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We consider an inhomogeneous version of the Barak-Erdős graph, i.e. a directed Erdős-Rényi random graph on {1, . . . , n} with no loop. Given f a Riemann-integrable non-negative function on [0, 1] 2 and γ > 0, we define G(n, f, γ) as the random graph with vertex set {1, . . . , n} such that for each i < j the directed edge (i, j) is present with probability p

, independently of any other edge. We denote by Ln the length of the shortest path between vertices 1 and n, and take interest in the asymptotic behaviour of Ln as n → ∞.

On the length of the shortest path in a sparse Barak-Erdős graph

Introduction

The Barak-Erdős graph, introduced by Barak and Erdős in [START_REF] Amnon | On the maximal number of strongly independent vertices in a random acyclic directed graph[END_REF], is a random directed graph with no loop constructed as follows. Given n ∈ N and p ∈ (0, 1), the Barak-Erdős graph G(n, p) is a graph with vertex set {1, . . . , n} such that for each i < j, the edge (i, j) from vertex i to vertex j is present with probability p, independently of any other directed edge. This graph is a directed acyclic version of the well-known Erdős-Rényi graph, introduced by Erdős and Rényi in [START_REF] Erdős | On the evolution of random graphs[END_REF]. It can be used to model community food webs in ecology [START_REF] Newman | A stochastic theory of community food webs iv: Theory of food chain lengths in large webs[END_REF], or the task graph for parallel processing in computer sciences [START_REF] Gelenbe | An approximation of the processing time for a random graph model of parallel computation[END_REF].

In particular, the length (number of edges) of the longest (directed) path, denoted M n , has been the subject of multiple studies, as M n + 1 is the number of steps needed to complete the task graph assuming maximal parallelization. Newman [START_REF] Charles | Chain lengths in certain random directed graphs[END_REF] proved that Mn n converges in law to a deterministic function p → C(p). Increasingly precise bounds were obtained on this function and its generalizations by [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF][START_REF] Chernysh | Coupling any number of balls in the infinite-bin model[END_REF][START_REF] Foss | Limiting properties of random graph models with vertex and edge weights[END_REF][START_REF] Mallein | Two-sided infinite-bin models and analyticity for Barak-Erdős graphs[END_REF][START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF][START_REF] Foss | Estimation of the last passage percolation constant in a charged complete directed acyclic graph via perfect simulation[END_REF].

In the present article, we take interest in the length L n of the shortest path between vertices 1 and n in this graph, which has been much less studied. It is worth noting that for fixed value of p, one has

P(L n = 1) = p and lim n→∞ P(L n = 2) = 1 -p, as with probability 1 -(1 -p 2 ) n-2
, there is a vertex j ∈ {2, . . . n -1} connected to both 1 and n, hence L n is equal to 1 or 2 with high probability. In particular, the length of the shortest path in dense graphs remains tight. This fact is mentioned in [START_REF] Tesemnikov | On the asymptotics for the minimal distance between extreme vertices in a generalised Barak-Erdős graph[END_REF], which takes interest in the asymptotic behaviour of L (γ) n , the length of the shortest path between vertices 1 and n in a graph with connexion constant p n = n -γ , i.e. in the limit of sparse graphs. There, it is shown that for all k ≥ 2,

lim n→∞ P(L (γ) n ≤ k) = 0 if 1 - 1 k < γ.
We extend this result in the present article by obtaining the convergence in distribution of

L (γ)
n for all γ ∈ (0, 1). We consider here the asymptotic behaviour of the length of the shortest path between 1 and n in a space-inhomogeneous version of the Barak-Erdős graph, defined as follows. Let f be a Riemann-integrable positive function on [0, 1] 2 and γ ∈ (0, 1). For each n ∈ N and i < j, we set p

(n) i,j = f (i/n,j/n) n γ
. The spaceinhomogeneous sparse Barak-Erdős graph G(n, f, γ) is defined as a graph with vertex set {1, . . . , n} such that for each i < j, the directed edge (i, j) is present with probability p (n) i,j . We remark that for γ = 0, the sequence G(n, f, 0) is a sequence of graphs converging to a graphon (a scaling limit of random graphs introduced by Lovász and Szegedy [START_REF] Lovász | Limits of dense graph sequences[END_REF]). More generally, putting a mass n γ to each edge of the graph G(n, f, γ), the sequence of weighted graphs converges to the graphon f . We refer to [START_REF] Lovász | Large networks and graph limits[END_REF] for definitions and results linked to graphons, and to [START_REF] Glasscock | What is . . . a graphon? Notices[END_REF] for a short self-contained introduction.

The main result of the article is the following estimate on the asymptotic behaviour of L n for γ = 1 -1 k . Theorem 1.1. Let f be a Riemann-integrable non-negative function on [0, 1] 2 and k ∈ N. We fix γ = 1 -1 k and we set

c k (f ) = 0<u1<...<u k-1 <1 k-1 j=0 f (u j , u j+1 )du 1 • • • du k-1 ∈ [0, ∞],
with u 0 = 0 and u k = 1. Writing L n for the length of the shortest path between vertices 1 and n in G(n, f, γ), we have

lim n→∞ P(L n = k + 1) = 1 -P(L n = k) = exp (-c k (f )) .
By coupling arguments, Theorem 1.1 can be extended to describe the convergence in distribution of L n as n → ∞ for any space-inhomogeneous Barak-Erdős graph.

Corollary 1.2. Let f be a Riemann-integrable positive function on [0, 1] 2 and γ > 0. For k ≥ 2, we have

lim n→∞ P(L n ≤ k) =      0 if k < 1 1-γ , 1 -e -c k (f ) if k = 1 1-γ , 1 otherwise.
Observe that for γ = 1, the Barak-Erdős graph becomes unconnected, so that L n = ∞ with positive probability. In the present article, we do not treat the case np n → ∞ with n 1-ε p n → 0 for all ε > 0. However, a phase transition should be observed for the asymptotic behaviour of L n when p n ≈ log n n , as the graph becomes disconnected.

Some examples and applications

A class of inhomogeneous Barak-Erdős graphs previously studied are strongly inhomogeneous graphs. In this class of graphs, the probability of presence of the edge (i, j) is given by θ (j-i) α n β , with θ > 0, β > 0 and α ∈ (-1, β). This model can be constructed as an inhomogeneous Barak-Erdős graph, setting f (x, y) = θ(y -x) α and γ = β -α. Applying Corollary 1.2, we observe that for

any k ≥ 2, if 1 -1 k-1 < β -α < 1 -1 k , we have L n → k in probability. Similarly, if β -α = 1 -1 k , we set c k = θ k S k k j=1 t α j dt 1 • • • dt k-1 = θ k Γ(1 + α) k Γ(k(1 + α)) ,
where

S k = {(t 1 , . . . t k ) ∈ [0, 1] k : t 1 +• • •+t k = 1}. We conclude by Theorem 1.1 that L n converges in distribution to e -c k δ k + (1 -e -c k )δ k+1 as n → ∞.
Remark that using the coupling given in Proposition 2.3, for a similar model with α ≤ -1, we can obtain

lim n→∞ L n = k in probability if β -α = 1 - 1 k -1 , 1 - 1 k .
This result is an extension of Tesemnikov's [START_REF] Tesemnikov | On the asymptotics for the minimal distance between extreme vertices in a generalised Barak-Erdős graph[END_REF] estimates on the length of the shortest path in the inhomogeneous Barak-Erdős graph, setting β = 0. Outside of the boundary cases, the convergence in probability of L n to k ∈ N can be obtained through first-and second-moment methods, with using Lemma 2.1. We handle the boundary cases by using the Chen-Stein method, showing in Lemma 2.2 that the law of the number of paths of length k is close to a Poisson distribution for n large enough.

Another example of interest in the case of Barak-Erdős graphs with exponential density of connexion. Setting λ, µ ∈ R and γ > 0, we consider a Barak-Erdős graph with p

(n) i,j = e λ(j-i)/n+µ n γ
. In this case, we have

c k (f ) = 0<u1<...<u k-1 <1 k-1 j=0 e λ(uj+1-uj )+µ du 1 • • • du k-1 = e λ+kµ (k -1)! ,
and Theorem 1.1 and Corollary 1.2 apply.

Proof of the main result

For each k ≤ n, we denote by

Γ k (n) = {ρ ∈ N k+1 : ρ 0 = 1 < ρ 1 < • • • < ρ k-1 < ρ k = n}
the set of increasing paths of length k from 1 to n. As a first step towards estimating the length of the shortest path in a space-inhomogeneous Barak-Erdős graph, we compute the mean number of paths of length k.

Lemma 2.1. Let γ > 0 and f a Riemann-integrable non-negative function. For n ∈ N, we write Z n (k) for the number of paths of length k between 1 and n in G(n, f, γ), we have

E(Z n (k)) ∼ n (k-1)-kγ c k (f ) as n → ∞.
Proof. By linearity of the expectation, we have

E(Z n (k)) = ρ∈Γ k (n) k-1 j=0 p (n) ρj ,ρj+1 = n (k-1)-kγ 1 n k-1 ρ∈Γ k (n) k-1 j=0 f ρj n , ρj+1 n
.

Then lim n→∞

1 n k-1 ρ∈Γ k (n) k-1 j=0 f ρj n , ρj+1 n = c k (f )
, by Riemann integration, which completes the proof.

In particular, we remark that under the assumptions of Theorem 1.1, the mean number of paths of length k in G(n, f, γ) converges to c k (f ). Using this observation, we now prove that the number of paths of length k converges to a Poisson-distributed random variable.

Lemma 2.2. With the notation and assumptions of Theorem 1.1, we have

lim n→∞ Z n (k) = P (c k (f )) in distribution.
Proof. We use the Chen-Stein method [START_REF] Louis | Poisson Approximation for Dependent Trials[END_REF][START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF] to prove the convergence in distribution of Z n (k). More precisely, we show that for all j ∈ N we have

lim n→∞ jP(Z n (k) = j) -E(Z n (k))P(Z n (k) = j -1) = 0. (2.1)
Together with a tightness argument (due to the fact that E(Z n (k)) converges), it proves that Z n (k) converges in distribution to a Poisson variable with parameter

lim n→∞ E(Z n (k)) = c k (f ). Let j ∈ N, we rewrite jP(Z n (k) = j) = E   ρ∈Γ k (n) 1 {ρ open} 1 {Zn(k)=j}   , ( 2.2) 
where ρ is said to be open if all edges (ρ i , ρ i+1 ) are present in the graph. Moreover for all ρ ∈ Γ k (n), we have

|P(Z n (k) = j|ρ open) -P(Z n (k) = j -1)|
≤ P there exists a path of length k between 1 and n distinct from ρ that shares an edge with ρ .

Indeed, to construct a graph with same law as G(n, f, γ) conditionally on ρ being open, it is enough to add to the graph G(n, f, γ) the edges (ρ i , ρ i+1 ) for all 1 ≤ i ≤ k if these are not already present. If opening these edges creates new paths, then these paths would have to share at least one edge with ρ. We remark that if there exists a path of length k between 1 and n distinct from ρ andthat shares an edge with ρ, then there exists 0 ≤ i 1 < i 2 ≤ k and 2 ≤ < k such that there exists a path of length between ρ i1 and ρ i2 that does not intersect ρ. Writing Y i1,i2, the number of such paths, with the same method as in Lemma 2.1, we compute

E (Y i1,i2, ) = ρi 1 <ρ 1 <•••<ρ -1 <ρi 2 -1 q=0 p (n) ρ q ,ρ q+1 ≤ n -γ ρi 1 <ρ 1 <•••<ρ -1 <ρi 2 -1 q=0 f ρ q n , ρ q+1 n → 0 as n → ∞,
using that there are at most n -1 paths of length between ρ i1 and ρ i2 . Therefore, by union bound, we deduce that

lim n→∞ P(Z n (k) = j|ρ open) -P(Z n (k) = j -1) = 0,
which implies, by (2.2), that

ρ∈Γ k (n) P(Z n (k) = j and ρ open) -P(Z n (k) = j -1) E(Z n (k)) = o(E(Z n (k))).
As E(Z n (k)) is bounded, we obtain (2.1).

We remark that sup n∈N E(Z n (k)) < ∞, hence (Z n (k)) is tight. Consider any subsequence (n j ) so that Z nj (k) converges in distribution as j → ∞. Writing Y a random variable with this distribution, we have for all j ∈ N:

jP(Y = j) = c k (f )P(Y = j -1), using that E(Z nj (k)) → c k (f ). Hence P(Y = j) = c k (f ) j j! P(Y = 0), with P(Y > n) → 0 as n → ∞. We conclude that Y is a P(c k (f )) random variable.
As any converging subsequence of (Z n (k)) is converging to P(c k (f )) in law, we conclude that Z n (k) converges to P(c k (f )) in law as n → ∞.

Before turning to the corollary, we introduce the following coupling estimate, which loosely states that a more connected graph will have a shorter shortest path between 1 and n.

Proposition 2.3. Let G n , G n be two inhomogeneous Barak-Erdős graphs such that an edge between i and j is present with probability

p (n) i,j and p (n) i,j respectively. If p (n) i,j ≤ p (n)
i,j for any i and j, then there exists a coupling between G n and G n such that L n ≥ L n .

Proof. We assume G n to be constructed on some probability space. Take any existing edge (i, j) of G n and do the following procedure: chosen edge is kept in graph with probability p (n) i,j /p (n) i,j and deleted with remained probability. This procedure creates a random graph distributed exactly as G n and is a subgraph of G n . Therefore, as no new edge was added, the length of the shortest path cannot have decreased. 

Proof of Corollary 1 . 2 .

 12 We assume first that k < 1 1-γ . Then, by Lemma 2n (j)) = 0, therefore P(L n ≤ k) → 0 by Markov inequality.The case k = 1 1-γ is covered by Theorem 1.1. Finally, if k >1 1-γ , then for all A > 0, the Barak-Erdős graph G(n, f, γ) can be coupled with G(n, Af, k-1 k ) for n large enough, using Proposition 2.3. Therefore lim infn→∞ P(L n ≤ k) ≥ 1 -e -A k c k (f ) , using Theorem 1.1 and that c k (Af ) = A k c k (f ). As f is positive, c k (f ) ispositive, and letting A → ∞ we conclude that P(L n ≤ k) → 1.
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