
tribution of Zn(k). More precisely, we show that for all j ∈ N we have

lim
n→∞

jP(Zn(k) = j)−E(Zn(k))P(Zn(k) = j − 1) = 0. (2.1)

Together with a tightness argument (due to the fact that E(Zn(k)) converges), it
proves that Zn(k) converges in distribution to a Poisson variable with parameter
limn→∞E(Zn(k)) = ck(f).

Let j ∈ N, we rewrite

jP(Zn(k) = j) = E

 ∑
ρ∈Γk(n)

1{ρ open}1{Zn(k)=j}

 , (2.2)

where ρ is said to be open if all edges (ρi, ρi+1) are present in the graph. More-
over for all ρ ∈ Γk(n), we have

|P(Zn(k) = j|ρ open)−P(Zn(k) = j − 1)|

≤ P
(

there exists a path of length k between 1 and n
distinct from ρ that shares an edge with ρ

)
.
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Indeed, to construct a graph with same law as G(n, f, γ) conditionally on ρ
being open, it is enough to add to the graph G(n, f, γ) the edges (ρi, ρi+1) for
all 1 ≤ i ≤ k if these are not already present. If opening these edges creates
new paths, then these paths would have to share at least one edge with ρ.

We remark that if there exists a path of length k between 1 and n distinct
from ρ andthat shares an edge with ρ, then there exists 0 ≤ i1 < i2 ≤ k and
2 ≤ ` < k such that there exists a path of length ` between ρi1 and ρi2 that
does not intersect ρ. Writing Yi1,i2,` the number of such paths, with the same
method as in Lemma 2.1, we compute

E (Yi1,i2,`) =
∑

ρi1<ρ1<···<ρ`−1<ρi2

`−1∏
q=0

p
(n)
ρq,ρq+1

≤ n−γ`
∑

ρi1<ρ1<···<ρ`−1<ρi2

`−1∏
q=0

f
(
ρq
n ,

ρq+1
n

)
→ 0 as n→∞,

using that there are at most n`−1 paths of length ` between ρi1 and ρi2 . There-
fore, by union bound, we deduce that

lim
n→∞

P(Zn(k) = j|ρ open)−P(Zn(k) = j − 1) = 0,

which implies, by (2.2), that∑
ρ∈Γk(n)

P(Zn(k) = j and ρ open)−P(Zn(k) = j − 1) E(Zn(k)) = o(E(Zn(k))).

As E(Zn(k)) is bounded, we obtain (2.1).
We remark that supn∈N E(Zn(k)) <∞, hence (Zn(k)) is tight. Consider any

subsequence (nj) so that Znj (k) converges in distribution as j → ∞. Writing
Y a random variable with this distribution, we have for all j ∈ N:

jP(Y = j) = ck(f)P(Y = j − 1),

using that E(Znj (k)) → ck(f). Hence P(Y = j) = ck(f)j
j! P(Y = 0), with

P(Y > n)→ 0 as n→∞. We conclude that Y is a P(ck(f)) random variable.
As any converging subsequence of (Zn(k)) is converging to P(ck(f)) in law,

we conclude that Zn(k) converges to P(ck(f)) in law as n→∞.

Before turning to the corollary, we introduce the following coupling estimate,
which loosely states that a more connected graph will have a shorter shortest
path between 1 and n.
Proposition 2.3. Let Gn, Gn be two inhomogeneous Barak-Erdős graphs such
that an edge between i and j is present with probability p(n)

i,j and p(n)
i,j respectively.

If p(n)
i,j ≤ p

(n)
i,j for any i and j, then there exists a coupling between Gn and Gn

such that Ln ≥ Ln.
Proof. We assume Gn to be constructed on some probability space. Take any
existing edge (i, j) of Gn and do the following procedure: chosen edge is kept in
graph with probability p

(n)
i,j /p

(n)
i,j and deleted with remained probability. This

procedure creates a random graph distributed exactly as Gn and is a subgraph
of Gn. Therefore, as no new edge was added, the length of the shortest path
cannot have decreased.
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Proof of Corollary 1.2. We assume first that k < 1
1−γ . Then, by Lemma 2.1,

we have

lim
n→∞

k∑
j=1

E(Zn(j)) = 0,

therefore P(Ln ≤ k)→ 0 by Markov inequality.
The case k = 1

1−γ is covered by Theorem 1.1.
Finally, if k > 1

1−γ , then for all A > 0, the Barak-Erdős graph G(n, f, γ)
can be coupled with G(n,Af, k−1

k ) for n large enough, using Proposition 2.3.
Therefore

lim inf
n→∞

P(Ln ≤ k) ≥ 1− e−A
kck(f),

using Theorem 1.1 and that ck(Af) = Akck(f). As f is positive, ck(f) is
positive, and letting A→∞ we conclude that P(Ln ≤ k)→ 1.
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