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Purpose: Near-infrared optical imaging aims to reconstruct the absorption µa and scattering µs coefficients in order12

to detect tumors at early stage. However, the reconstructions have only been limited to µa and µs due to theoretical13

and computational limitations. The authors propose an efficient method of the reconstruction, in 3D geometries, of14

the anisotropy factor g of the Henyey-Greenstein phase function as a new optical imaging biomarker.15

Methods: The light propagation in biological tissues is accurately modeled by the Radiative Transfer Equation16

(RTE) in the frequency domain. The reconstruction algorithm is based on a gradient-based updating scheme. The17

adjoint method is used to efficiently compute the gradient of the objective function which represents the discrepancy18

between simulated and measured boundary data. A parallel implementation is carried out to reduce the computa-19

tional time.20

Results: We show that by illuminating only one surface of a tissue-like phantom, the algorithm is able to accu-21

rately reconstruct optical values and different shapes (spherical and cylindrical) that characterize small tumors-like22

inclusions. Numerical simulations show the robustness of the algorithm to reconstruct the anisotropy factor with23

different contrast levels, inclusion depths, initial guesses, heterogeneous background, noise levels and two-layered24

medium. The crosstalk problem when reconstructing simultaneously µs and g has been reported and achieved with25

a reasonable quality.26

Conclusions: The proposed RTE-based reconstruction algorithm is robust to spatially retrieve and localize small27

tumoral inclusions. Heterogeneities in g-factor have been accurately reconstructed which makes the new algorithm28

a candidate of choice to image this factor as new intrinsic contrast biomarker for optical imaging.29

Keywords optical image reconstruction, anisotropy factor, cancer diagnosis, radiative transfer equation.30
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Introduction31

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality that aims to reconstruct the optical prop-32

erties of biological tissues namely, the absorption µa and the scattering µs coefficients. It consists in solving the33

photon migration to predict the boundary light intensities through a forward model. These predictions are com-34

pared with the observed measurements, and the optical image is then iteratively updated to minimize the objective35

function represented by the discrepancy between predicted and observed data within an inversion scheme. An36

accurate forward model is essential to meet the requirements of clinical applications and to obtain a good quality37

reconstruction. The most commonly applied forward model in DOT is the Diffusion Equation1 due to its ease of38

implementation and the wide availability of fast and efficient numerical solvers in arbitrary domains. However, this39

model does not accurately simulate light propagation in optically thin media or in others containing low-scattering40

or strong light absorption regions.2 The drawbacks of the Diffusion Equation particularly concern small-volume41

tissues imaging, such as finger joints3 and body parts in small animals due to the small source-detector separa-42

tion.4, 5 It is well known that the biological tissues are highly forward scattering media where the anisotropy factor43

g is close to unity.6 Several works have shown that this factor can be modified when the tissue is affected by a44

tumor because cells and cell nuclei change their size and shape. Therefore, the morphological modification of the45

tissue changes the scattering coefficient µs. Since the g-factor describes the anisotropy (angular distribution) of46

light scattering, this modification will also lead to a variation of g values between healthy and tumor tissues. For47

examples, Van Hillegersberg et al.7 demonstrated that the g-factor of rat liver decreases from 0.952 to 0.946 in48

a tumor at 633 nm. Germer et al.8 reported experimentally that g was different for normal human liver tissue (g49

= 0.902) and liver metastases (g = 0.955) at three different wave-lengths. Consequently, the g-factor can provide50

an additional intrinsic contrast for optical imaging. It should be noted that the determination of the anisotropy51

factor g is not possible using the Diffusion Equation, which is devoted to describing an isotropic fluence field. This52

isotropy is achieved when the photon penetration depths within the medium are large relatively to the transport53

mean-free path ltr = 1/µ′s,
9 where µ′s = µs(1 − g) is the reduced scattering coefficient. The typical penetration54

depth scales for which light propagation still maintains a degree of anisotropy can range from 1 to 10 mm, depend-55
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ing on optical values of tissues. To overcome these limitations, the Radiative Transfer Equation (RTE) has been56

addressed as a rigorous model for light transport in biological tissues and has become a focus of investigations. The57

anisotropic scattering behavior is well modeled through the RTE via the Henyey-Greenstein (H-G) phase function.58

However, it must be kept in mind that the RTE is difficult to solve. It requires complex computational methods59

which are expensive in terms of runtime and memory resources due to the spatial and angular dependence of the60

radiance. In two-dimensional geometries, many improvements have been made in the development of RTE-based61

reconstruction scheme using steady-state,10 frequency11 or time-resolved12 measurements. At present, although62

3D imaging is indispensable for practical settings, reconstructing the optical properties with the 3D RTE has not63

been sufficiently reported in the literature. This is mainly due to the excessive computational effort required in64

the reconstruction. To name a few, Abdoulaev et al.13 have established a mathematical framework based on the65

time-independent RTE in 3D geometries. Each iteration of their reconstruction scheme took on average 35 min66

on a 700 MHz Pentium III XENON processor. With a similar processor, Klose et al.14 have shown that it tooks67

98 hours to reconstruct the µs and µa coefficients after only 4 iterations of a gradient-based algorithm using the68

3D RTE in the steady-state domain. Ren et al.15 have mentioned that 22 hours were needed to retrieve the optical69

coefficients at single-modulation frequency (600 MHz) on a 3GHz Pentium XEON processor.70

The objective of this work was to develop a 3D optical imaging algorithm using an accurate forward model based71

on the RTE in the frequency-domain. In this study, a particular attention was devoted to reconstructing, for the72

first time, the g-factor as a new optical contrast biomarker in 3D geometry. For the inversion, a gradient-based73

scheme16, 17 using the Lm-BFGS18 was considered to update the spatial distribution of optical properties. In such74

scheme, the major challenge is the computation of the objective function gradient which is the most expensive step.75

Evaluating the gradient through perturbation methods is daunting and prohibitively expensive with the RTE, espe-76

cially in this case where the parameters are spatially dependent. To overcome this difficulty, the adjoint method77

was used to efficiently compute the objective function gradient with respect to the three parameters (µa, µs and78

g-factor) regardless the number of unknowns. The remainder of this paper is organized as follows. In Sec.1, the79

RTE model is presented and the predictions on semi-transparent boundaries are given. In Sec. 2, the parallel re-80

construction algorithm based on the Lagrangian formalism and the Lm-BFGS optimization scheme is described.81
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Reconstructions results based on synthetic data are presented and discussed in Sec. 3 through different test cases.82

Concluding remarks are finally offered in Sec. 4.83

1 Forward model84

The RTE in the frequency-domain is used to accurately describe the light propagation within biological tissues.85

The external Laser beam Γ(rsrsrs, ω) illuminating the surface at the position rsrsrs with the angular modulation frequency86

ω is seperated into two components ψ = ψc + ψs, respectively the collimated ψc and scattered radiance ψs. This87

allows taking into account the collimated radiation in our forward model. The ψc component is governed by the88

RTE state equation denoted Rc in the collimated direction ΩcΩcΩc and is analytically solved in accordance with the89

Bouguer-Beer-Lambert exponential law :90

Rc =

[
ΩcΩcΩc · ∇+

(
i n ω

c
+ µt(rrr)

)]
ψc(rrr, ω) = 0 (1)

where c is light velocity in vacuum while n is the refractive index of tissue. The total extinction coefficient µt(rrr), at91

position rrr, represents the sum of the absorption µa(rrr) and the scattering µs(rrr) coefficients. The tissue surfaces are92

modeled as semi-transparent boundaries due to the refractive index mismatch between air and tissue. The boundary93

condition for the collimated radiance is thus given by :94

ψc(rsrsrs, ω) = [1− R(Θ′)] Γ(rsrsrs, ω) for ΩcΩcΩc ·noutnoutnout < 0, (2)

where noutnoutnout is the local outward unit vector normal to the tissue boundary. The reflectivity coefficient R depends on95

the incidence angle Θ′, with cos Θ′ = Ω′Ω′Ω′ · noutnoutnout, and where the incident direction Ω′Ω′Ω′ satisfied Ω′Ω′Ω′ · noutnoutnout > 0. Once96

theRc equation is solved, the solution ψc is then used through a source term Sc such as :97

Sc(rrr,ΩΩΩ, ω) = µs(rrr) p(rrr,ΩcΩcΩc · ΩΩΩ) ψc(rrr, ω) (3)

where p(rrr,Ω′Ω′Ω′ ·ΩΩΩ) is the Henyey-Greenstein (H-G) phase function which represents the probability that photon trav-98

eling in incident direction Ω′Ω′Ω′ deviates into scattering direction ΩΩΩ. Its mathematical expression in 3D participating99
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media19 is given by :100

p(rrr,Ω′Ω′Ω′ ·ΩΩΩ) =
1

4π

1− g2(rrr)(
1 + g2(rrr)− 2 g(rrr) Ω′Ω′Ω′ ·ΩΩΩ

)3/2 (4)

where g is the anisotropy factor characterizing the angular distribution of tissue scattering. In this study, g is space-101

dependent. Hence, in addition to the dependence of the phase function p on the incident and scattered directions102

through an inner product, p is also a function of the spatial position rrr (see Eq. 4). The coupling term Sc (Eq. 3) is103

included within the RTE state equationRs which governs the scattered radiance ψs in the direction ΩΩΩ :104

Rs =

[
ΩΩΩ · ∇+

(
i n ω

c
+ µt(rrr)

)]
ψs(rrr,ΩΩΩ, ω) (5)

−µs(rrr)
∫

Ω′=4π
p(rrr,Ω

′
Ω

′
Ω

′ ·ΩΩΩ) ψs(rrr,ΩΩΩ
′
, ω) dΩ

′ − Sc(rrr,ΩΩΩ, ω) = 0

The detected signals correspond to the outgoing fluence predicted at the detector position rdrdrd on the illuminated105

bounding surface such as :106

P (rdrdrd, ω) =

∫
Ω′Ω′Ω′·noutnoutnout>0

[
1− R(Θ′)

]
ψs(rdrdrd,Ω

′Ω′Ω′, ω)
(
Ω′Ω′Ω′ ·noutnoutnout

)
dΩ′ (6)

The angular space was uniformly subdivided into several discrete directions. The deterministic numerical method107

used in this study for solving the RTE is based on the Modified Finite Volume Method (MFVM). This method108

can benefit from the efficient inversion techniques (based for example on the adjoint method presented in the next109

section) developed specifically for partial differential equations. The "modified" word is due to the fact the photon110

transport is solved even inside each control volume within an exponential scheme. The MFVM is thus qualified as111

a highly accurate method compared to other deterministic numerical methods available in the literature. Relative112

differences of less than 1.5% were obtained in comparison with the Monte-Carlo reference solution for some113

selected problems.20 The methodology of the employed method is not repeated here, we refer the reader to [20] for114

comprehensive details.115
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2 Inverse problem116

2.1 Lagrangian formalism and adjoint model117

The inverse problem can be considered as a large-scale optimization problem which consists to minimize the118

least-square discrepancy between the measurements M(rrrd, ω) and the forward model predictions P (rrrd, ω) at the119

detector position rrrd and angular frequency ω. These discrepancies are represented by a real-valued non-negative120

function, called the objective function defined by :121

J (βββ, ω) =

Nd∑
d=1

∣∣∣∣P (rrrd, ω)−M(rrrd, ω)
∣∣∣∣2

2
(7)

where || · ||2 denotes Euclidean norm. The vector βββ contains the spatial distribution of optical properties to be122

reconstructed and Nd is the total number of detectors on the tissue surface. The objective is to determine the123

vector β̂ββ that minimizes this function and vanishes the gradient ∇J (β̂ββ, ω) = 0. In this work, instead of solving the124

unconstrained problem (Eq. 7), we adopted an adjoint method that solves the constrained optimization problem by125

following the Lagrangian formalism given as :126

L(βββ, ψs, ψc, λs, λc) = J (βββ, ω) +
〈
λs

∣∣∣Rs(βββ, ψs, ψc)〉s +
〈
λc

∣∣∣Rc(βββ, ψc)〉c (8)

where λs and λc are respectively the Lagrange multipliers to ψs and ψc. 〈·|·〉s and 〈·|·〉c denote the inner products127

associated to the solution space of ψs and ψc, respectively.21
128

〈
λs

∣∣∣Rs(βββ, ψs, ψc)〉s = Re

∫
D

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)Rs(βββ, ψs, ψc)dΩdr (9)

129 〈
λc

∣∣∣Rc(βββ, ψc)〉c = Re

∫
D
λc(rrr,ΩΩΩ, ω)Rs(βββ, ψc)dr (10)

The objective function (Eq. 7) is minimized under some equality constraints (Rc = 0 andRs = 0) based on the RTE130

state equations. The optimization problem consists to find the stationary point (vector solution β̂ββ) of the Lagrangian131

function (Eq. 8) that vanishes its gradient∇Lwith respect to all its variables∇λs,cL = ∇ψs,cL = ∇βL = 0. Using132
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the adjoint operator22 and the inner product properties, the differentiation of L with respect to the state variables133

ψs and ψc (∇ψs,cL) leads to the RTE adjoint equations for the scattered and collimated components, respectively :134

[
−ΩΩΩ · ∇+

(
−iω
c/n

+ µt(rrr)

)]
λs(rrr,ΩΩΩ, ω) = µs(rrr)

∫
4π
p(rrr,Ω

′
Ω

′
Ω

′ ·ΩΩΩ) λs(rrr,ΩΩΩ
′
, ω) dΩ

′
Ω

′
Ω

′ − ∂J (βββ, ω)

∂ψs
(11)

135 [
−ΩΩΩc · ∇+

(
−i ω
c/n

+ µt(rrr)

)]
λc(rrr, ω) = µs(rrr)

∫
4π
p(rrr,ΩcΩcΩc ·ΩΩΩ) λs(rrr,ΩΩΩ, ω) dΩΩΩ (12)

Note that ∇ψcJ (βββ, ω) = 0 because the objective function is independent of the collimated light. The Lagrange136

multipliers λs and λc are solutions to (Eq. 11) and (Eq. 12), respectively. The above system was derived in details137

in our previous study21 based on 2D geometries. Note that, in 3D geometries, the integral term over 2π is replaced138

by the integral term over 4π. One major advantage of this approach is its simple implementation by applying the139

same numerical solver as used for the forward model. Furthermore, the adjoint method provides the gradient of140

the objective function in a fast and efficient way (independently of the number of unknown parameters). Once141

the adjoint equations are solved and the Lagrange multipliers are obtained, the latter are then used to compute the142

gradient (∇βJ ) with a computational time equivalent to a one forward simulation.143

2.2 Gradient expressions144

The directional derivative L′ of the Lagrangian (Eq. 8) represents the inner product of its gradient ∇L(βββ) with145

respect to βββ in the direction δβββ. Differentiating Eq. 8 with respect to βββ, the L′ can be expressed such that:146

L′(βββ) =

〈
∇L(βββ)

∣∣∣δβββ〉
L2

=

〈
λs

∣∣∣∂Rs(βββ, ψs, ψc)
∂β

δβββ

〉
s

+

〈
λc

∣∣∣∂Rc(βββ, ψc)
∂β

δβββ

〉
c

(13)

Note that ∂J (βββ)
∂βββ = 0 since the function J (βββ, ω) depends implicitly on βββ (see Eq. 7). When the radiance ψs and147

ψc verify the constraints equations Rs = 0 and Rc = 0, that leads to L(βββ) = J (βββ) and thus L′(βββ) = J ′(βββ). The148

gradient ∇J (βββ) can then be extracted from the latter expression (Eq. 13) which shows that only a simple inner149

product has to be calculated. This gradient is directly computed by partially differentiating the RTE state equations150

Rs andRc with respect to βββ in the direction δβββ. Applying now Eq. (13) for µa, µs and g, we obtain the analytical151
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gradient expressions with respect to the three optical parameters which are a function of spatial positions, rrr, only:152

∇µaJ (βββ, ω) = Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)ψs(rrr,ΩΩΩ, ω)dΩΩΩ + λc(rrr, ω)ψc(rrr, ω) (14)

153

∇µsJ (βββ, ω) = ∇µaJ (βββ, ω)−Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)

(∫
ΩΩΩ′=4π

ψs(rrr,Ω
′Ω′Ω′, ω)p(rrr,ΩΩΩ′ ·ΩΩΩ)dΩ′ +

ψc(rrr, ω)p(rrr,ΩΩΩc ·ΩΩΩ)

)
dΩΩΩ (15)

154

∇gJ (βββ, ω) = −Re

∫
ΩΩΩ=4π

λs(rrr,ΩΩΩ, ω)µs(rrr)

(
ψc(rrr, ω)

∂p(rrr,ΩΩΩc ·ΩΩΩ)

∂g
+∫

Ω′Ω′Ω′=4π
ψs(rrr,Ω

′Ω′Ω′, ω)
∂p(rrr,ΩΩΩ′ ·ΩΩΩ)

∂g
dΩ′
)
dΩΩΩ (16)

The derivative of the H-G phase function with respect to the g-factor is evaluated analytically. At each inversion155

iteration, the forward and adjoint models are solved and the gradient is accurately obtained accordingly to the above156

expressions. The latter is then used to compute the gradient-descend direction d based on the Limited-memory157

BFGS method23 to iteratively update the spatial distribution of the optical properties βββ such as:158

βββk+1 = βββk + αk d(∇J k(βββ, ω)) (17)

where k is the current iteration of the inverse procedure and αk represents the step size obtained by the Armijo159

line search18 in order to provide a sufficient minimization of the objective function. The reconstruction of the160

anisotropy factor g in 3D media is expected to be extremely expensive in terms of time and memory since the H-G161

phase function p depends on rrr = (x, y, z), Ω′Ω′Ω′ and ΩΩΩ. In order to render possible the g reconstruction, parallel162

implementation in the present algorithm was unavoidable.163

2.3 Parallel computing164

It is clear that exploiting the RTE model, within an iterative procedure, to reconstruct the optical properties for 3D165

geometries can take long computational time. Thus, we implemented a multi-threading parallel algorithm. At this166
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level, multiple threads computed the RTE along different directions. It should be pointed out that the H-G phase167

function was calculated only once when the medium was assumed to be homogeneous in g-factor. On the other168

hand, when this factor has to be reconstructed (g-factor varies spatially inside the medium), the H-G phase function169

and also its derivative (required for the gradient∇gJ ) must be evaluated at every spatial node and overall incident170

and scattered directions of light propagation. In addition to the extensive computational time, the resulting values171

necessitate huge memory space which may exceed the capacity of a single machine. In this regard, our algorithm172

was extended to support multiple machines, via explicit Messages Passing Interface (MPI). In this context, some of173

the data were distributed over the machines of the computing system and data exchanges were performed between174

them for the computations that require all the data.175

3 Results and discussion176

3.1 Model description177

The three-dimensional numerical phantom used for reconstruction is a cube of length 1 cm. It contains a spherical178

tumor like-inclusion with 2 mm of diameter centered at X = Y = Z = 2 mm (Fig. 1). The latter is embedded in a179

homogeneous background medium with µa = 0.01 mm−1, µs = 2 mm−1 and g = 0.8. These are typical values of180

the optical properties of biological tissues in the near-infrared spectral range. The refractive index of the medium181

is uniformly set at n = 1.4 while that of the surrounding medium (air) is set to unity.182

Figure 1: Original cubic phantom of length 10 mm. A spherical tumoral inclusion is embedded in a background medium. A
Gaussian Laser beam illuminates the origin of the western surface of the medium (yellow arrow).

The optical properties of the inclusion were set to (µa, 2µs, g) relative to the background. For the first three test183
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cases, the µa coefficient and the g-factor are assumed to be constant in the medium. The reconstructions of the184

medium were performed with a structured mesh of 269,001 nodes (degrees of freedom) and 1,536,000 tetrahedral185

elements. The angular space (4πSr) was uniformly discretized into 64 control solid angles and each angle was also186

subdivided into 8 azimuthal and polar directions for the phase function normalization.24 A Gaussian Laser source is187

used to illuminate the western surface (x = 0 mm) of the medium. The expression of the spatial Gaussian function188

along the y- axis and z- axis is given by :189

Υ(r) =
2

π σ2
s

exp
(−2‖r − rs‖22

σ2
s

)
, (18)

where σs = 0.5 mm is the standard deviation of the Laser beam. The spatial position rs = (0, rsy, rsz) corresponds190

to the source location at the peak intensity. For all the test cases presented further, only the backscattered light191

(reflectance) on the illuminated boundary is used for reconstruction. This configuration allows to better simulate192

the experimental set-up based on the reflected mode measurements. 800 complex intensities were synthesized by193

running the forward model on a finer mesh of 1,081,665 nodes in order to avoid the inverse crime. These intensities194

correspond to the absolute fluence rate containing the amplitude and phase of the modulation frequency. Each195

measurement point is spatially represented by five mesh nodes on the western surface to assign a realistic detector196

dimension. These data are contaminated with 1% of Gaussian random noise and given as an input in the recon-197

struction algorithm. The inversion procedure was started with an initial guess corresponding to the homogeneous198

background. It terminated after the normalized difference of the objective function between two subsequent iter-199

ations was smaller than a prescribed value, here equal to 10−5. The quality reconstruction of the inclusion was200

determined thanks to the relative error ε between exact (β∗) and estimated (β̂) values such as :201

ε = 100%.
||β̂ − β∗||2
||β∗||2

(19)

The reconstructions were carried out on a cluster with ten nodes Intel Xeon X5650 of 2.66 GHz / 12 Threads (4.75202

GFlops per core), 48 Go RAM.203

In the first test, the collimated source was placed at the origin of the western surface (Fig. 1). The source was mod-204
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ulated at 600 MHz since high frequencies are known to be suitable for probing small volume imaging. However,205

it is worth noting that the detectors are usually more sensitive and less noisy at low frequencies range [50 - 200206

MHz]. The convergence criterion was satisfied after 19 iterations of the inversion procedure. The reconstructed207

medium crossed by the y = 2 mm plane is depicted on Fig. 2a. Figure 2b shows the slice in the z = 2 mm plane of208

the estimated µs coefficient.

(a) (b)

Figure 2: Reconstructed µs image for the first test case : one frequency modulation (600 MHz). (a) shows the slice at y = 2
mm plane (b) represents the slice in the z = 2 mm plane.

209

Despite the simulation conditions (one source at a fixed position with a single modulation frequency), the recon-210

struction algorithm has successfully revealed the region of interest (the tumor) and has correctly recovered the211

background medium. The center position of the reconstructed inclusion was found at yinc = 1.45 mm and zinc =212

1.65 mm. This is an important qualitative indication allowing to localize the inclusion around the y-z positive area213

without a priori knowledge. However, the µs coefficient values of the inclusion (ε = 47.60 %) were very under-214

estimated where the maximum value retrieved has reached only 2.18 mm−1 against 4 mm−1. This is mainly due215

to the under-determinate nature of the inverse problem where 800 boundary data were insufficient to reconstruct216

269,000 unknowns at each grid node of the cubic phantom. Moreover, the reconstructed shape (sphere) is elongated217

and placed very close to the boundary domain. Therefore, the inclusion depth (xinc ≈ 0.9 mm) was achieved with218

a poor quality localization.219

It has been demonstrated that the image reconstruction quality in the optical tomography can be significantly im-220

proved by using large data sets in the reconstruction.25 To this end, the multi-frequency approach26 was considered221
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for the second test case. The source intensity was modulated at five frequencies equally distributed by 200 MHz and222

switched from 200 MHz to 1 GHz. This range is typical for DOT applications especially when high-frequencies223

are needed to probe superficial domains.15, 25, 27 The obtained image is shown in Fig. 3.

(a) (b)

Figure 3: Reconstructed µs image for the second test case : five modulation frequency equally distributed. (a) shows the slice
at y = 2 mm plane (b) represents the slice in the z = 2 mm.

224

The reconstruction quality of the inclusion was improved. Indeed, the relative error has been decreased to ε =225

30.41 % where the maximum retrieved value inside the inclusion has reached 3.7 mm−1 against 4 mm−1 (Fig. 3a).226

One can deduce that the single frequency approach may provide a qualitative image whereas the multi-frequency227

approach provides the quantitative accuracy required for phantoms characterization. However, the computation cost228

with the second approach is more expensive. The µs image was reconstructed after 22 hours using 5 frequencies229

while it took only 4 hours to obtain the µs image at 600 MHz. In addition, even with more boundary data sets, the230

present illumination configuration is unable to accurately reconstruct the depth localization, shape, and size of the231

inclusion. While its center is found at approximately the right position (yinc = 1.9 mm and zinc = 1.9 mm) along232

the y and z axis, the location in depth (xinc ≈ 1 mm) remains under-estimated with respect to the target position.233

This behavior is commonly encountered in optical imaging since the light sensitivity drops off severely and quickly234

with depth, leading to a significant position error. To overcome this issue, as a third test case, the Laser source was235

displaced to illuminate the positive region along the y - and z - axis where the peak intensity is now located at (0,236

1, 1). In this case, one modulation frequency (600 MHz) was used. The results are presented in Fig. 4.237

It is seen that the algorithm has now recovered the volumetric image location with good accuracy and high contrast238
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(a) (b)

Figure 4: Reconstructed µs image for the third test case : one modulation frequency (600 MHz) and when the Laser source
is placed near to the inclusion (0, 1, 1). (a) shows the slice at y = 2 mm plane (b) represents the slice in the z = 2 mm plane.

after about 4 hours. The retrieved µs values inside the inclusion have reached approximately 75% of their target239

value. In this case, the localization in depth of the reconstructed inclusion has somehow reached the correct value240

(x ≈ 2 mm), contrary to the previous cases. Moreover, the inclusion was reconstructed with a good spherical shape241

and size. Therefore, the relative error of the inclusion was enhanced (ε = 15.86 %) even though one single frequency242

with one source were considered. These improvements can be explained by the localization of the heterogeneity243

in a high sensitivity region with respect to the collimated source. It should be noted that the result was obtained244

without adding a prior spatial information within the algorithm. The light source was only moved toward the245

region including the heterogeneity. This configuration is an alternative strategy providing a good compromise246

between quantitative accuracy and computational time. That can be ensured by illuminating the medium from any247

point on the surface as a first step and once the suspected area is identified (test case 1), the Laser source can then248

be positioned nearer to the inclusion (test case 3) as a second step. This procedure allows performing tomographic249

reconstructions without having to probe the medium with multiple sources at different boundaries positions or with250

multiple-frequencies. Moreover, it avoids combining prior knowledge provided by another imaging modalities such251

as MRI28 or X-Ray29 by exclusively exploiting the qualitative indication obtained by our reconstruction algorithm.252

The simultaneous reconstruction of µa and µs was carried out in the fourth test case. In this case, the g-factor is253

fixed at its homogeneous background value. Here, we used the same original phantom (see Fig. 1) which was254

illuminated as in the third test case. The spherical inclusion represents a high contrast heterogeneity where the255
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optical properties are set to (2µa, 2µs, g) relative to the background values. The reconstructed and exact profiles256

of µa and µs passing through the center of the inclusion (2, 2, 2) along the x, y and z axis are shown in Fig. 5.257

These profiles allow highlighting the location precision, the depth (along the x - axis), the size and the quantitative

(a) (b)

Figure 5: Simultaneous reconstruction of µa and µs for the fourth test case : the reconstructed profiles (red lines) passing
through the center of the inclusion along the x, y and z axis for the absorption (a) and scattering (b) coefficients. The blue
lines indicate the exact profiles.

258

accuracy of the inclusion. It can be seen that the algorithm has well fitted the optical values of the inclusion with259

the exact solution in both parameters. The center of the reconstructed inclusion (for both µa and µs) has been260

accurately located in depth (xinc = 2 mm) while its positions along the y and z axis were slightly underestimated.261

The relative estimation errors of the inclusion for µa and µs are respectively εµa = 27.85% and εµs = 20.74%. The262

superior quality for µs can be explained by the more pronounced underestimation in the µa image. This is mainly263

due to the fact that the µs coefficient is more sensitive to the predicted boundary data than the µa coefficient.30
264

Compared to the previous test case, the relative error was smaller (εµs = 15.86%) when assuming g and µa to be265

known because the ill-conditioning of the inverse problem was reduced by decreasing its under-determinate nature266

which explains the better image quality. However, the present fourth case illustrates more realistic clinical scenarios267

and avoid having prior knowledge about the biological tissues.268

3.2 Small domain reconstruction269

In this section, the performance of the algorithm is examined for a small domain size. The original phantom270

to be reconstructed is now a cube of 4 mm each side. The computational domain was discretized with 68,921271
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nodes and 384,000 tetrahedral elements for reconstruction. 320 detectors readings were generated on the western272

surface using a finer mesh of 746,691 nodes. In this case, the phantom contains a small cylindrical heterogeneity273

in scattering coefficient (Fig. 6) while µa and g are constant. The latter (1 mm of diameter along the x axis and 4274

mm of length along the y axis) is embedded in the same homogeneous background as previously and centered at275

(1, 0, 0). The exact µ∗s value inside the inclusion was set to 4 mm−1. Seven Laser spots at 600 MHz are equally276

separated by 0.5 mm and positioned in the planes: z = -0.5 mm, z = 0 mm and z = 0.5 mm leading to 21 collimated277

sources (see Fig. 6).

Figure 6: Original phantom. A cylindrical tumoral inclusion centered at (1, 0, 0) is embedded in a background medium : µa

= 0.01 mm−1, µs = 2 mm−1 and g = 0.8. The yellow boxes on the western boundary (regularly spaced) represent the 21 Laser
shots.

278

The stopping criterion was satisfied after 16 iterations and the reconstructed image is displayed in Fig. 7. As shown279

in Fig. 7a, the algorithm has successfully reconstructed the cylindrical shape of the inclusion. Figure 7b shows the280

reconstructed volumetric image of the µs coefficient inside the medium. It can be seen that the retrieved values281

are spatially well fitted with the original position and the maximum value recorded reaches 3.5 mm−1 against 4282

mm−1. The relative estimation errors are respectively 31.50 % and 9.9% for the inclusion and the background. This283

result demonstrates the ability of the algorithm to reconstruct simultaneously the shape and the optical values of the284

inclusion. This was accomplished without any implementation of a specific shape-based reconstruction method.31
285

It should be mentioned that the commonly used Diffusion Equation fail to predict the light propagation in such286

situation because the reflected data were collected at distances less than 3 ltr away from the source.9287
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(a) (b)

Figure 7: Reconstructed µs image for the cylindrical inclusion case. (a) shows the 3D cylindrical boundary thresholded at 3
mm−1 (b) depicts the interior volumetric spatial distribution of the scattering retrieved values.

3.3 g-factor reconstruction288

As mentioned earlier, we attempted to reconstruct the spatial distribution of the anisotropy factor g of the H-G289

phase function. In our previous publication based on the sensitivity analysis,30 we have shown that this factor290

has a notable effect on the light propagation. A small perturbation of g leads to a more important variation on the291

backscattering light compared to the one induced by µa or µs perturbations. This represents an important advantage292

because the optical contrast levels are believed to be weak between normal and tumoral tissues.32 Furthermore, as293

the g values of biological tissues are close to unity, the contrast levels in this factor are expected to be very low. It is294

known that the light propagation becomes isotropic (g = 0) when the photons have traveled several transport mean-295

free path in the medium (≈ 8 × ltr).33 Hence, the spatial domain to be reconstructed for the g-factor should not296

be deeper than approximately 8× ltr with respect to the probed surface. The dimensions of the previous phantom297

represent a suitable example of the g-factor reconstruction assessment. Herein, the original cubic medium contains298

a spherical heterogeneity with 1 mm of a diameter which is embedded at X = 1 mm in depth, Y = 1 mm and Z =299

1 mm. The source was positioned at (0, 0.5, 0.5) on the western surface of the phantom.300

In order to verify that the spatial variation of g is not be attributed to a variation of µ′s itself, a preliminary test301

case is addressed. It considers two combinations of µs and g leading to a constant value of µ′s in the medium. The302

optical properties of the background were unchanged, as mentioned in subsection 3.1, while µa = 0.01 mm−1, µs303
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= 4 mm−1 and g = 0.9 were assigned to the inclusion. The reconstructed image of g is depicted in Fig. 8. The last304

shows the ability of the algorithm to spatially recover the heterogeneity in the g-factor even where the µ′s coefficient305

is constant in the medium. It can be seen that the obtained µ′s coefficient is constant between the background and306

the inclusion. This implies that the spatial variation of g cannot be caused by a variation of µ′s itself. The g-factor307

can thus be independently reconstructed and separated from µs with the RTE inverse solver.

Figure 8: Preliminary test case, reconstruction of the anisotropy factor g when the reduced scattering coefficient µ
′

s is uniform
in the phantom.

308

The robustness of the algorithm is then examined in presence of some issues encountered in optical tomography309

such as contrast level, heterogeneous background, inclusion depth, initial guess, noise level, layered medium and310

crosstalk between g and µs. These issues are assessed through several test cases. For all the test cases, expect311

the crosstalk case, only the g-factor is spatially reconstructed while the µa and µs coefficients are fixed at their312

homogeneous background values.313

The first one considers a relatively high contrast inclusion with + 18% (g∗ = 0.95) with respect to the homogeneous314

background value (g = 0.8). The minimization has been satisfied after 10 iterations. The obtained 3D slices at315

the x = 1 mm, y = 1 mm and z = 1 mm planes are plotted in the Figs. 9a-c, respectively. The reconstructed316

profiles passing through the center of the inclusion are depicted in Fig. 9d. It is readily seen that the inclusion has317

been located at approximately the right position (xinc = 0.9 mm, yinc = 0.9 mm, zinc = 0.9 mm) and the circular318

shape was clearly reconstructed. However, the maximum retrieved value inside the inclusion is somehow under-319

estimated compared to its original value with an error ε = 14.4% (Fig. 9d). As expected, the computation cost is320
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(a) (b)

(c) (d)

Figure 9: Test case 1, high contrast g-factor reconstruction. (a), (b) and (c) display the 3D slices selected at x = 1 mm, y = 1
mm and z = 1 mm, respectively. (d) represents the recovered profiles passing by the inclusion center along the x - y - and z -
axis.

expensive as each iteration in the inversion procedure has required 100 min to calculate the gradient. In order to321

assess the convergence quality of the algorithm, the reconstructed profiles obtained at the 2th, 4th and 6th iterations322

are displayed in the Fig. 10. The results show that the algorithm can accurately locate the inclusion from only the323

second iteration. The suspect area can then be defined very quickly (in a few minutes) and might be exploited as a324

prior structural knowledge.325

The second test considers a heterogeneous background containing two laterally separated inclusions with low con-326

trast levels of ± 6%. The first one (g∗ = 0.75) was placed at (1, 1, 1) while the second one (g∗ = 0.85) was327

positioned at (1, -0.5, 1). The stop criterion was satisfied at the 38th iteration and the reconstructed 3D medium is328

shown in Fig. 11. Despite the low contrast levels, the algorithm was still able to spatially locate and reveal the two329

closed heterogeneities in the medium. Compared to the previous test case, the quantitative accuracy was improved330
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Figure 10: The reconstructed profiles along x axis passing by the inclusion center (y = 1 mm, z = 1 mm) for the three
iterations 2th, 4th and 6th of the inverse minimization.

only for the first inclusion (blue) where the relative estimation error decreased to ε = 3.39 %. This is because the331

discrepancy between the initial value and the exact solution of the inverse problem is reduced when the contrast332

level is low, therefore making the estimation more accurate. On the other hand, the retrieved values in the other333

inclusion (red) were under-estimated the maximal value reaching ≈ 0.82 against 0.85 (Fig. 11). This is mainly due334

to its localization within a low sensitivity region with respect to the collimated source.

Figure 11: Test case 2, reconstruction of a heterogeneous background containing two inclusions laterally separated. The blue
inclusion (1, 1, 1) presents a low contrast of - 6% while the red one (1, -0.5, 1) presents a contrast of + 6% with respect to the
homogeneous value.

335
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It is well known that the light intensity drops off severely with depth making the detection of deep inclusions more336

difficult in optical imaging. In the third test case, we evaluated the capacity of the algorithm to localize deep337

heterogeneities in the g-factor and the effect of depth on the relative error. The low contrast inclusion with g∗ =338

0.75 is reconstructed at different depth, namely 1.5 mm, 2 mm and 3 mm. The corresponding results are shown339

in Figs. (12a - c), respectively. Fig. 12d shows the variation of the relative estimation error with respect to the340

inclusion depth. It can be seen that the reconstruction quality is worse as the inclusion is located deeper since its341

influence on the boundary reflected data becomes very weak (see Fig. 12d). The images show that the algorithm342

is still able to qualitatively recover the circular shape of the inclusion located at 3 mm depth as well as its location343

in the medium. However, its quantitative accuracy decreases with a relative error of 6.6 %. Moreover, the spatial344

contrast in the medium is lower compared to the other depths (Figs. 12a-12c).

(a) (b)

(c) (d)

Figure 12: Test case 3, reconstruction of a low contrast (-6%) inclusion at different depth : (a), (b) and (c) display the 3D
slices at depths 1.5 mm, 2 mm and 3 mm, respectively. (d) represents the variation of the relative error versus inclusion depth.

345
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One of the gradient-based optimization schemes drawbacks is the choice of the initial estimate which should not be346

far away from the exact solution of the iterative procedure. Usually, this estimate is described by the homogeneous347

optical properties of the original background. The robustness of the algorithm on different initial guesses g0 is ex-348

amined with the fourth test case. It consists to reconstruct an inclusion with g∗ = 0.75 embedded in a homogeneous349

background of g = 0.8 under three examples of initial guesses g0 = 0.8, g0 = 0.82 and g0 = 0.85. The retrieved350

profiles along x, y and z axis are shown in figure 13. The relative estimation errors of inclusion and background351

are listed in Table 1.352

Figure 13: Test case 4, the reconstructed profiles passing through the center position of the inclusion along the x, y and z
axis for the three different initial estimates. The red, green and blue profiles correspond to g0 = 0.85, g0 = 0.82 and g0 = 0.80,
respectively. The dashed yellow lines indicate the center position of the inclusion.

Inclusion Background
Initial Guess εg (%) εposition (%) ĝminimum εg (%) ĝaverage
g0 = 0.8 2.66% 8.1 % 0.75 0.88% 0.7981
g0 = 0.82 3.63% 14.4 % 0.73 1.82% 0.8131
g0 = 0.85 4.46% 21.21 % 0.68 5.41% 0.8420

Table 1: Test case 4, the relative errors of background and inclusion for the three different initial guesses. ĝminimum

represents the minimum estimated value of g-factor and ĝaverage denotes its estimated mean value.

Qualitatively, the algorithm has correctly found the spatial localization of the inclusion when the initial value was353

different from the original background value (see Fig. 13). The relative estimation errors of the g-factor increase354

from 2.66 % to 4.46 % for the inclusion and from 0.88 % to 5.41 % for the background when the homogeneous355

initial value g0 was chosen from 0.8 to 0.85, respectively (see Tab. 1). Furthermore, the relative position errors of356
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the inclusion increase and its retrieved values becomes more under-estimated (from ĝminimim = 0.75 to ĝminimim357

= 0.68) when g0 moves away from the original background value. Additionally, the retrieved mean values of the358

reconstructed background don’t change sufficiently and remain near to the initial homogeneous value (see Tab. 1).359

The noisy data are unavoidable in real clinical scenarios. It is important to check the effect that noise has on the360

reconstruction quality of the g-factor. In the fifth test study, the simulated measurement data are corrupted with four361

different noise levels: 1%, 3%, 6%, and 10%. The noise was added to the complex simulated reflectance (module362

and phase shift). The medium contains one inclusion positioned at 1 mm depth with g∗ = 0.75. The relative363

errors of inclusion and background with the iterations numbers of the algorithm are given in Table 2. The latter364

shows that the estimation accuracy of both inclusion and background decreases when the noise level increases.365

As expected, higher noise levels on the boundary data lead to quality image degradation. The background error366

becomes significantly high at 10% (ε = 8.05%) compared to the error obtained at 1% (ε = 0.88 %). This is because367

detection occurred on the surface. Therefore, edges artifacts and perturbations become more pronounced in the368

whole reconstructed medium at larger noise level. On the other hand, the optimization procedure reached the stop369

criterion faster as the noise level is higher since the algorithm converged around random values. This computational370

feature was often encountered for gradient-based algorithms.18
371

Noise levels

1 % 3 % 6 % 10 %

ε of inclusion (%) 2.66 3.53 7.12 13.51
ε of background (%) 0.88 1.75 4.43 8.05
Number of iterations 29 20 13 7

Table 2: Test case 5, the relative estimation errors ε of background and inclusion with the iterations numbers of the recon-
struction algorithm for the 4 different noise levels on the reflected data.

The characterization of multi-layered media representing several anatomical structures of biological tissues has372

frequently been studied in the literature.34, 35 However, it was mainly restricted to reflectance spectroscopic appli-373

cations36, 37 where the layer thickness is often assumed to be known. In the sixth test case, the reconstruction of the374

g-factor is studied for a two-layered phantom which mimics the epidermis and dermis of human skin tissue. The375

layers thickness are considered to be unknown and not used as a prior information in the reconstruction algorithm.376

The optical properties and thicknesses of the two layers are given in Table 3. The phantom is illuminated as in the377
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cylindrical example (section 3.2).378

Optical properties Epidermis Dermis
Absorption µa (mm−1) 0.19 0.13
Scattering µs (mm−1) 18.95 11.65
Thickness (mm) 1 3

Table 3: Thickness and optical properties of epidermis and dermis at 785 nm extracted from [38].

The g value of the epidermis (gepidermis = 0.75) is assumed to be different from the dermis (gdermis = 0.8) in order379

to consider endogenous spatial variation within the skin tissue.380

Figure 14: Test case 6, reconstruction of a two-layered phantom representing the human skin tissue composed of dermis (1
mm) and epidermis (3 mm).

Figure 14 shows the spatial distribution of the recovered volumetric g-factor. As expected, the reconstructed phan-381

tom has two layers. The relative errors of the retrieved values are 6.4 % and 0.9 % for the epidermis and dermis382

respectively. The error of the first layer is higher due to the artifacts at the illuminated boundary. Additionally to the383

reasonable quantitative accuracy, the algorithm, not aware of the internal structure, has also correctly provided the384

layer thickness of the epidermis. The obtained result can be considered as an illustration for pre-clinical imaging385

of small-layered media.386

To date, the simultaneous reconstruction of µs and g-factor has not been considered in the literature for optical387

imaging. In order to study and mime the crosstalk between the scattering parameters, the final test case considers388

two different examples. In this case, all boundaries nodes are taken as detection locations for the inversion. For389
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the first example, the inclusion varies only in the anisotropy factor (g∗ = 0.85) while it represents a heterogeneity390

only in scattering coefficient (µ∗s = 4 mm−1) for the second example. The reconstructed results are depicted in391

Fig. 15. As shown, the reconstructed profile was spatially well fitted with the original distribution for the first392

example. The maximum local value retrieved in the g inclusion has reached 0.84 against 0.85. For the second393

example, the algorithm has localized the µs inclusion in its exact position but the quantitative accuracy was very394

underestimated. Indeed, the maximum value has reached only 2.5 mm−1 against 4 mm−1. The superiority in the395

quality reconstruction of the g-factor can be explained by the high sensitivity of this factor on the boundary data. It396

can be seen that the crosstalk effect induced in each parameter was insignificant.

(a) (b)

Figure 15: The final test case, simultaneous reconstruction of µs and g. The reconstructed profiles passing through the center
position of the inclusion along the x, y and z axis for the anisotropy factor (a) and for the scattering coefficient (b). The black
solid profils represent the original position of the inclusion.

397

It should be noted that the reconstruction of g would not have been possible with the Diffusion Equation since the398

anisotropy information is lost by considering the µ′s coefficient39 where the g value is given. Despite the several399

studies of 3D optical imaging that were conducted with the RTE, none has presented the reconstruction of the400

g-factor, for the authors best knowledge. Although the study was carried out with synthetic data, it nevertheless401

constitutes an important first step (numerical validation) in the imaging of g-factor for optical imaging. The data402

were generated with the RTE-based forward model, it is important, in the next step, to synthesize the back-scattered403

intensities with an another modality such as Monte-Carlo simulations to perform reconstructions. This would al-404

low using arbitrary phase-functions in order to assess the impact of the phase-function mismatches of the g quality405
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reconstruction. The clinical potential of the method particularly concerns small tissue imaging to detect superficial406

lesions such as cutaneous tumors (melanoma), finger joints or small animal imaging and even for biopsies char-407

acterization. The g-factor can then be considered as a potential endogenous contrast biomarker which provides408

additional intrinsic information beside µa and µs.409

4 Conclusion410

A 3D optical reconstruction algorithm based on the RTE-based forward model was presented to detect tumor-411

like inclusions. The algorithm can reconstruct and localize small inclusions with a reasonable quality when only412

one tissue surface is probed and within situations in which the commonly used Diffusion Equation is not valid.413

Furthermore, we highlighted the performance of the algorithm to retrieve simultaneously the inclusions shapes414

(spherical and cylindrical) and the spatial optical values. The main novelty of this work is the reconstruction of415

the spatial distribution of the anisotropy factor of the Henyey-Greenstein phase function. This was made possible416

thanks to the combination of the RTE-based forward model, the adjoint model, and the parallel computing. The417

algorithm was proven to be robust in recovering a heterogeneity in g-factor in presence of some issues such as418

low or high contrast level, inclusion depth, heterogeneous background and with different initial guesses and noise419

levels. The simultaneous reconstruction of µs and g was also achieved with a reasonable quality while the crosstalk420

between the two parameters was weak. Moreover, the algorithm was able to retrieve a spatial map of the thickness421

and g values of a two-layered phantom that mimics the optical properties of epidermis and dermis. This work was422

a necessary preliminary study before using the present algorithm with experimental boundary data and performing423

real small-tissues imaging. Although the Open MP and MPI libraries have allowed us to considerably reduce424

the reconstruction times, they would still need to be accelerated for clinical diagnostic applications. To this end,425

parallelization based on GPU (Graphics Processing Unit) is envisaged for some calculations of the RTE inverse426

solver. The simultaneous reconstruction of the three optical properties µa, µs and g-factor is currently under427

investigation. That can be an important issue for optical tomography which it is not easy due to the ill-posed428

inverse problem and to the difference in nature, units, and sensitivities of the parameters on the boundary data.429
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