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Abstract

We consider an inhomogeneous version of the Barak-Erdős graph, i.e.
a directed Erős-Rényi random graph on {1, . . . , n} with no loop. Given
f a Riemann-integrable non-negative function on [0, 1]2 and γ > 0, we
define G(n, f, γ) as the random graph with vertex set {1, . . . , n} such
that for each i < j the directed edge (i, j) is present with probability
p

(n)
i,j = f(i/n,j/n)

nγ
, independently of any other edge. We denote by Ln the

length of the shortest path between vertices 1 and n, and take interest in
the asymptotic behaviour of Ln as n → ∞.

1 Introduction
The Barak-Erdős graph is a random directed graph with no loop constructed in
the following fashion. Given n ∈ N and p ∈ (0, 1), the Barak-Erős graph G(n, p)
is a graph with vertex set {1, . . . , n} such that for each i < j, the edge (i, j)
from vertex i to vertex j is present with probability p, independently of any
other directed edge. This graph is a directed acyclic version of the well-known
Erdős-Rényi graph. It can be used to model community food webs in ecology
[10], or the task graph for parallel processing in computer sciences [6].

In particular, the length (number of edges) of the longest (directed) path,
denoted Mn, has been the subject of multiple studies, as Mn + 1 is the num-
ber of steps needed to complete the task graph assuming maximal paralleliza-
tion. Newman [9] proved that Mn

n converges in law to a deterministic function
p 7→ C(p). Increasingly precise bounds were obtained on this function and its
generalizations by [3, 2, 4, 7, 8, 5].

In the present article, we take interest in the length Ln of the shortest path
between vertices 1 and n in this graph, which has been much less studied. It is
worth noting that for fixed value of p, one has

P(Ln = 1) = p and lim
n→∞

P(Ln = 2) = 1− p,
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as with probability 1− (1−p2)n−2, there is a vertex j ∈ {2, . . . n−1} connect to
both 1 and n, hence Ln is equal to 1 or 2 with high probability. In particular,
the length of the shortest path in dense graphs remains tight.

This fact is mentioned in [12], which takes interest in the asymptotic be-
haviour of L(γ)

n , the length of the shortest path between vertices 1 and n in a
graph with connexion constant pn = n−γ , i.e. in the limit of sparse graphs.
There, it is shown that for all k ≥ 2,

lim
n→∞

P(L(γ)
n ≤ k) = 0 if 1− 1

k
< γ.

We extend this result in the present article by obtaining the convergence in
distribution of L(γ)

n for all γ ∈ (0, 1).
We consider here the asymptotic behaviour of the length of the shortest path

between 1 and n in a time-inhomogeneous version of the Barak-Erdős graph,
defined as follows. Let f be a Riemann-integrable positive function on [0, 1]2

and γ ∈ (0, 1). For each n ∈ N and i < j, we set p(n)
i,j = f(i/n,j/n)

nγ . The time-
inhomogeneous sparse Barak-Erdős graph G(n, f, γ) is defined as a graph with
vertex set {1, . . . , n} such that for each i < j, the directed edge (i, j) is present
with probability p(n)

i,j .
The main result of the article is the following estimate on the asymptotic

behaviour of Ln for γ = 1− 1
k .

Theorem 1.1. Let f be a Riemann-integrable non-negative function on [0, 1]2
and k ∈ N. We fix γ = 1− 1

k and we set

ck(f) =
∫

0<u1<...<uk−1<1

k−1∏
j=0

f(uj , uj+1)du1 · · · duk−1 ∈ [0,∞],

with u0 = 0 and u1 = 1. Writing Ln for the length of the shortest path in
G(n, f, γ), we have

lim
n→∞

P(Ln = k + 1) = 1−P(Ln = k) = exp (−ck(f)) .

By coupling arguments, Theorem 1.1 can be extended to describe the conver-
gence in distribution of Ln as n→∞ for any time-inhomogeneous Barak-Erdős
graph.

Corollary 1.2. Let f be a Riemann-integrable positive function on [0, 1]2 and
γ > 0. For k ≥ 2, we have

lim
n→∞

P(Ln ≤ k) =


0 if k < 1

1−γ ,

e−ck(f) if k = 1
1−γ ,

1 otherwise.

Observe that for γ = 1, the Barak-Erdős graph becomes unconnected, so
that Ln = ∞ with positive probability. In the present article, we do not treat
the case npn →∞ with n1−εpn → 0 for all ε > 0. However, a phase transition
should be observed for the asymptotic behaviour of Ln when pn ≈ logn

n , as the
graph becomes disconnected.
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1.1 Some examples and applications
A class of inhomogeneous Barak-Erdős graphs previously studied strongly in-
homogeneous graph. In this class of graphs, the probability of presence of the
edge (i, j) is given by θ (j−i)α

nβ
, with θ > 0, β > 0 and α ∈ (−1, β). This

model can be constructed as an inhomogeneous Barak-Erdős graph, setting
f(x, y) = θ(y − x)α and γ = β − α. Applying Corollary 1.2, we observe that
for any k ≥ 2, if 1 − 1

k−1 < β − α < 1 − 1
k , we have Ln → k in probability.

Additionally, if β − α = 1− 1
k , we set

c = θk
∫
Sk

k∏
j=1

tαj dt1 · · · dtk−1 = θkΓ(1 + α)k

Γ(k(1 + α)) ,

where Sk = {(t1, . . . tk) : t1 + · · · + tk = 1}. We conclude by Theorem 1.1 that
Ln converges in distribution to e−cδk + (1− e−c)δk+1 as n→∞.

Remark that using the coupling given in Proposition 2.3, for a similar model
with α ≤ −1, we can obtain

lim
n→∞

Ln = k in probability if β − α =
[
1− 1

k − 1 , 1−
1
k

)
.

This result is an extension of Tesemnikov’s [12] estimates on the length
of the shortest path in the inhomogeneous Barak-Erdős graph, setting β = 0.
Outside of the boundary cases, the convergence in probability of Ln to k ∈ N can
be obtained through first- and second-moment methods, using see Lemma 2.1.
We handle the boundary cases by using the Chen-Stein method, showing in
Lemma 2.2 that the law of the number of paths of length k is close to a Poisson
distribution for n large enough.

An other example of interest in the case of Barak-Erdős graphs with ex-
ponential density of connexion. Setting λ, µ ∈ R and γ > 0, we consider a
Barak-Erdős graph with p

(n)
i,j = eλ(j−i)/n+µ

nγ . In this case, we have

ck(f) =
∫

0<u1<...<uk−1<1

k−1∏
j=0

eλ(uj+1−uj)+µdu1 · · · duk−1 = eλ+kµ

k! ,

and Theorem 1.1 and Corollary 1.2 apply.

2 Proof of the main result
For each k ≤ n, we denote by Γk(n) = {ρ ∈ Nn+1 : ρ0 = 1 < ρ1 < · · · <
ρk−1 < ρk = n} the set of increasing paths from 1 to n. As a first step towards
estimating the length of the shortest in a time-inhomogeneous Barak-Erdős
graph, we compute the mean number of paths of length k.

Lemma 2.1. Let γ > 0 and f a Riemann-integrable non-negative function. For
n ∈ N, we write Zn(k) for the number of paths of length k between 1 and n in
G(n, f, γ), we have

E(Zn(k)) ∼ n(k−1)−kγck(f).
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Proof. By linearity of the expectation, we have

E(Zn(k)) =
∑

ρ∈Γk(n)

k−1∏
j=0

p(n)
ρj ,ρj+1

= n(k−1)−kγ 1
nk−1

∑
ρ∈Γk(n)

k−1∏
j=0

f
(ρj
n ,

ρj+1
n

)
.

Then limn→∞
1

nk−1

∑
ρ∈Γk(n)

∏k−1
j=0 f

(ρj
n ,

ρj+1
n

)
= ck(f), by Riemann integra-

tion, which completes the proof.

In particular, we remark that under the assumptions of Theorem 1.1, the
mean number of paths of length k in G(n, f, γ) converges to ck(f). Using this
observation, we now prove that the number of paths of length k converges to a
Poisson variable.
Lemma 2.2. With the notation and assumptions of Theorem 1.1, we have

lim
n→∞

Zn(k) = P (ck(f)) in distribution.

Proof. We use the Chen-Stein method [1, 11] to prove the convergence in dis-
tribution of Zn(k). More precisely, we show that for all j ∈ N we have

lim
n→∞

jP(Zn(k) = j)−E(Zn(k))P(Zn(k) = j − 1) = 0. (2.1)

Together with a tightness argument (due to the fact that E(Zn(k)) converges), it
proves that Zn(k) converges in distribution to a Poisson variable with parameter
limn→∞E(Zn(k)) = ck(f).

Let j ∈ N, we rewrite

jP(Zn(k) = j) = E

 ∑
ρ∈Γk(n)

1{ρ open}1{Zn(k)=j}

 , (2.2)

where ρ is said to be open if all edges (ρi, ρi+1) are present in the graph. More-
over for all ρ ∈ Γk(n), we have

|P(Zn(k) = j|ρ open)−P(Zn(k) = j − 1)|
≤ P (exists a path of length k between 1 and n sharing an edge with ρ) .

Indeed, to construct a graph with same law as G(n, f, γ) conditionally on ρ
being open, it is enough to add to the graph G(n, f, γ) the edges (ρj , . . . ρj+1)
for all 1 ≤ j ≤ n if these are not already present. If opening these edges creates
new paths, then these path would have to share at least one edge with ρ.

We remark that if there exists a path of length k between 1 and n, there
exists 0 ≤ i < j ≤ k and 2 ≤ ` < k such that there exists a path of length `
between ρi and ρj that does not intersect ρ. Writing Yi,j,` the number of such
paths, with the same method as in Lemma 2.1, we compute

E (Yi,j,`) =
∑

ρi<ρ1<···<ρ`−1<ρj

`−1∏
q=0

p
(n)
ρq,ρq+1

≤ n−γ`
∑

ρ∈Γk(`)

`−1∏
j=0

f
(
ρq
n ,

ρq+1
n

)
→ 0 as n→∞.
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Therefore, by union bound, we deduce that

lim
n→∞

P(Zn(k) = j|ρ open)−P(Zn(k) = j − 1) = 0,

which then yields by (2.2)∑
ρ∈Γk(n)

P(Zn(k) = j and ρ open)−P(Zn(k) = j − 1) E(Zn(k)) = o(E(Zn(k))).

As E(Zn(k)) is bounded, we obtain (2.1).
We remark that supn∈N E(Zn(k)) <∞, hence (Zn(k)) is tight. Consider any

subsequence (nj) so that Znj (k) converges in distribution as j → ∞. Writing
Y a random variable with this distribution, we have for all j ∈ N:

jP(Y = j) = ck(f)P(Y = j − 1),

using that E(Znj (k)) → ck(f). Hence P(Y = j) = ck(f)j
j! P(Y = 0), with

P(Y > n)→ 0 as n→∞. We conclude that Y is a P(ck(f)) random variable.
As any converging subsequence of (Zn(k)) is converging to P(ck(f)) in law,

we conclude that Zn(k) converges to P(ck(f)) in law as n→∞.

Before turning to the corollary, we introduce the following coupling estimate,
which loosely states that a more connected graph will have a shorter shortest
path between 1 and n.

Proposition 2.3. Let Gn, Gn be two inhomogeneous Barak-Erdős graphs such
that an edge between i and j is present with probability p(n)

i,j and p(n)
i,j respectively.

If p(n)
i,j ≤ p

(n)
i,j for any i and j, then there exists a coupling between Gn and Gn

such that Ln ≥ Ln.

Proof. We assume Gn to be constructed on some probability space. Take any
existing edge (i, j) of Gn and do the following procedure: chosen edge is stayed
in graph with probability p(n)

i,j /p
(n)
i,j and deleted with remained probability. This

procedure creates a random graph distributed exactly as Gn and is a subgraph
of Gn. Therefore, as no new edge was added, the length of the shortest path
cannot have decrease.

Proof of Corollary 1.2. We assume first that k < 1
1−γ . Then, by Lemma 2.1,

we have

lim
n→∞

k∑
j=1

E(Zn(j)) = 0,

therefore P(Ln ≤ k)→ 0 by Markov inequality.
The case k = 1

1−γ is covered by Theorem 1.1.
Finally, if k > 1

1−γ , then for all A > 0, the Barak-Erdős graph G(n, f, γ)
can be coupled with G(n,Af, k−1

k ) for n large enough, using Proposition 2.3.
Therefore

lim inf
n→∞

P(Ln ≤ k) ≥ 1− e−A
kck(f),

using Theorem 1.1 and that ck(Af) = Akck(f). As f is positive, ck(f) is
positive, and letting A→∞ we conclude that P(Ln ≤ k)→ 1.
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