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A TANNAKIAN INTERPRETATION OF THE ELLIPTIC INFINITESIMAL BRAID LIE ALGEBRAS

Let n ≥ 1. The pro-unipotent completion of the pure braid group of n points on a genus 1 surface has been shown to be isomorphic to an explicit pro-unipotent group with graded Lie algebra using two types of tools: (a) minimal models (Bezrukavnikov), (b) the choice of a complex structure on the genus 1 surface, making it into an elliptic curve E, and an appropriate flat connection on the configuration space of n points in E (joint work of the authors with D. Calaque). Following a suggestion by P. Deligne, we give an interpretation of this isomorphism in the framework of the Riemann-Hilbert correspondence, using the total space E # of an affine line bundle over E, which identifies with the moduli space of line bundles over E equipped with a flat connection.

Introduction. Let T be a topological 2-torus, i.e., a closed, compact topological surface of genus 1. For n ≥ 1, let C n (T ) be its configuration space, defined as the complement of the union of all the diagonals of T n . A base point x ∈ C n (T ) being fixed, we denote by PB x 1,n the fundamental group of C n (T ) relative to x; it is called the pure braid group of genus 1. One attaches to this group its prounipotent completion over Q, which is a prounipotent Q-group, and the Lie algebra of this Q-group, which is a pronilpotent Q-Lie algebra, which we will denote LiePB x 1,n . This Lie algebra is equipped with the descending filtration associated with the lower central series. The associated graded Lie algebra grLiePB x 1,n is then a positively graded Q-Lie algebra.

We denote by LiePB x 1,n ⊗C the completed tensor product of LiePB x 1,n with C (inverse limit of the tensor products with C of the filtered quotients of LiePB x 1,n ). Then LiePB x 1,n ⊗C is a complete, filtered complex Lie algebra, and is associated graded is isomorphic to grLiePB x 1,n ⊗C. Let t 1,n be the Lie algebra with generators x i , y i (i ∈ [1, n]), t ij (i = j ∈ [1, n]), and relations

(1) ∀i, j ∈ [1, n], [x i , x j ] = [y i , y j ] = 0, (2) ∀i = j ∈ [1, n], [x i , y j ] = t ij = t ji , (3) ∀i ∈ [1, n], [x i , y i ] = - j|j =i t ij , (4) ∀i, j, k ∈ [1, n] with #{i, j, k} = 3, [x k , t ij ] = [y k , t ij ] = 0, (5) ∀i = j ∈ [1, n], [x i + x i , t ij ] = [y i + y j , t ij ] = 0.
We set deg(x i ) = 1, deg(y i ) = 0 for i ∈ [n], which induces a grading on t 1,n . We set t C 1,n := t 1,n ⊗ C. We denote by tC 1,n the degree completion of t C 1,n .

Theorem 0.1 ( [Bez]).

• The graded Lie algebras grLiePB x 1,n ⊗C and t C 1,n are isomorphic. • LiePB x 1,n ⊗C is isomorphic, as a completed filtered Lie algebra, to tC 1,n .

The proof from [Bez] is based on the minimal model theory. In [CEE], we gave another proof of this theorem by choosing a complex structure on T , making it into an elliptic curve E, and by constructing a suitable connection on a principal bundle over C n (E) with structure group exp( tC 1,n ) (for a survey of the construction of this connection see [H]). The monodromy of this connection defines a morphism (6) PB x 1,n → exp( tC 1,n ), which gives rise to isomorphisms LiePB x 1,n ⊗C ≃ tC 1,n and grLiePB x 1,n ⊗ C ≃ t C 1,n enabling one to prove the announced statements. The whole construction arises as an elliptic analogue of the similar genus zero construction, and may also be viewed as a universal version of the KZB connection.

One of the main features of Theorem 0.1 is that it says that LiePB x 1,n ⊗C is isomorphic to the completion of a graded Lie algebra.

The purpose of this paper is, following a suggestion of P. Deligne, to give an interpretation of this isomorphism in the framework of the Riemann-Hilbert (RH) correspondence, thus providing a categorical approach to the results of [CEE]. Let us recall the framework of this correspondence.

Let X be a smooth complex algebraic variety. According to [Del], there is an equivalence of tensor categories (the RH correspondence) between:

(i) the category VBFC(X) of vector bundles with a flat connection on X with regular singularities;

(ii) the category LS(X) of topological local systems on X; One attaches to each tensor category its unipotent part (see §1.1.2). The RH correspondence then induces an equivalence between the unipotent parts of its two sides, namely (7) RH unip : VBFC(X) unip ∼ → LS(X) unip ;

it attaches, to each object of VBFC(X), the local system of its horizontal sections. Any point x ∈ X gives rise to a fiber functors F ls x : LS(X) → Vec C and F vb x : VBFC(X) → Vec C , equipped with a canonical isomorphism F ls x • RH ≃ F vb x . The Tannakian group corresponding to F ls x is Aut ⊗ (F ls x ) ≃ π B 1 (X, x) (this is the Betti fundamental group of X with base point x).

Set X := C n (E). Then π B 1 (X, x) = PB x,unip 1,n (C), where the exponent unip means the prounipotent completion of a discrete group and -(C) denotes the group of C-points, so that one of the sides of the isomorphism of Theorem 0.1 relates to the left-hand side of the RH equivalence (7).

We prove:

Theorem 0.2. 1) There exists: a) an explicit tensor functor

F : VBFC(C n (E)) unip → Vec C b) a natural isomorphism (8) VBFC(C n (E)) unip ∋ (E, ∇) → i (E,∇) ∈ Iso Vec C (F (E, ∇), F vb
x (E, ∇)) between the functors F and F vb x , c) a canonical isomorphism Aut ⊗ (F ) ≃ exp( tC 1,n ).

2) The composed isomorphim exp( tC

1,n ) ∼ / / Aut ⊗ (F ) ∼ / / Aut ⊗ (F vb x ) ∼ RH / / Aut ⊗ (F ls x ) ∼ / / PB x,unip 1,n (C)
coincides with the inverse of the completion of (6).

The group Aut ⊗ (F vb x ) is the de Rham fundamental group of C n (E) with base point x, denoted π DR 1 (C n (E), x), and the isomorphism

π DR 1 (C n (E), x) ≃ Aut ⊗ (F vb x ) RH → Aut ⊗ (F ls x ) ≃ π B 1 (C n (E), x) is the 'comparison isomorphism'.
The construction of the functor F depends on some geometric background. We fix a resolution of singularities π 0 : X0 → E n , such that if D 0 ⊂ E n is the union of all diagonals, then D := π -1 0 (D 0 ) is a normal crossing divisor. Let E # be the universal additive extension of E. This is a 2-dimensional commutative algebraic group, fitting in an exact sequence 0 → H 0 (E, O) ∨ → E # → E → 0 (see §5). It gives rise to a morphism p : (E # ) n → E n . Let X := (E # ) n × E n X0 and let D := D 0 × E n (E # ) n , D := D 0 × E n X. Then D ⊂ X is a normal crossing divisor and there is a commutative diagram (see §2.1)

D / / ⊂ D / / ⊂ D 0 ⊂ X / / (E # ) n / / E n
Let us now explain the construction of the functor F , which was proposed by P. Deligne in [Del1,Del2]. Let (E, ∇) be a unipotent vector bundle with flat connection on E n -D 0 . One lifts (E, ∇) to a unipotent vector bundle with flat connection on X -D. It canonically gives rise to a vector bundle on X with flat connection on X -D admitting simple poles at D (see §3.1, isomorphism (c)). This object is the lift of a vector bundle on (E # ) n , equipped with a flat connection on (E # ) n -D and simple poles at D. Since this is a unipotent object, and a unipotent vector bundle on (E # ) n is trivial by the homological properties of (E # ) n , the obtained vector bundle E # on (E # ) n is trivial. We have then E # ≃ V ⊗ O, where V := H 0 ((E # ) n , E # ). We then set F (E, ∇) := V .

So we see that the homological properties of E # enable one to apply to the elliptic situation the framework from [START_REF] Deligne | Le groupe fondamental de la droite projective moins trois points[END_REF], §12.

The equivalence (8) is then given by the specialization map

(E, ∇) → [F (E, ∇) = V ≃ (V ⊗ O) x ≃ E x = F vb x (E, ∇)].
In order to prove the isomorphism Aut ⊗ (F ) ≃ exp( tC 1,n ), we construct a category equivalence between VBFC(C n (E)) unip and the category Vec((E # ) n , D) of flat connections on trivial vector bundles over (E # ) n , unipotent and with simple poles at D. The computation of the latter category relies on the study of the algebra of differential forms over (E # ) n . Computation then shows that the Lie algebra Der ⊗ (F ) is graded; this fact originates from the graded structure of differential forms over (E # ) n with poles at D, which comes from homogeneity properties of the Fay relations.

The organization of the text is described in the following table of contents. G 8. Elements of a description of VBFC(X, D) unip (equiv. (e)) 8.1. Reduction of a space of forms to Σ log 8.2. Equality Ω 1 = Σ log 9. Relation with the universal KZB connection 9.1. A flat connection on (E # τ ) n 9.2. The universal KZB system 9.3. Relation between the two systems References 1.1.1. Tensor categories. Let C be a locally finite, k-linear, abelian, rigid monoidal category, such that the endomorphism ring of its unit object 1 C is isomorphic to k and such that its tensor product ⊗ : C × C → C is bilinear on morphisms. Such a category is called tensor in [EGNO]. According to loc. cit., Prop. 4.21, the tensor product bifunctor ⊗ is then biexact.

1.1.2. Unipotent parts of tensor categories. Define Ob(C unip ) to be the subclass of Ob(C) consisting of all objects O that admit a filtration 0

= O 0 ⊂ O 1 ⊂ • • • ⊂ O n = O, such that each quotient O i /O i-1 is isomorphic to 1 C . One checks that Ob(C unip ) is stable under the tensor product of C.
Define C unip to be the full subcategory of C whose class of objects is Ob(C unip ). Then C unip is again a tensor category.

Let D be another tensor category. A tensor functor from C to D is a pair (F, J) of an exact and faithful k-linear functor F : C → D and a functorial isomorphism J : [EGNO]. One checks that such a tensor functor induces a tensor functor (F unip , J unip ) from C unip to D unip . One then has a diagram of tensor functors

F (-)⊗ F (-) → F (-⊗ -), satisfying diagram (2.23) in
C unip Funip / / D unip C F / / D
where the vertical functors are fully faithful.

1.2. Divisors and residues. Let X be a smooth irreducible k-variety.

1.2.1. Sheaves. We denote by O X the structure sheaf of X and by K X its sheaf of rational functions; this is a constant sheaf. If δ is a divisor of X (union of codimension 1 subvarieties), we denote by O X,δ the subsheaf of K X , such that for each open subset U of X, the space Γ(U, O X,δ ) is the space of rational functions over U (or X), that are regular on a dense open set in U ∩ δ. Restriction to δ induces a O X -sheaf morphism O X,δ → i * (K δ ), where i : δ → X is the canonical inclusion and K δ is the direct sum ⊕ i K δi , where (δ i ) i are the irreducible components of δ.

If E is a quasi-coherent O X -sheaf, we define E rat to be the sheaf E ⊗ OX K X and E δ to be the sheaf

E ⊗ OX O X,δ . Then (O X ) δ = O X,δ .
We also denote by Γ rat (X, E) the space of rational sections of E. So Γ rat (X, E) = Γ(X, E rat ).

1.2.2. Divisors. A special divisor (SD) in X is a divisor whose components are non-singular and such that any pair of components intersects transversally.

A reduced normal crossing divisor (RNCD) is a divisor D = ∪ i∈I D i , whose components are non-singular and satisfying the following condition. For each point p of X, let J(p) be the set of indices j such that p lies in D j . Then p should have a neighborhood U (p), in which each D j , j ∈ J(p) may be defined by an equation f j = 0, and the collection of differentials (df j (p)) j∈J(p) is a linearly independent family in T * p (X). 1.2.3. Logarithmic differential forms for RNCDs. Let D be a divisor. For k an integer ≥ 0, the sheaf Ω k X (logD) is the subsheaf of Ω k X ( * D) whose local sections are differentials α such that both α and dα are regular except for a possible simple pole along D. The definition shows that if D is a RNCD, then Ω k X (logD) can also be defined as follows (see [EV]). For p as above, the space of sections of this sheaf over U (p) is given by the linear span, over all subsets S ⊂ J(p), of all the differentials ( s∈S (df s /f s )) ∧ a S , where a S lies in Γ(U (p), Ω

k-|S| X

). This alternative definition shows that the collection of sheaves Ω • X (logD) is stable under the differential and the wedge product. 1.2.4. Poincaré residue: a sheaf morphism Ω k (X, logδ) rat → (Ω k-1 δ ) rat . Let δ be a smooth irreducible codimension 1 subvariety of X.

Let k ≥ 0. According to §1.2.1, Ω k X (logδ) δ is the subsheaf of (Ω k X ) rat defined as follows.

For U an open subset of X, in which δ is defined by an equation f = 0, where

f ∈ Γ(U, O X ), the space Γ(U, Ω k X (logδ) δ ) is the set of differentials in Γ rat (X, Ω k X ) of the form ω = (df /f ) ∧ a + b, where a ∈ Γ(U, (Ω k-1 X ) δ ) and b ∈ Γ(U, (Ω k X ) δ ).
In other terms, this space is the space of rational forms α on U , such that both α and dα have at most a simple pole at δ ∩ U . The map taking ω to the restriction of a to δ is well-defined and induces a sheaf morphism to the sheaf of rational differentials on δ

Res (k) δ : Ω k X (logδ) δ → (Ω k-1 δ ) rat .
Taking global sections over X of this sheaf morphism, we obtain a linear map

Γ rat (X, Ω k X ) ←֓ Γ(X, Ω k X (logδ) δ ) Res (k) δ → Γ(δ, (Ω k-1 δ ) rat ) = Γ rat (δ, Ω k-1 δ ).
1.3. Vector spaces and maps attached to special divisors. Let X be an irreducible, smooth k-variety. We fix a SD D = ∪ i∈I D i in X (for convenience, we assume I to be ordered).

1.3.1. Vector spaces attached to special divisors. Recall that for each i ∈ I, the space of global sections Γ(X, Ω 1 X (logD i )) is a subspace of Γ rat (X, Ω 1 X ). The sum of these spaces is a subspace ( 9)

Ω 1 := i∈I Γ(X, Ω 1 X (logD i )) ⊂ Γ rat (X, Ω 1 X ).
Similarly, for each pair {i, j} ∈ P 2 (I) (the set of parts of I with cardinality 2), the space of global sections Γ(X, Ω 2 X (logD i ∪ D j )) is a subspace of Γ rat (X, Ω 2 X ). The sum of these spaces is a subspace ( 10)

Ω 2 := {i,j}∈P2(I) Γ(X, Ω 2 X (logD i ∪ D j )) ⊂ Γ rat (X, Ω 2 X ). 1.3.2. Maps attached to special divisors. Let i ∈ I. As Ω • X (logD i ) is stable under the wedge product, there is a commutative diagram Λ 2 (Γ(X, Ω 1 X (logD i ))) / / Λ 2 (Γ rat (X, Ω 1 X )) Γ(X, Ω 2 X (logD i )) / / Γ rat (X, Ω 2 X )
Let {i, j} ∈ P 2 (I). As there are injective morphisms Ω

• X (logD i ) → Ω • X (logD i ∪D j ), Ω • X (logD j ) → Ω • X (logD i ∪ D j ), and as Ω • X (logD i ∪ D j ) is stable under the wedge product, there is a commu- tative diagram Γ(X, Ω 1 X (logD i )) ⊗ Γ(X, Ω 1 X (logD j )) _ / / Γ rat (X, Ω 1 X ) ⊗2 Γ(X, Ω 1 X (logD i ∪ D j )) ⊗2 Γ rat (X, Ω 1 X ) ⊗2 Γ(X, Ω 2 X (logD i ∪ D j )) / / Γ rat (X, Ω 2 X )
The direct sum of these diagrams, together with the decomposition

Λ 2 (⊕ i∈I Γ(X, Ω 1 X (logD i ))) ≃ ⊕ i∈I Λ 2 (Γ(X, Ω 1 X (logD i ))) ⊕ ⊕ {i,j}∈P2(I) Γ(X, Ω 1 X (logD i )) ⊗ Γ(X, Ω 1 X (logD j )) gives a commutative diagram Λ 2 (⊕ i∈I Γ(X, Ω 1 X (logD i ))) / / Λ 2 (Γ rat (X, Ω 1 X )) ⊕ i∈I Γ(X, Ω 2 X (logD i )) ⊕ ⊕ {i,j}∈P2(I) Γ(X, Ω 2 X (logD i ∪ D j )) / / Γ rat (X, Ω 2 X )
As the images of the horizontal maps are respectively Λ 2 ( i∈I Γ(X, Ω 1 X (logD i ))) and

{i,j}∈P2(I) Γ(X, Ω 2 X (logD i ∪ D j )),
this gives:

Lemma 1.1. There is a commutative diagram (11) Λ 2 (Ω 1 ) = Λ 2 ( i∈I Γ(X, Ω 1 X (logD i ))) / / Λ 2 (Γ rat (X, Ω 1 X )) Ω 2 = {i,j}∈P2(I) Γ(X, Ω 2 X (logD i ∪ D j )) / / Γ rat (X, Ω 2 X )
We denote the resulting map by : Λ 2 (Ω 1 ) → Ω 2 . The product in Λ • (Ω 1 ) will be denoted ∧, and we use the notation a b := (a∧b) for a, b ∈ Ω 1 .

As Ω • X (logD i ) is stable under the differential, there is a commutative diagram

Γ(X, Ω 1 X (logD i )) d / / Γ rat (X, Ω 1 X ) d Γ(X, Ω 2 X (logD i )) / / Γ rat (X, Ω 2 X )
The direct sum of these diagrams yields a commutative diagram

⊕ i∈I Γ(X, Ω 1 X (logD i )) d / / Γ rat (X, Ω 1 X ) d ⊕ i∈I Γ(X, Ω 2 X (logD i )) / / Γ rat (X, Ω 2 
X ) Taking images of the horizontal maps, we obtain:

Lemma 1.2. There is a commutative diagram (12) Ω 1 = i∈I Γ(X, Ω 1 X (logD i )) d / / Γ rat (X, Ω 1 X ) d Ω 2 = i∈I Γ(X, Ω 2 X (logD i )) / / Γ rat (X, Ω 2 X )
The resulting map is denoted d :

Ω 1 → Ω 2 .
Let i ∈ I. For any {k, l} ∈ P 2 (I), both sheaves Ω 2 X (logD k ∪ D l ) and Ω 2 X (logD i ) Di are subsheaves of (Ω 2 X ) rat . Inspection shows that there exists a natural sheaf morphism

Ω 2 X (logD k ∪ D l ) → Ω 2 X (logD i ) Di making the diagram Ω 2 X (logD k ∪ D l ) / / (Ω 2 X ) rat Ω 2 X (logD i ) Di 7 7 ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ commute.
Taking global sections over X, one obtains a linear map

Γ(X, Ω 2 X (logD k ∪ D l )) → Γ(X, Ω 2 X (logD i ) Di ).
Taking sums over {k, l} ∈ P 2 (I), one obtains the upper morphism of the following diagram

⊕ {k,l}∈P2(I) Γ(X, Ω 2 X (logD k ∪ D l )) / / Γ(X, Ω 2 X (logD i ) Di ) _ {k,l}∈P2(I) Γ(X, Ω 2 X (logD k ∪ D l )) / Γ rat (X, Ω 2 X )
The composition of the left and bottom arrows of this diagram is the decomposition of the map

⊕ {k,l}∈P2(I) Γ(X, Ω 2 X (logD k ∪ D l )) → Γ rat (X, Ω 2 
X ) induced by the sum, and the composition of the top and right arrows is also shown to coincide with the same map, so that the diagram commutes. Inspecting the diagram, one obtains the inclusion {k,l}∈P2(I)

Γ(X, Ω 2 X (logD k ∪ D l )) ⊂ Γ(X, Ω 2 X (logD i ) Di ).
One may compose this map with Res

(2)

Di : Γ(X, Ω 2 X (logD i ) Di ) → Γ rat (D i , Ω 1 Di ).
Examining the form of the images of elements of Γ(X, Ω 2 X (logD k ∪ D l )) through the composed map, one sees that these images are 0 if k, l = i and lie in Γ(D

i , Ω 1 Di (logD i ∩ D l )) (resp., in Γ(D i , Ω 1 Di (logD i ∩ D k ))) if k = i (resp., if l = i), one obtains: Lemma 1.3. There is a unique map (13) Res (2) Di : Ω 2 = {k,l}∈P2(I) Γ(X, Ω 2 X (logD k ∪ D l )) → j∈I|j =i Γ(D i , Ω 1 Di (logD i ∩ D j )) =: D 1 i making the following diagram commute Γ(X, Ω 2 X (logD i ) Di ) Res (2) D i / / Γ rat (D i , Ω 1 Di ) {k,l}∈P2(I) Γ(X, Ω 2 X (logD k ∪ D l )) Res (2) D i / / ? O j∈I|j =i Γ(D i , Ω 1 Di (logD i ∩ D j )) ? O
Dropping in this Subsection the normal crossing condition from the hypotheses on D and arguing as in the construction leading to Lemma 1.3, one obtains: Lemma 1.4. There is a unique linear map

(14) Res (1) Di : k∈I Γ(X, Ω 1 X (logD k )) → Γ(D i , O Di ) making the following diagram Γ(X, Ω 1 X (logD i ) Di ) Res (1) D i / / Γ rat (D i , O Di ) k∈I Γ(X, Ω 1 X (logD k )) Res (1) D i / / ? O Γ(D i , O Di ) ? O commute. The restriction of Res (1) Di to each Γ(X, Ω 1 X (logD k )), k = i, is zero. Pick i ∈ I. Replacing the collection (X, I, (D i ) i∈I , D, i) by (D i , I -{i}, (D j ∩ D i ) j∈I-{i} , D ∩ D i , j
), the map (14) yields a linear map ( 15) Res

(1)

Di∩Dj : D 1 i = j∈I-{i} Γ(D i , Ω 1 Di (logD i ∩ D j )) → Γ(D i ∩ D j , O Di∩Dj ) =: D 0 ij .
The sum of residue maps is a map

Γ rat (X, Ω 1 X ) ←֓ i∈I Γ(X, Ω 1 X (logD i )) → ⊕ i∈I Γ(D i , O Di ).
The elements of the middle space are rational differentials on X, which are regular except for simple poles at D i . The elements of the kernel of the map i∈I Γ(X, Ω 1 X (logD i )) → ⊕ i∈I Γ(D i , O Di ) are therefore regular everywhere, that is, elements of Γ(X, Ω 1 X ). We derive from there the exact sequence

(16) 0 → Γ(X, Ω 1 X ) → i∈I Γ(X, Ω 1 X (logD i )) → ⊕ i∈I Γ(D i , O Di ).
Summarizing the results of this §, we obtain:

Lemma 1.5. To X and its SD D = ∪ i∈I D i are attached:

• vector spaces Ω 1 and Ω 2 given by ( 9) and (10);

• linear maps : Λ 2 (Ω 1 ) → Ω 2 and d : Ω 1 → Ω 2 (see ( 11) and ( 12));

• vector spaces (D 1 i ) i∈I and (D 0 ij ) {i,j}∈P2(I) (see ( 13) and ( 15));

• maps Res (2) Di : Ω 2 → D 1
i and Res

(1)

Di∩Dj : D 1 i → D 0 ij ; • an exact sequence 0 → Γ(X, Ω 1 X ) → Ω 1 ⊕i∈I Res (1) D i -→ ⊕ i∈I Γ(D i , O Di ) (see (16)).
1.4. Tensor categories of geometric origin. For X a smooth, irreducible quasiprojective variety over k, we define VBFC(X) to be the category of pairs (F , ∇ F ), where F is a vector bundle over X and ∇ F : F → F ⊗ OX Ω 1 X is a flat connection on F . When equipped with the tensor product of vector bundles with connection, it is a symmetric tensor category with unit object the pair (O X , d : O X → Ω 1 X ). If D ⊂ X is a divisor, we define VBFC(X, D) to be the tensor category of vector bundles over X with flat connection over X -D and simple poles at D.

The geometric setup

2.1. Geometric data. We give ourselves the following data:

• a smooth projective variety X 0 ;

• an affine fibration p : X → X 0 ;

• a special divisor D 0 ⊂ X 0 (see §1.2.2); we set D 0 := ∪ α∈I D 0α , so that the D 0α are smooth and pairwise normal crossing; • a resolution of singularities π 0 : X0 → X 0 such that D0 := π -1 0 (D 0 ) is a normal crossing divisor (NCD).

We define D ⊂ X by D := p -1 (D 0 ). We then set X := X0 × X0 X and D ⊂ X by D := D0 × X0 X. Then there is a commutative diagram

(17) D / / p ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ D N n 5⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ X π / / p X p X0 π0 / / X 0 D0 . > > ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ / / D 0 0 P ❆❆ ❆ ❆ ❆ ❆ ❆ ❆
where the squares are Cartesian, and the divisors D0 ⊂ X0 and D ⊂ X are NCDs.

A class of examples.

We will work with the following example, based on the datum of an elliptic curve E over k and an integer n ≥ 1:

• X 0 := E n ; • the affine fibration p : X → X 0 is (E ♯ ) n → E n (see §5); • the divisor D 0 ⊂ X 0 is ∪ i<j∈[n] D ij ;
• the resolution of singularities π 0 : X0 → X 0 is obtained by the Hironaka desingularization theorem (explicit examples may be derived from [FM] or [U]).

The main results

In §3.1, we explain the main result of this paper, which consists of the construction of a sequence of equivalences of tensor categories. The construction of these equivalences is explained in the following subsections of the present §. In the last subsection ( §3.8), we explain the relation between this construction and the KZB connection from [CEE].

3.1. The main result: construction of a tensor equivalence. Let X 0 , D 0 , . . . be as in §2.2.

We will construct a sequence of equivalences of tensor categories

VBFC(X 0 -D 0 ) unip (a) ≃ VBFC(X -D) unip (b) ≃ VBFC( X -D) unip (c) ≃ VBFC( X, D) unip ( 18 
) (d) ≃ VBFC(X, D) unip (e)
≃ Vec(X, D)

(f ) ≃ Mod(G) unip (g) ≃ Mod(t 1,n ) unip ,
where Vec(X, D) is the category defined in §3.5 and Mod(g) denote the category of finite dimensional modules over a Lie algebra g. In this diagram, (a) comes from §3.2, (b) comes from X -D = X -D, (c) comes from taking the unipotent part of the isomorphism from §3.3, (d) is the result from §4, (e) comes from §3.5, (f) comes from §3.6, (g) comes from §3.7. All this induces an equivalence of tensor categories VBFC(C(E, n)) unip ≃ Mod(t C 1,n ) unip . The fiber functor on VBFC(X 0 -D 0 ) unip by this equivalence is the functor F : VBFC(X 0 -D 0 ) unip → Vec constructed as follows. To a unipotent bundle with flat connection (E, ∇) on X 0 -D 0 , we attach its lift ( Ẽ, ∇) to X -D. One then extends this bundle with flat connection to a pair (E, ∇) of a bundle E over X with a flat connection ∇ with regular singularities on D. Unipotent bundles over X are trivial, so E is canonically isomorphic to Γ(X, E) ⊗ O X . One then sets ( 19)

F (E, ∇) := Γ(X, E).
It follows from ( 18) and from the computation (19):

Theorem 3.1. The functor F : VBFC(X 0 -D 0 ) unip → Vec defined by ( 19) is a fiber functor.

There is a tensor equivalence

VBFC(C(E, n)) unip ≃ Mod(t C 1,n
) unip , compatible with the fiber functors on both sides.

Remark 3.2. This result could as well be obtained as the following sequence of equivalences of tensor categories 17) (as opposed to the "top-right" part).

VBFC(X 0 -D 0 ) unip (b ′ ) ≃ VBFC( X0 -D0 ) unip (c ′ ) ≃ VBFC( X0 , D0 ) unip (d ′ ) ≃ VBFC(X 0 , D 0 ) unip (a ′ ) ≃ VBFC(X, D) unip (e) ≃ Vec(X, D) (f ) ≃ Mod(G) unip (g) ≃ Mod(t C 1,n ) unip , based on the "left-bottom" part of diagram (

Tensor categories and affine fibrations (equiv. (a)). If Y is an affine variety over

k, then H 1 (Y, O Y ) = Ext 1 Y (O Y , O Y ) = 0. Applying this for Y = A m , we obtain that if (E, ∇) is an object of VBFC(A m ) unip , and if 0 = (E 0 , ∇ 0 ) ⊂ • • • ⊂ (E N , ∇ N ) = (E, ∇) is a filtration whose subquotients are isomorphic to the trivial object, then the diagram 0 = E 0 ⊂ • • • ⊂ E N = E is isomorphic to the diagram 0 = O ⊕0 A m ⊂ • • • ⊂ O ⊕N A m .
The image of the connection ∇ is then necessarily of the form d + A, where A is a strictly upper-triangular N × N matrix with coefficients in Ω 1

A m , such that (d + A) 2 = 0. Using the acyclicity of Ω 0

A m → Ω 1 A m → Ω 2 A m
(vanishing of the first De Rham cohomology group of A m ), one constructs a unipotent N × N matrix n such that d

+ A = ndn -1 . Therefore (E, ∇) ≃ (O ⊕N A m , d): any object of VBFC(A m ) is isomorphic to (O A m , d) ⊕N for some N ≥ 0. All this implies: Lemma 3.3. The functor VBFC(A m ) → Vec of global sections defines an equivalence of cate- gories VBFC(A m ) unip ∼ → Vec.
A quasi-inverse is given by the operation -⊗ (O A m , d) of taking the tensor product of a vector space with the unit object

(O A m , d).
Let Y be a k-variety and E be a vector bundle over Y . According to [Del], §I.2.2.4, p. 6, a connection ∇ over E is equivalent to the data, for any k-scheme S, any pair of morphisms x, y : S → Y , infinitely close in the sense that the resulting morphism S → Y × Y factorizes through the first infinitesimal neighborhood of the diagonal, of an isomorphism γ x,y : x * E ≃ y * E, functorial with respect to base change and such that γ x,x is the identity. Moreover, ∇ is flat iff one has γ y,z • γ x,y = γ x,z .

Let p : Y # → Y be a morphism of smooth, quasiprojective varieties over k, locally isomorphic to a projection

A m × U → U . Let (E # , ∇ # ) ∈ VBFC(Y # ) unip . For x : S → Y , set E x := Γ hor (E Y # x , ∇ # |Y # x ), where Y # x := Y # × x S and (E # Y # x , ∇ # |Y # x ) is the pull-back of (E # , ∇ # ) to Y # x .
Using a trivialization of the projection, one obtains an isomorphism γ x,y : E x ≃ E y , satisfying the base change and flatness conditions. In this way, and using Lemma 3.3, we define a tensor functor

p * : VBFC(Y # ) unip → VBFC(Y ) unip .
On the other hand, pull-back defines a tensor functor VBFC(Y ) → VBFC(Y # ), which restricts to a tensor functor

p * : VBFC(Y ) unip → VBFC(Y # ) unip .
Arguing locally as in the proof of Lemma 3.3, one obtains: 

VBFC(Y # ) unip p * can / / D Y # -mod p * VBFC(Y ) unip can / / D Y -mod -[-d] / / D b (D Y -mod)
where -[-d] is the shift by degree -d. 

Y = P 1 and D is a set of points in A 1 , if N ≥ 1, if (A p ) p∈D is a collection of nilpotent matrices in M N (k) with p∈D A p = 0, and if A := p∈D A p • dz/(z -p), then the pair (O ⊕N Y , d + A) lies in Ob(VBFC(Y, D) unip.mon.
), but it lies in Ob(VBFC(Y, D) unip ) only if the matrices (A p ) p∈D can be simultaneously be upper-triangularized.

Remark 3.8. The canonical extension map from [Del, Bri] makes sense in the analytic category.

To make sense of it in the algebraic category (in the unipotent case), one proceeds as follows:

(1) start with (E, ∇) over Y -D; (2) as (E, ∇) has regular singularities, it admits an extension (E, ∇) with simple poles; (3) because of unipotence of monodromy, residues should have integer eigenvalues; (4) this induces a splitting of the restriction of E to D according to generalized eigenvalues of the residues; (5) one modifies E in order that the eigenvalues of the residues become 0; (6) the uniqueness of the extension is proved as follows: an isomorphism (over Y -D) between two extensions satisfies a differential equation, which implies that it has logarithmic growth. On the other hand, it is rational. Hence it is regular.

Category equivalences induced by desingularization (equiv. (d)). One proves in §4:

Lemma 3.9. Let Y be a smooth quasiprojective k-variety and D ⊂ Y be a divisor. Let us fix a desingularization of (Y, D), that is a morphism π • objects are the pairs (V, ω), where V is a finite dimensional vector space, and ω is an element of Γ(Y, Ω 1 Y (D))⊗End(V ), such that ω is strictly compatible with some filtration of V (i.e., satisfies ω(

Y : Ỹ → Y of smooth quasiprojective k-varieties, such that the preimage D := π -1 Y (D) of D under π Y is a NCD in Ỹ and such that π Y restricts to an isomorphism Ỹ -D ≃ Y -D. There is a tensor equivalence VBFC( Ỹ , D) unip ≃ VBFC(Y, D) unip .

A tensor category

V i ) ⊂ Γ(Y, Ω 1 Y (D)) ⊗ V i+1 where V = V 0 ⊃ V 1 ⊃ • • • ⊃ V N = 0 is the filtration of V ) and satisfies the Maurer-Cartan equation dω + [ω, ω] = 0 (equality in Γ(Y, Ω 2 X (2D)) ⊗ End(V )); • the set of morphisms from (V, ω) to (V ′ , ω ′ ) is the set of linear maps f : V → V ′ , such that f ω = ω ′ f (equality in Γ(Y, Ω 1 Y (D)) ⊗ Hom k (V, V ′ )). If (V, ω) and (V ′ , ω ′ ) are two objects, then: • their direct sum is defined as (V, ω) ⊕ (V ′ , ω ′ ) := (V ⊕ V ′ , ω + ω ′ ),
where ω is induced by the canonical map End(V ) → End(V ⊕ V ′ ), and ω ′ is defined in a similar way;

• their tensor product is defined as (V, ω)⊗(V ′ , ω ′ ) := (V ⊗V ′ , ω ⊗1+1⊗ω ′ ), where ω ⊗1 is induced by the map Γ(Y, Ω 1 Y (D)) ⊗ End(V ) → Γ(Y, Ω 1 Y (D)) ⊗ End(V ) ⊗ End(V ′ ) ≃ Γ(Y, Ω 1 Y (D)) ⊗ End(V ⊕ V ′ )
given by tensor product with id V ′ and 1 ⊗ ω ′ is defined similarly.

Lemma 3.10. Let Y be a projective k-variety and let D ⊂ Y be a divisor. Then Vec(Y, D) is a tensor category with unit object (k, 0).

3.5.2. Isomorphism VBFC(X, D) unip ≃ Vec(X, D). Assume that (X, D) are as in §2.2. It is known that H 1 (E # , O E # ) = k.
Together with the Künneth formula and

X = (E # ) n , this implies that H 1 (X, O X ) = 0. It follows that any diagram 0 = E 0 ⊂ • • • ⊂ E N = E of vector bundles over X with subquotients ≃ O X is isomorphic to a diagram 0 = O X ⊗ V 0 ⊂ • • • ⊂ O X ⊗ V N = O X ⊗ V , where 0 = V 0 ⊂ • • • ⊂ V N = V is a maximal filtration of a finite dimensional vector space V .
If then (E, ∇) is an object of VBFC(X, D) unip , the above isomorphism necessarily takes ∇ to a connection on O X ⊗ V of the form d + ω, where ω is as described in the definition of the category Vec(X, D). We obtain in this way: Lemma 3.11. If (X, D) are as in §2.2, then there is an equivalence of tensor categories VBFC(X, D) unip ≃ Vec(X, D). 

(logD i ) ֒→ Ω 1 Y (D i ) ֒→ Ω 1 Y ( i∈I D i ), inducing an injection i∈I Ω 1 Y (logD i ) ֒→ Ω 1 Y ( i∈I D i ). Then Σ log = Γ(Y, i∈I Ω 1 Y (logD i )). 3.5.5. Computation of Σ log . Let (X, D) be as in §2.2. Recall that for each pair (i, j) with i < j ∈ [n], the space of global sections Γ(X, Ω 1 X (logD ij )) is a subspace of Γ rat (X, Ω 1 X )
. Recall from §1.3.2 that the sum of these spaces is a subspace

Ω 1 = i<j∈[n] Γ(X, Ω 1 X (logD ij )) ⊂ Γ(X, Ω 1 X (D)).
In §8.2, we prove:

Lemma 3.15. Assuming that (X, D) are as in §2.2, one has

Σ log = Ω 1 .
Combining Lemmas 3.11, 3.13 and 3.15, one gets:

Lemma 3.16. If (X, D) are as in §2.2, then one has Vec(X, D) = Vec Ω 1 (X, D). 

⊂ Γ(Y, Ω 1 X (D)) d → Γ(Y, Ω 2 X (2D)
induced by the differential will be denoted

Σ d → Γ(Y, Ω 2 X (2D));
the wedge product of forms will be denoted

: Λ 2 (Γ(Y, Ω 1 X (D))) → Γ(Y, Ω 2 X (2D))
, and its composed map with the inclusion Λ 2 (Σ) ⊂ Λ 2 (Γ(Y, Ω 1 X (D))) will be denoted

Λ 2 (Σ) → Γ(Y, Ω 2 X (2D)
). The tensor algebra T (Σ) is a commutative bialgebra, when equipped with the shuffle product

x and the deconcatenation coproduct ∆ conc .

Let

µ : T (Σ) → T (Σ) ⊗ Γ(Y, Ω 2 X (2D)) ⊗ T (Σ) be the map defined by µ([h 1 | . . . |h n ]) := n i=1 [h 1 | . . . |h i-1 ]⊗dh i ⊗[h i+1 | . . . |h n ]+ 1 2 n-1 i=1 [h 1 | . . . |h i-1 ]⊗(h i h i+1 )⊗[h i+2 | . . . |h n ],
for n ≥ 0, h 1 , . . . , h n ∈ Σ (in particular, µ(1) = 0). Then the following diagram commutes

T (Σ) µ / / ∆conc T (Σ) ⊗ Γ(Y, Ω 2 X (2D)) ⊗ T (Σ) id⊗id⊗∆conc⊕∆conc⊗id⊗id T (Σ) ⊗2 µ⊗id⊕id⊗µ / / (T (Σ)⊗Γ(X,Ω 2 Y (2D))⊗T (Σ))⊗T (Σ)⊕ T (Σ)⊗(T (Σ)⊗Γ(Y,Ω 2 Y (2D))⊗T (Σ))
This implies that C Σ := Ker(µ) is a subbialgebra of the shuffle bialgebra T (Σ). One associates to it the Lie coalgebra

C Σ := Coprim(C Σ ) = Coker(C ⊗2 Σ → C Σ , a ⊗ b → axb -aǫ(b) -ǫ(a)b)
, where x is the product of C Σ and ǫ : C Σ → k is its counit map.

Finite dimensional comodules over C Σ bijectively correspond to finite dimensional comodules over the Lie coalgebra C Σ . These form a tensor category, denoted Comod(C Σ ). One then has a tautological equivalence of tensor categories

(22) Vec Σ (Y, D Y ) ≃ Comod(C Σ ) unip .
3.6.2. Gradedness in a particular situation. Assume that (X, D) is as in §2.1, so D = ∪ i∈I D i is a special divisor in X. Then for each pair {i, j} ∈ P 2 (I), the divisors D i and D j intersect transversally. The space of global sections Γ(X, Ω 2 X (logD i ∩ D j )) is then a vector subspace of Γ(X, Ω 2 X (2D)). Recall from §1.3.2 the space

Ω 2 = {i,j}∈P2(I) Γ(X, Ω 2 X (logD i ∪ D j )) ⊂ Γ(X, Ω 2 X (2D))
and the maps d :

Ω 1 → Ω 2 , : Λ 2 (Ω 1 ) → Ω 2 .
In § §7.1 and 7.4, we prove:

Lemma 3.17. If (X, D) is as in §2.2, then the maps d, corestrict to maps Ω 1 d → I and Λ 2 (Ω 1 ) → I, where Ω 1 and I are graded by N (the integers ≥ 0) and have finite dimensional components. These maps have degree 0.

It follows that the Lie coalgebra C Ω 1 is graded and has finite dimensional components. Define G := C ∨ Ω 1 , the graded dual of C Ω 1 . This is a graded Lie algebra with finite dimensional components. Dualization sets up a tensor equivalence

(23) Comod(C Ω 1 ) unip ≃ Mod(G) unip .
Combining ( 22) for Σ = Ω 1 and (23), we get:

Lemma 3.18. If (X, D) is as in §2.2, then there is a tensor equivalence

Vec Ω 1 (X, D) ≃ Mod(G) unip .
This tensor equivalence identifies the obvious (forgetful) fiber functors of both sides with each other.

Let ω ∈ (G ⊗ Ω 1 ) ∧ be the canonical element (where (-) ∧ is the degree completion). Then dω + [ω, ω] = 0 (equality in the degree completion of G ⊗ Ω 2 ). Therefore: Lemma 3.19. d + ω is a flat connection on the trivial principal exp(G)-bundle over X -D. 

3.7.

:= C/(Z + τ Z).
This is an analytic elliptic curve. There is a commutative diagram of analytic varieties

C 2n / / (E # τ ) n C n / / E n τ
By [CEE], E n τ is equipped with a principal exp( tC 1,n )-bundle P KZB with flat connection ∇ KZB ; the lift of (P KZB , ∇ KZB ) to C n identifies with a principal bundle with flat connection over C n (trivial exp( tC 1,n )-bundle, d + A KZB ). On the other hand, Lemma 3.19 gives rise to a principal bundle with flat connection over (E # τ ) n , (trivial exp(G)-bundle, d + ω).

In §9, we prove: Theorem 3.1. There is an isomorphism between the following principal bundles with flat connections over C 2n :

• the pull-back under

C 2n → C n → (E τ ) n of (P KZB , ∇ KZB ); • the pull-back under C 2n → (E # τ ) n of ((E # τ ) n × exp(G), d + ω).
4. Category equivalences induced by desingularization (equiv. (d))

4.1. A geometric result. We work over C. Let X be a smooth variety. We define a unipotent vector bundle on X to be an iterated extension of copies of O X , i.e., a vector bundle which admits a filtration with associated graded O ⊕N X for some N ≥ 0. Similarly, a unipotent connection is a pair (bundle, connection) which admits a filtration with associated graded (O X , d) ⊕N for some N ≥ 0.

Let X be a smooth variety and D a divisor in X. Let π : X → X be a resolution of singularities, such that D := π -1 (D) is a normal crossing divisor and π : X -D → X -D is an isomorphism. Let V ∈ VBFC( X, D) unip , i.e., V is a unipotent vector bundle on X with a flat unipotent connection ∇ outside D, which has first order poles and nilpotent residues at D.

The following proposition was suggested to us by P. Deligne.

Proposition 4.1. The bundle V descends to a unipotent vector bundle V on X with respect to which the connection ∇ on X -D ∼ = X -D has first order poles at D with nilpotent residues.

Proof. Let U ⊂ X be an affine open set. We claim that the restriction of the bundle V to π -1 (U ) is trivial. This follows immediately from the following lemma.

Lemma 4.2. One has

H i (π -1 (U ), O) = 0 for i > 0.
Proof. It is well known that π * O = O, i.e., there is no higher direct images; see e.g. the beginning and Theorem 1 in [CR]. Thus, by adjunction

H i (π -1 (U ), O) = H i (U, O) = 0 for i > 0 since U is affine.
Indeed, by Lemma 4.2, we have Ext

1 π -1 (U) (O, O) = 0, so V | π -1 (U)
is trivial, as it is unipotent. Thus, we see that V = π * V , where V := π * V . In other words, the fibers of V at all points of π -1 (p) for any p ∈ X are canonically isomorphic to each other, and thus give rise to a well defined vector space, which is the fiber of V at p, and it varies algebraically in p. It is clear that the connection ∇ on X -D has simple poles and nilpotent residues at D with respect to V . This proves the proposition. 4.2. Proof of Lemma 3.9. Let V ∈ VBFC( X, D) unip . By Proposition 4.1, we can canonically attach to it a bundle V ∈ VBFC(X, D) unip . This gives rise to a functor

π * : V ∈ VBFC( X, D) unip → V ∈ VBFC(X, D) unip .
It is clear that this functor is fully faithful, so it remains to show that it is essentially surjective. To this end, it suffices to note that for any W ∈ VBFC(X, D) unip , we have W ∼ = π * π * W , where π * W ∈ VBFC( X, D) unip is the ordinary pullback of W . Indeed, this is definitely so outside of a set of codimension 2 on X (since there the map π is an isomorphism). But any isomorphism of vector bundles on X defined outside of a set of codimension 2 extends to the whole X. Thus, the functor π * is an equivalence whose inverse is π * .

Remark 4.3. This argument automatically yields that the flat connection on π * W has simple poles and nilpotent residues on each component of the exceptional divisor D ′ of π. Let us prove this fact independently. Let C be a smooth algebraic curve on X passing transversally through a generic point P of some component D ′ j of D ′ and having no other intersection points with D. Then π * W | C is a vector bundle on C with a unipotent connection outside of P , and our job is show that this connection has a simple pole with respect to π * W | C , and moreover the corresponding residue is nilpotent. To this end, consider the point π(P ) ∈ D. Let D i1 , ..., D ir be the components of D containing π(P ). Let D im be described near P by the equation z m = 0, where z m is a rational function on X regular at P with dz m (P ) = 0. Then, trivializing W near P , we get that the connection form takes the form 

ω = m A im z m dz m + ...

Elliptic material

This § presents the material related to elliptic curves alluded to in §2.2: (a) elliptic curves in char. 0 ( §5.1); (b) the construction of the functor E → E # , where for each elliptic curve E, E # is a surface equipped with an affine fibration E # → E ( §5.2). In §5.3, we prove an identity between functions on E # derived from the Fay identity, which will be used in the sequel of the paper.

5.1. Elliptic curves in characteristic zero.

5.1.1. Universal elliptic and theta functions. Let g 2 , g 3 be formal commutative variables; they generate the polynomial ring Q[g 2 , g 3 ].

Lemma 5.1. There exists a unique family (a n (g 2 , g 3 )) n≥0 of elements of Q[g 2 , g 3 ], such that the element

(24) ℘ univ := 1 p 2 + n≥0 a n (g 2 , g 3 )p n ∈ Q[g 2 , g 3 ]((p)) satisfies (25) (℘ ′ univ ) 2 = 4℘ 3 univ -g 2 ℘ univ -g 3 (identity in Q[g 2 , g 3 ]((p)))
, where ℘ ′ univ is the derivative of ℘ univ with respect to p. This statement is well-known. We give a proof for completeness. Proof. Explicit computation imposes a n = 0 for n odd, and

a 0 = 0, a 2 = 1 20 g 2 , a 4 = 1 28 g 4 .
The equation ( 26)

℘ ′′ univ = 6℘ 2 univ - 1 2 g 2 ,
consequence of the identity (25), then implies for n ≥ 6

(n 2 -n -12)a n = 6 p,q≥2|p+q=n-2 a p a q ,
which determine (a n ) n≥0 uniquely. Substituting these values in (24), one then obtains a solution of (26), which by multiplying by ℘ ′ univ and integrating is such that (℘ ′ univ ) 2 -4℘ 3 univ + g 2 ℘ univ is constant with respect to p; as the constant term in this expression is -g 3 , this solution of (26) satisfies (25).

Remark 5.2. If the variables g 2 , g 3 are given weights 4, 6, then a n is a polynomial of weight n + 2. Define

ζ univ := 1 p - n≥0 a n (g 2 , g 3 ) p n+1 n + 1 ∈ Q[g 2 , g 3 ]((p)), and θuniv := p • exp - n≥0 a n (g 2 , g 3 ) p n+2 (n + 1)(n + 2) ∈ Q[g 2 , g 3 ][[p]],
then ℘ univ = -∂ 2 p log θuniv . 5.1.2. Specializations. Let k be a field of characteristic 0, let (E, 0, ω) be a triple of: an elliptic curve E over k, an element 0 ∈ E(k), and a nonzero regular differential ω on E. Assume that E has a model y 2 = 4x 3 -g 2 x -g 3 , where g 2 , g 3 ∈ k, such that 0 corresponds to the point at infinity and ω = dx/y. Then the ring of regular functions on E -{0} is ( 27)

A := Γ(E, O E ( * 0)) = k[x, y]/(y 2 -4x 3 + g 2 x + g 3 ).
The elements of k((p)) obtained from ℘ univ (p), ℘ ′ univ (p) by the specialization Q[g 2 , g 3 ] → k, induced by g 2 → g 2 , g 3 → g 3 depend only on the pair (E, ω), and will henceforth be denoted

℘ E,ω (p), ℘ ′ E,ω (p).
If (E, 0, ω) corresponds to (g 2 , g 3 ) and α ∈ k × , then (E, 0, αω) corresponds to (α -4 g 2 , α -6 g 3 ). Remark 5.2 in §5.1.1 then implies the identity θE,αω (p) = α 2 θE,ω (α -2 p). There is a unique ring morphism

A → k((p)), x → ℘ E,ω (p), y → ℘ ′ E,ω (p) 
. This morphism is injective.

Moreover, there is a derivation ∂ of A, uniquely determined by

∂ : x → y, y → 6y 2 - 1 2 g 2 .
This derivation is compatible with the derivation d/dp of k((p)), so that the following diagram commutes

A / / ∂ k((p)) d/dp A / / k((p))
The derivation ∂ (resp., d/dp) corresponds to the regular differential dx/y of E (resp., dp of the formal disc); the differentials dx/y and dp correspond to each other under the parametrization of the formal disc around 0 induced by A → k((p)).

5.1.3. Relation with uniformization. For τ a complex number with positive imaginary part, let θ(-|τ ) : C → C be the holomorphic function defined by ( 28) θ(z|τ

) := 1 2πi (e( z 2 ) -e(- z 2 
))

j≥1

(1 -e(z + jτ ))

j≥1

(1 -e(-z + jτ )),

where i := √ -1 and e(z) := exp(2πiz). It is such that

θ(z + 1|τ ) = -θ(z|τ ), θ(z + τ |τ ) = -e -iπτ e -2πiz θ(z|τ ), θ ′ (0|τ ) = 1,
where ′ means the partial derivative with respect to z.

Assume that k = C and that (E, 0, ω) is such that E an ≃ C/(Z+ τ Z) and that ω corresponds to dp. Then (29) θC/(Z+τZ),dp (p) = θ(p|τ )e 1 2 G2(τ )p 2 for p formal near 0 and G 2 (τ ) is the quasimodular Eisenstein series given by

1 2 G 2 (τ ) = π 2 6 -(2π) 2 n≥1 σ 1 (n)q n ,
where q = e(τ ).

5.1.4. Analytic Fay identity. Let H be the set of complex numbers with positive imaginary part. Let τ ∈ H. Fay's identity (see [Fay]) is the identity

θ(p + z|τ )θ(p + p ′ + z ′ |τ )θ(p ′ |τ )θ(z + z ′ |τ ) -θ(p ′ + z ′ |τ )θ(p + z + z ′ |τ )θ(z|τ )θ(p + p ′ |τ ) + θ(p + p ′ + z + z ′ |τ )θ(p ′ -z|τ )θ(p|τ )θ(z ′ |τ ) = 0 (30)
in Hol(C 4 ), where (z, z ′ , p, p ′ ) is the current variable in C 4 .

The function

C 2 × H → C, (p, z, τ ) → F (p, z|τ ) := θ(p + z|τ ) θ(p|τ )θ(z|τ ) is meromorphic. It expands for z → 0 as a series k≥-1 F k (p|τ )z k , where F k (p|τ ) ∈ 1 p Hol(H)[[p]
]. It follows that F (p, z|τ ) may be viewed as an element of 1 pz Hol (H)[[p, z]].

View now z, z ′ , p, p ′ in (29) as formal variables. Dividing this equation by the product θ(p|τ )θ(p ′ |τ )θ(z|τ )θ(z ′ |τ )θ(p + p ′ |τ )θ(z + z ′ |τ ), we obtain the identity

(31) F (p, z|τ )F (p + p ′ , z ′ |τ ) -F (p ′ , z ′ |τ )F (p, z + z ′ |τ ) + F (p + p ′ , z + z ′ |τ )F (p ′ , -z|τ ) = 0 in 1 pp ′ zz ′ (p+p ′ )(z+z ′ ) Hol(H)[[p, p ′ , z, z ′ ]].
5.1.5. Formal series Fay identity. Let (g 2 , g 3 ) ∈ C 2 . Let (E, 0, ω) be the triple of the elliptic curve y 3 = 4x 3 -g 2 x -g 3 , the point at infinity, and the differential ω = dx/y. Choose a uniformization i : E an ∼ → C/(Z + τ Z), taking 0 to the origin. Then there exists a unique

α ∈ C × , such that ω = α • i * (dp). Computation then yields θE,ω (p) = α 2 θ(α -2 p|τ )e 1 2 G2(τ )(α -2 p) 2 (identity in C[[p]]).
View now p, z as formal variables and set

(32) FE,ω (p, z) := θE,ω (p + z) θE,ω (p) θE,ω (z) (element of 1 pz C[[p, z]]). Then FE,ω (p, z) = α -2 F (α -2 p, α -2 z|τ )e G2(τ )α -4 pz (identity in 1 pz C[[p, z]]).
Combining this identity with (31), one gets

(33) FE,ω (p, z) FE,ω (p+p ′ , z ′ )-FE,ω (p ′ , z ′ ) FE,ω (p, z +z ′ )+ FE,ω (p+p ′ , z +z ′ ) FE,ω (p ′ , -z) = 0 (identity in 1 pp ′ zz ′ (p+p ′ )(z+z ′ ) C[[p, p ′ , z, z ′ ]]).
The coefficients of this identity are polynomials in (g 2 , g 3 ) and therefore arise from specialization of the analogous identity, where θE,ω is replaced by θuniv , under specialization Q[g 2 , g 3 ] → C. It follows that the identity analogous to (33) holds with θE,ω replaced by θuniv , and then upon further specialization that identity (33) also holds when (E, 0, ω) is defined over a field k of characteristic 0.

5.2.

The functor E → E # . In this § and in the next one, we choose an elliptic curve E as in §5.1.2. It is therefore defined over a field k of characteristic 0, has fixed origin 0, and a nonzero regular differential ω.

A section

σ ∈ Γ rat (E × E, Ω 1 E ⊠ O E ). Lemma 5.3.
There exists a unique rational section σ of the bundle Ω 1 E ⊠ O E over E × E, regular except for:

• a simple pole at E diag with residue 1,

• a simple pole at {0} × E with residue -1,

• a simple pole at E × {0}, and such that the ratio σ/(ω ⊗ 1) (a rational function on E × E) is antisymmetric w.r.t. the exchange of variables.

Proof. If σ 1 , σ 2 are two such rational functions, then their difference σ 3 is regular on E 2 and is therefore of the form c • (ω ⊗ 1), where c ∈ k. The antisymmetry condition then implies that it is zero.

If E has a model y 2 = 4x 3 -g 2 x -g 3 and 0 is the point at infinity in this model, then σ is given by

σ(P, Q) := y P + y Q x P -x Q • dx P 2y P ,
where P = (x P , y P ) and Q = (x Q , y Q ).

Remark 5.4. Assume that k = C and that a uniformization E an ≃ C/(Z + τ Z) is fixed. Then the image of σ under (E an ) 2 ≃ (C/(Z + τ Z)) 2 is the differential

θ ′ θ (p 1 -p 2 |τ ) - θ ′ θ (p 1 |τ ) + θ ′ θ (p 2 |τ ) dp 1 ,
where (p 1 , p 2 ) are the coordinates on C 2 .

5.2.2.

The functor E → E # . Define E # to be the moduli space of line bundles of degree zero over E, equipped with a flat connection. The tensor product of bundles with connections makes E # into a commutative algebraic group over k, fitting in an exact sequence

(34) 0 → Γ(E, Ω 1 E ) can → E # π → E → 0,
where can : Γ(E, Ω 1 E ) → E # is the canonical group morphism. According to [Me, MaMe] (based on [Ro]; for a recent account see [BoK]), E # is the universal extension of the algebraic group E by vector spaces.

Given a pair (L, σ) of a line bundle of degree zero on E equipped with a nonzero rational section, one may use σ as a rational trivialization in order to express connections on L; this leads to a bijection iso : {connections ∇ on L} ↔{rational differentials ψ on E regular except for simple poles at the zeroes/poles of σ, and with

P ∈E res P (ψ)P = (σ)}, ∇ → ∇(σ)σ -1 . A morphism s : E -{0} → E # ,
which is a rational section of the morphism π : E # → E may be constructed as follows. To a point P in E -{0}, it associates the pair of the bundle O(P -0) and of the connection ∇ P corresponding via iso to the rational differential σ(-, P ) (this makes sense as the divisor of this differential is P -0). The morphism s gives rise to an isomorphism of schemes

(35) s : (E -{0}) × Γ(E, Ω 1 E ) → E # -π -1 ( 
0), given by (P, c) → (O(P -0), ∇ P + c). The behavior of s with respect to the group structures on both sides is described by s(P + P ′ , c + c′ ) = s(P, c) + s(P ′ , c′ ) + f (P, -P ′ ) • can(ω) (identity in E # ), for any P, P ′ ∈ E such that P, P ′ and P + P ′ are = 0; here + denotes the addition both in E, in Γ(E, Ω 1 E ) and in E # , can is as in (34), and f (P, P ′ ) ∈ k is defined by σ(P, P ′ ) = f (P, -P ′ )ω(P ).

Formal neighborhood of π

-1 (0) in E # . Let E be as in §5.1.2. The element ω = dx/y = dp ∈ Γ(E, Ω 1 E
) is a basis of this vector space and sets up an isomorphism Γ(E, Ω 1 E ) ≃ A 1 . Combining the isomorphism (35) with this isomorphism, we obtain an isomorphism

(36) Γ(E # , O E # ( * π -1 (0))) ≃ k[(E -{0}) × A 1 ] = k[x, y, c]/(y 2 = 4x 3 -g 2 x -g 3 ).
(see §5.1.2). We set (37)

A := Γ(E # , O E # ( * π -1 (0))).
There is an isomorphism π -1 (0) ≃ Γ(E, Ω 1 E ), and an isomorphism of the formal neighborhood of π -1 (0) in

E # with Γ(E, Ω 1 E ) × Spf(k[[p]]) ≃ A 1 × Spf(k[[p]]) = Spf(k[t][[p]]), corresponding to the injective algebra morphism (38) can : A → k[t]((p))
given by ( 39)

x → ℘ E,ω (p), y → ℘ ′ E,ω (p), c → t - dlog θE,ω (p) dp .

5.2.4.

Uniformization of E # . Assume that k = C and that a uniformization ( 40)

E an ≃ C/(Z + τ Z)
is fixed, such that dx/y corresponds to dp, p being the canonical coordinate on C.

There is a morphism Z 2 → C 2 , given by (n, m) → (n + mτ, -2πim). Then there is an analytic isomorphism

E # an ≃ Coker(Z 2 → C 2 ), whose inverse takes the class of (p, c) ∈ C 2 to the bundle O([p] -[0]) equipped with the connection (41) d + ( θ ′ θ (z -p|τ ) - θ ′ θ (z|τ ) + c)dz, z being the standard coordinate on C. Here [p] is the class of p in E an , [p] -[0] is a degree zero divisor, O([p] -[0]
) is the associated line bundle, and θ(-|τ ) is defined by ( 28).

Taking into account the role of the section σ in the definition of the isomorphism s, we derive that the composite map

E # an -π -1 (0) ∼ → E # (C) -π -1 (0) s ≃ (E(C) -{0}) × C → C,
where the last map is the projection on the last factor, is the map c :

E # an -π -1 (0) → C taking the class of (p, c) to c(p, c) := c -(θ ′ /θ)(p|τ ).
The map c is a rational function on E # , regular except at π -1 (0) where it has a simple pole.

Taking into account ( 39) and ( 29), the local coordinate systems (p, c) and (p, t) at the neightborhood of π -1 (0) are related by

t = c + G 2 (τ )p.
The relation between the algebraic and analytic coordinates on E # is then:

[(p, c)] ↔ (x, y, c) = (℘(p|τ ), ℘ ′ (p|τ ), c - θ ′ θ (p|τ )).
Remark 5.5. There is, up to isomorphism, a unique 2-dimensional bundle E over E, which is a nontrivial extension of O by itself. One then has an exact sequence 0 → O → E ϕ → O → 0. Let Tot(F ) be the total space of a bundle F over E. Then ϕ induces a morphism φ : Tot(E) → Tot(O) ≃ E × A 1 , and E # identifies with the preimage φ-1 (E × {1}). When k = C, this can be checked using a uniformization ( 40) of E an . The bundle E then identifies with the bundle (C×C 2 )/Z 2 , where the action of

Z 2 on C×C 2 is (n, m)•(z, v) := (z +n+mτ, 1 -2πim 0 1 • v).
5.3. Algebraic Fay identity on (E # ) n . 27)). It may be uniquely extended to a derivation of A ≃ A[c], also denoted ∂, by ∂(c) = x. This extension is compatible with the morphism can :

Elements in

A = Γ(E # , O E # ( * π -1 (0))). Recall from §5.1.2 that ∂ is a derivation of A = k[E -{0}] (see (
A → k[t]((p))
and with the derivation ∂/∂p of the latter ring.

Lemma 5.6. Let z be a formal variable. One has

1 θE,ω (z) exp -cz - k≥2 1 k! ∂ k-2 (x)z k - 1 z ∈ A[[z]].
Proof. The element θE,ω (z) belongs to z

+ z 2 k[[z]], therefore 1 θE,ω (z) - 1 z ∈ k[[z]],
and moreover -cz -k≥2

1 k! ∂ k-2 (x)z k belongs to zA[[z]], therefore 1 θE,ω (z) exp -cz - k≥2 1 k! ∂ k-2 (x)z k -1 ∈ A[[z]].
All this implies the result.

Definition 5.7. The elements (f α ) α≥-1 of A are defined by ( 42)

f α := 1 θE,ω (z) exp -cz - k≥2 1 k! ∂ k-2 (x)z k z α ,
where [-|z α ] means the coefficient of z α in the formal series expansion (so f -1 = 1).

Lemma 5.8. The following identity

(43) θE,ω (z) 1 z + α≥0 can(f α )z α = e -tz θE,ω (p + z) θE,ω (p) . holds in k[t]((p))[[z]].
Proof. By Def. 42, we have

(44) θE,ω (z) 1 z + α≥0 f α z α = exp -cz - k≥2 1 k! ∂ k-2 (x)z k (identity in A((z))).
The image of this identity under the morphism can :

A → k[t]((p)) (see (38)) is the first equality in the following computation θE,ω (z) 1 z + α≥0 can(f α )z α = exp   -t - θ′ E,ω (p) θE,ω (p) z - k≥2 ∂ k-2 p (-∂ 2 p log θE,ω (p)) z k k!   = e -tz exp (e z∂p -1)log θE,ω (p) = e -tz θE,ω (p + z) θE,ω (p) (equality in k[t]((p))[[z]]
), which implies the result.

which is

1 pp ′ -2(p ′3 -p 3 ) + n≥0,odd b n (p n -p ′n )(pp ′ ) 3 (p ′2 -p 2 ) + n≥0,even a n (p n -p ′n )(pp ′ ) 2 .
In the second fraction, the numerator factorizes as (p

-p ′ ) • (element of k[[p, p ′ ]]
), while the denominator factorizes as (p 2 -p ′2 ) • (element of k[[p, p ′ ]] with constant term -1). It follows that the overall fraction expands as

1 pp ′ (p+p ′ ) • (element of k[[p, p ′ ]]
). All this implies the result.

One checks:

Lemma 5.12.

1) The following diagrams are commutative (45)

A ∆A / / (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] k((p)) / / k[[p, p ′ ]][1/p, 1/p ′ , 1/(p + p ′ )] A ∆A / / (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] k[t]((p)) / / k[t, t ′ ][[p, p ′ ]][1/p, 1/p ′ , 1/(p + p ′ )]
where the bottom maps are given by p

→ p + p ′ , t → t + t ′ . 2) The maps a → a ⊗ 1, a → 1 ⊗ a define morphisms from A (resp., A) to A ⊗ A (resp.,
A⊗A), and therefore also to the localizations (A⊗A)[ y (1) -y (2)

x (1) -x (2) ] (resp., (A⊗A)[ y (1) -y (2)

x (1) -x (2) ]), such that the following diagrams commute (46)

A -⊗1( resp., 1⊗-) / / (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] k((p)) / / k[[p, p ′ ]][1/p, 1/p ′ , 1/(p + p ′ )] A -⊗1( resp., 1⊗-) / / (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] k[t]((p)) / / k[t, t ′ ][[p, p ′ ]][1/p, 1/p ′ , 1/(p + p ′ )]
where the bottom maps are given by substitution to p, t of p, t (resp., p ′ , t ′ ). [p, z]] from (32). Let also t, t ′ be two additional formal variables.

Algebraic Fay identity on

(E # ) 2 . Recall FE,ω (p, z) ∈ 1 pz C[
Lemma 5.13. One has

FE,ω (p, z)e -tz FE,ω (p + p ′ , z ′ )e -(t+t ′ )z ′ -FE,ω (p ′ , z ′ )e -t ′ z ′ FE,ω (p, z + z ′ )e -t(z+z ′ ) + FE,ω (p + p ′ , z + z ′ )e -(t+t ′ )(z+z ′ ) FE,ω (p ′ , -z)e t ′ z = 0 (47) (identity in 1 pp ′ zz ′ (p+p ′ )(z+z ′ ) k[t, t ′ ][[p, p ′ , z, z ′ ]]).
Proof. Follows from identity (33) in

1 pp ′ zz ′ (p+p ′ )(z+z ′ ) k[[p, p ′ , z, z ′ ]]. Let f (z) := 1 z + α≥0 f α z α ∈ 1 z A[[z]]
be the series defined in §5.3.1.

Lemma 5.14. (Algebraic Fay identity.) We have

(48) (f (z) ⊗ 1)∆ A (f (z ′ )) -f (z + z ′ ) ⊗ f (z ′ ) + (1 ⊗ f (-z))∆ A (f (z + z ′ )) = 0 (identity in 1 zz ′ (z+z ′ ) (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ][[z, z ′ ]]).
This identity gives a family of relations between the (f α ) α≥0 , which are rational functions on E # , regular except at the preimage of 0 ∈ E; each of these relations is an identity of functions on (E # ) 2 , regular except at the preimages of E × {0}, {0} × E and

E antidiag := {(x, y) ∈ E 2 |x + y = 0}. Proof. According to (43), the image of f (z) ∈ 1 z A[[z]] under can : 1 z A[[z]] → 1 z k[t]((p))[[z]
] is FE,ω (p, z)e -tz . This and the right sides of ( 45) and ( 46) imply that the elements z). ( 48) now follows from the fact that this map is injective, together with identity (47).

FE,ω (p, z)e -tz , FE,ω (p + p ′ , z ′ )e -(t+t ′ )z ′ , FE,ω (p ′ , z ′ )e -t ′ z ′ , FE,ω (p, z + z ′ )e -t(z+z ′ ) , FE,ω (p + p ′ , z + z ′ )e -(t+t ′ )(z+z ′ ) , FE,ω (p ′ , -z)e t ′ z of 1 pp ′ zz ′ (p+p ′ )(z+z ′ ) k[t, t ′ ][[p, p ′ , z, z ′ ]] are the images under the canonical map 1 zz ′ (z + z ′ ) (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ][[z, z ′ ]] → 1 zz ′ (z + z ′ ) k[t, t ′ ][[p, p ′ ]][1/p, 1/p ′ , 1/(p + p ′ )][[z, z ′ ]] of f (z) ⊗ 1, ∆ A (f (z ′ )), 1 ⊗ f (z ′ ), f (z + z ′ ) ⊗ 1, ∆ A (f (z + z ′ )), 1 ⊗ f (-

An identity on (E

# ) n . For i < j ∈ [n], we denote by m ij : (E # ) n → E # the morphism (e 1 , . . . , e n ) → e i -e j . For i < j < k ∈ [n],
we denote by m ijk : (E # ) n → (E # ) 2 the morphism (e 1 , . . . , e n ) → (e i -e j , e j -e k ). We denote by s :

(E # ) 2 → E # the sum morphism. Then s • m ijk = m ik .
The morphism m ij restricts to a morphism of affine varieties

{(e 1 , . . . , e n ) ∈ (E # ) n |p 1 = 0, . . . , p n = 0, p i = p j } mij → E # -π -1 (0)
where p 1 := π(e 1 ), . . . , p n := π(e n ). Similarly, m ijk restricts to a morphism

{(e 1 , . . . , e n ) ∈ (E # ) n |p 1 = 0, . . . , p n = 0, p i = p j , p i = p k , p j = p k } m ijk → {(e, e ′ ) ∈ (E # ) 2 |p = 0, p ′ = 0, p + p ′ = 0}
where p := π(e), p ′ := π(e ′ ) and s restricts to a morphism

{(e, e ′ ) ∈ (E # ) 2 |p = 0, p ′ = 0, p + p ′ = 0} s → E # -π -1 (0). For a ∈ A and i ∈ [n], set a (i) := 1 i-1 ⊗ a ⊗ 1 ⊗n-i .
The regular function rings of the varieties involved in the above morphisms are the following

E # -π -1 (0) A {(e, e ′ ) ∈ (E # ) 2 |p = 0, p ′ = 0, p + p ′ = 0} (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] {(e 1 , . . . , e n ) ∈ (E # ) n |p 1 = 0, . . . , p n = 0, p i = p j } A ⊗n [ y (i) +y (j) x (i) -x (j) ] {(e 1 , . . . , e n ) ∈ (E # ) n |p 1 = 0, . . . , p n = 0, p i = p j , p i = p k , p j = p k } A ⊗n [ y (i) +y (j) x (i) -x (j) , y (i) +y (k) x (i) -x (k) , y (j) +y (k) x (j) -x (k) ]
The dual to the morphism s is the morphism

∆ A : A → (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] defined in §5.3.2.
The dual to the morphism m ij is the morphism

S (j) A ∆ (ij) A : A → A ⊗n [ y (i) + y (j) x (i) -x (j) ],
where ∆

(ij)
A is the composition of ∆ A with the morphism induced by

A ⊗ A → A ⊗n , a ⊗ b → 1 ⊗i-1 ⊗ a ⊗ 1 j-i-1 ⊗ b ⊗ 1 ⊗n-j and y (1) -y (2)
x (1) -x (2) → y (i) -y (j)

x (i) -x (j) , S A is the automorphism of A induced by x → x, y → -y, c → -c, and

S (i) A is the isomorphism A ⊗n [ y (i) -y (j) x (i) -x (j) ] → A ⊗n [ y (i) +y (j)
x (i) -x (j) ] extending the automorphism id ⊗i-1 ⊗ S A ⊗ id ⊗n-i of A ⊗n by y (i) -y (j) x (i) -x (j) → -y (i) +y (j)

x (i) -x (j) . The dual of the morphism m ijk is the morphism

m * ijk : (A ⊗ A)[ y (1) -y (2) x (1) -x (2) ] → A ⊗n [ y (i) + y (j) x (i) -x (j) , y (i) + y (k) x (i) -x (k) , y (j) + y (k) x (j) -x (k) ] induced by A ⊗ A ∋ a ⊗ b → S (j) A ∆ (ij) A (a) • S (k) A ∆ (jk) 
A (b), and

y (1) -y (2)
x (1) -x (2) → -(

y (i) + y (j) x (i) -x (j) + y (j) + y (k) x (j) -x (k) + y (k) + y (i) x (k) -x (i) ).
We then have

m * ijk • ∆ A = S (k) A ∆ (ik) 
A . Applying m * ijk to identity (48), we obtain (see [Fay, Mum, Po]):

Lemma 5.15. (Algebraic Fay identities on

(E # ) n ) One has (S (j) A ∆ (ij) A )(f (z))(S (k) A ∆ (ik) A )(f (z ′ )) -(S (j) A ∆ (ij) A )(f (z + z ′ ))(S (k) A ∆ (jk) A )(f (z ′ )) + (S (k) A ∆ (jk) A )(f (-z))(S (k) A ∆ (ik) A )(f (z + z ′ )) = 0 (49) (identity in 1 zz ′ (z+z ′ ) A ⊗n [ y (i) +y (j) x (i) -x (j) , y (i) +y (k) x (i) -x (k) , y (j) +y (k) x (j) -x (k) ][[z, z ′ ]]).
Remark 5.16. Assume that k = C and that (E, 0, ω) = (C/(Z + τ Z), 0, dp). The image of

f (z) in 1 z C[t]((p))[[z]] is then θ(p + z|τ ) θ(p|τ )θ(z|τ ) e -(t-1 2 G2(τ )p)z ,
so the image of (S

(j) A ∆ (ij) A )(f (z)) in 1 z(pi-pj ) C[t 1 , . . . , t n ][[p 1 , . . . , p n , z]] is θ(p ij + z|τ ) θ(p ij |τ )θ(z|τ ) e -cij z ,
where

c i := t i -1 2 G 2 (τ )p i and c ij := c i -c j .
Identity (49) then translates as

θ(p ij + z|τ ) θ(p ij |τ )θ(z|τ ) e -cijz θ(p ik + z ′ |τ ) θ(p ik |τ )θ(z ′ |τ ) e -c ik z ′ - θ(p jk + z ′ |τ ) θ(p jk |τ )θ(z ′ |τ ) e -c jk z ′ θ(p ij + (z + z ′ )|τ ) θ(p ij |τ )θ(z + z ′ |τ ) e -cij(z+z ′ ) + θ(p ik + (z + z ′ )|τ ) θ(p ik |τ )θ(z + z ′ |τ ) e -c ik (z+z ′ ) θ(p jk -z|τ ) θ(p jk |τ )θ(z|τ ) e c jk z = 0.
(identity in

1 zz ′ (z+z ′ )(pi-pj )(pi-p k )(pj -p k ) C[t 1 , . . . , t n ][[p 1 , . . . , p n , z, z ′ ]]).

Cohomological computations related to E #

In this §, we choose an elliptic curve E with fixed origin 0, defined over a field k of char. 0.

6.1. Spaces of differentials on E # .

6.1.1. Computation of Γ(E # , O E # (π -1 (0))
). In §5.3.1, we defined elements f α ∈ A and a morphism can : A → k[t]((p)). As the left-hand side of (43) belongs to

1 p k[t][[p, z]], one has can(f α ) ∈ 1 p k[t][[p]
] for any α ≥ 0. Since the divisor π -1 (0) is locally defined by the equation p = 0 in the plane (p, t), this implies that the pole of f α is simple, therefore

∀α ≥ 0, f α ∈ Γ(E # , O E # (π -1 (0))).
There is an exact sequence

0 → Γ(E # , O E # ) → Γ(E # , O E # (π -1 (0))) µ → Γ(A 1 , O A 1 ),
where the last map takes a rational function f on E # with a simple pole at π -1 (0) to the restriction at π

-1 (0) ≃ A 1 of the product f • p (p = 0 being a local equation of π -1 (0)). Lemma 6.1. Set f -1 := 1. The family (f α ) α≥-1 is a basis of Γ(E # , O E # (π -1 (0))). The map µ is such that (50) ∀α ≥ 0, µ(f α ) = (-t) α /α!, therefore µ is surjective.
Proof. The map µ fits in the diagram

Γ(E # , O E # (π -1 (0))) µ ) ) / / _ 1 p k[t][[p]] / / _ k[t] ∼ / / Γ(A 1 , O A 1 ) Γ(E # , O E # ( * π -1 (0))) can / / k[t]((p)) the map 1 p k[t][[p]] → k[t] being f → (f • p) |p=0 . (43) implies e -tz θE,ω (p + z) θE,ω (p) = θE,ω (z) 1 z + α≥0 can(f α )z α (identity in 1 p k[t][[p, z]]), therefore e -tz • p θE,ω (p) • θE,ω (p + z) = p • θE,ω (z) z + α≥0 pcan(f α ) θE,ω (z)z α (identity in k[t][[p, z]]
). Evaluating at p = 0, we get

e -tz • θE,ω (z) = α≥0 (pcan(f α )) |p=0 θE,ω (z)z α (identity in k[t][[z]]), therefore α≥0 (pcan(f α )) |p=0 z α = e -tz , therefore for any α ≥ 0, µ(f α ) = (pcan(f α )) |p=0 = (-t) α /α!, proving (50).
So the image of (f α ) α≥0 by µ is a basis of Γ(A 1 , O A 1 ). This implies both that µ is surjective, and that a basis of Γ(E # , O E # (π -1 (0))) is the union of (f α ) α≥0 and a basis of Γ(E # , O E # ). The result follows from the fact that this latter space is ≃ k

• 1. Remark 6.2. One computes f -1 = 1, f 0 = -c, f 1 = 1 2 (c 2 -x). 6.1.2. Computation of Γ(E # , Ω 1 E # (logπ -1 (0)))
. As E # is an algebraic group, its sheaf Ω 1 E # of differentials is isomorphic to a direct sum of dimE # = 2 copies of the trivial bundle, generated by a basis of invariant differentials.

The differentials dc := dc -xdx/y and dp := dx/y form such a basis. Note that for k = C and when a uniformization of E an is fixed, they correspond to the differentials dc, dp on E # an . We have therefore

Ω 1 E # ≃ O E # • dc ⊕ O E # • dp. One computes Ω 1 E # (logπ -1 (0)) ≃ O E # • dc ⊕ O E # (π -1 (0)) • dp. Lemma 6.3.
1) The family

(51) dc -xdx/y, ω α := f α • dx y , α ≥ -1,
where f α is as in (42), is a basis of Γ(E # , Ω 1 E # (logπ -1 (0))). 2) The residue map Γ(E # , Ω 1 E # (logπ -1 (0))) → Γ(π -1 (0), O π -1 (0) ) = k[t] along π -1 (0) is given by res(dc) = res(ω -1 ) = 0, res(ω α ) = (-t) α /α! for α ≥ 0.
Proof. 1) follows from Lemma 6.1. 2) follows from (50). Remark 6.4. If k = C and a uniformization of E an ≃ C/(Z + τ Z) is fixed as in §5.2.4 (i.e., such that dx/y ↔ dp), the elements (51) correspond to the following differentials on

E # an (52) dc, ω -1 := dp, ω α := [ θ(p + z|τ ) θ(z|τ )θ(p|τ ) e -cz - 1 z dp|z α ], α ≥ 0,
where z is a formal variable and the notation [-|z α ] denotes the coefficient of z α in the expansion in power series at z = 0 (see §6.1.1).

6.2. Spaces of differentials on (E # ) n .

6.2.1. The setup. Let n be an integer ≥ 1; we set [n] := {1, . . . , n} and I := {(i, j)|i, j ∈ [n] and i < j}.

We assume (X, D) to be as in §2.2. To emphasize the dependence of D in n, we sometimes denote it D (n) .

6.2.2. Computation of Γ(X, Ω 1 X (logD ij )). Let (i, j) ∈ I. According to §1.2.3, the space Γ(X, Ω 1 X (logD ij )) consists of all forms α in Γ rat (X, Ω 1 
X ) such that both α and dα are regular except for simple poles along D ij . Moreover, the residue along D ij induces an exact sequence

(53) 0 → Γ(X, Ω 1 X ) → Γ(X, Ω 1 X (logD ij )) µij → Γ(D ij , O Dij ).
The automorphism map ij of (E # ) n given by map ij : (e 1 , . . . , e n ) → (e i -e j , e 1 , . . . , e j-1 , e j+1 , . . . , e n ) induces an isomorphism

D ij ≃ π -1 (0) × (E # ) n-1 . The isomorphism π -1 (0) ≃ A 1 then induces an isomorphism (54) D ij ≃ A 1 × (E # ) n-1 .
Lemma 6.12.

• Ω 1 is graded for this decomposition, that is

Ω 1 = Ω 1 p ⊕ Ω 1 c , where Ω 1 p := Ω 1 ∩ Γ p rat , Ω 1 c := Ω 1 ∩ Γ c rat , • the elements dp i (i ∈ [n]), ω α ij (i < j ∈ [n], α ≥ 0) form a k-basis of Ω 1 p and therefore a linearly independent family of k((E # ) n ) ⊗ (⊕ i∈[n] k • dp i ), • the elements dc i (i ∈ [n]) form a k-basis of Ω 1 c . 6.2.4. Rational 2-forms on (E # ) n . It follows from (60) that Ω 2 (E # ) n ≃ O (E # ) n ⊗ Λ 2 ( i∈[n] k • dc i ⊕ i∈[n] k • dp i ), therefore Γ rat ((E # ) n , Ω 2 (E # ) n ) ≃ k((E # ) n ) ⊗ Λ 2 ( i∈[n] k • dc i ⊕ i∈[n] k • dp i ).
We set

Γ cc rat := k((E # ) n ) ⊗ Λ 2 (⊕ i∈[n] k • dc i ), Γ cp rat := k((E # ) n ) ⊗ (⊕ i,j∈[n] k • (dc i ∧ dp j )), (61) Γ pp rat := k((E # ) n ) ⊗ Λ 2 (⊕ i∈[n] k • dp i ). Then Γ rat ((E # ) n , Ω 2 (E # ) n ) = Γ cc rat ⊕ Γ cp rat ⊕ Γ pp rat . It follows from (61) that (62)
the family (dc i ∧ dc j ) i<j∈[n] is linearly independent over k in Γ cc rat , and from (61) and Lemma 6.12 that the union of two families (dc i ∧ dp j ) i,j∈ [n] ,

(dc i ∧ ω α jk ) i∈[n],j<k∈[n],α≥0 (63) 
is linearly independent over k in Γ cp rat , where ∧ is the product in the algebra k((E # ) n ) ⊗ Λ • (⊕ i∈[n] kdp i ⊕ kdc i ).

Computation of the kernel of

: Λ 2 (Ω 1 ) → Ω 2 . In this section, we drop (E # ) n from the global section notation, so Γ(L) will mean Γ((E # ) n , L). Likewise, Γ rat (L) means Γ rat ((E # ) n , L). 6.3.1. Construction of linear maps. According to §1.3.2, the wedge product of differential forms induces a linear map

(64) Λ 2 (Ω 1 ) → Ω 2 ֒→ Γ rat (Ω 2 (E # ) n )
According to Lemma 6.12, (1), the source of this morphism decomposes as follows

Λ 2 (Ω 1 ) ≃ Λ 2 (Ω 1 c ) ⊕ Ω 1 c ⊗ Ω 1 p ⊕ Λ 2 (Ω 1 p ), while the target decomposes as Γ rat (Ω 2 (E # ) n ) ≃ Γ cc rat ⊕ Γ cp rat ⊕ Γ pp rat .
The linear map (64) then decomposes as the direct sum of linear maps

(65) Λ 2 (Ω 1 c ) → Γ cc rat , (66) Ω 1 c ⊗ Ω 1 p → Γ cp rat , (67) 
Λ 2 (Ω 1 p ) → Γ pp rat . and ( 62) and ( 63) imply: Lemma 6.13. The linear maps ( 65) and (66) are injective.

We will now compute the kernel of the map (67). 6.3.5. Computation of residue maps. Let (i, j) ∈ I. For any (k, l) = (i, j) ∈ I, the isomorphism

D ij ≃ A 1 × (E # ) n-1 (see (54)) takes the divisor D ij ∩ D kl to A 1 × D (n-1) fij (k)fij (l) , where f ij : [n] → [n-1]
is the map given by i, j → j and to induce an increasing bijection [n]-{i, j} → [n-1]-{j} (the exponent (n -1) means that the divisor is in (E # ) n-1 ). This induces an isomorphism of the summand (k, l) of D 1 ij with

Γ(A 1 × (E # ) n-1 , Ω 1 A 1 ×(E # ) n-1 (log(A 1 × D (n-1) fij (k)fij (l) ))). For X, Y nonsingular varieties and D ⊂ Y a nonsingular divisor, one has Ω 1 X×Y (log(X × D)) ≃ Ω 1 X ⊠ O Y ⊕ O X ⊠ Ω 1 Y (logD). Using the identifications Γ(A 1 , O A 1 ) ≃ k[t], Γ(A 1 , Ω A 1 ) ≃ k[t]
dt, the latter space then identifies with

k[t]dt ⊕ Γ((E # ) n-1 , Ω 1 (E # ) n-1 (logD (n-1) fij (k)fij (l) ))[t]. Let I (n-1) , Ω 1 (n-1) be analogues of I, Ω 1 with n replaced by n -1. The map (k, l) → (f ij (k), f ij (l)) induces a surjective map I -{(i, j)} → I (n-1) . It follows that (87) D 1 ij ≃ k[t]dt ⊕ Ω 1 (n-1) [t]. If (i, j) = (k, l) ∈ I, then the composition of the isomorphism D ij ∩ D kl ≃ A 1 × D (n-1) fij (k)fij (l)
induced by ( 54) and of the isomorphism

D (n-1) fij (k)fij (l) ≃ A 1 × (E # ) n-2 induces an isomorphism D ij ∩ D kl ≃ (A 1 ) 2 × (E # ) n-2 and therefore an isomorphism D 0 ij,kl ≃ k[t, t ′ ]. Let : Λ 2 (Ω 1 p )
→ Ω 2 be the linear map induced by the wedge product. One checks that the composed map

Λ 2 (Ω 1 p ) → Ω 2 Res (2) D ij → D 1 ij ≃ Ω 1 (n-1) [t] ⊕ k[t]dt has its image contained in Ω 1 (n-1) [t]
. We denote by ̺

(2)

ij : Λ 2 (Ω 1 p ) → Ω 1 (n-1) [t] the resulting corestricted map. Then the diagram (88) Λ 2 (Ω 1 p ) / / ̺ (2) ij $ $ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ω 2 Res (2) D ij / / D 1 ij Ω 1 (n-1) [t] ⊕ k[t]dt ∼ O O Ω 1 (n-1) [t] ? O O commutes.
This diagram implies:

Lemma 6.18. The kernel Ker( : Λ 2 (Ω 1 p ) → Ω 2 ) is contained in the intersection over all (i, j) ∈ I of the kernels of the maps

̺ (2) ij : Λ 2 (Ω 1 p ) → Ω 1 (n-1) [t]
. This implies: Corollary 6.1. The kernel Ker( : Λ 2 (Ω 1 p ) → Ω 2 ) is contained in the intersection over all pairs (i, j) = (k, l) ∈ I of the kernels of the maps

̺ fij (k)fij (l) • ̺ (2) ij : Λ 2 (Ω 1 p ) → k[t, t ′ ].
We now turn to the computation of ̺

(2) ij . As vanishes on K ⊂ Λ 2 (Ω 1 p ), so does ̺

(2) ij . The restriction of ̺

(2) ij to Σ can be computed using Lemma 6.10 and §1.2.4. One gets: Lemma 6.19. Let (i 0 , j 0 ) ∈ I. The map

̺ (2) i0j0 : Λ 2 (Ω 1 p ) → Ω 1 (n-1)
[t] is given by R → 0, and the following formulas:

• for i < j ∈ [n], P (i, j) → 0,

• for i, j, k ∈ [n], j < k, i = j, k, and α ≥ 0,

Q(i, j, k, α) → -(-t) α α! • dp fi 0 j 0 (i) if (j, k) = (i 0 , j 0 ), 0 else, • for i < j ∈ [n], α ≥ 0, Q ′ (i, j, α) → -(-t) α /α! • dp i0 if (i, j) = (i 0 , j 0 ), 0 else, • for i < j < k ∈ [n], α, β ≥ 0, S ′′ (i, j, k, α, β) →      (-t) α α! • ω β i0fi 0 j 0 (k) if (i, j) = (i 0 , j 0 ), -(-t) β β! • ω α fi 0 j 0 (i)i0 if (j, k) = (i 0 , j 0 ), 0 else, • for i < j < k ∈ [n], α, β ≥ 0, S ′′′ (i, j, k, α, β) →      (-t) α α! • (-1) β ω β i0fi 0 j 0 (j) if (i, k) = (i 0 , j 0 ), -(-t) β β! • ω α fi 0 j 0 (i)i0 if (j, k) = (i 0 , j 0 ), 0 else, • for i, j, k, l all different in [n], i < j, k < l, i < k, α, β ≥ 0, S(i, j, k, l, α, β) →      (-t) α α! • ω β fi 0 j 0 (k)fi 0 j 0 (l) if (i, j) = (i 0 , j 0 ), -(-t) β β! • ω α fi 0 j 0 (i)fi 0 j 0 (j) if (k, l) = (i 0 , j 0 ), 0 else, where f i0j0 : [n] → [n -1] is as in the beginning of §6.3.5. Remark 6.20. Let (k, l) = (i, j) ∈ I. The commutative diagram D ij ∩ D kl ∼ / / _ A 1 × D (n-1) fij (k)fij (l) _ D ij ∼ / / A 1 × (E # ) n-1
implies that the following diagram commutes

Ω 1 (n-1) [t] _ ̺ f ij (k)f ij (l) / / k[t ′ , t] D 1 ij Res (1) D ij ∩D kl / / D 0 ij,kl O O
where the upper map the tensor product with k[t] of the analogue of the map from (59), with (n, i, j) replaced by (n -1, f ij (k), f ij (l)) and t replaced by t ′ .

6.3.7. Computation of Ker(Λ 2 (Ω 1 p ) → Γ pp rat ).

Lemma 6.24. The map |Σ : Σ ⊂ Λ 2 (Ω 1 p ) → Ω 2 is injective.

Proof. Let σ ∈ Σ be an element of Ker( : Λ 2 (Ω 1 p ) → Ω 2 ). Then σ can be decomposed as

σ = i<j∈[n]
p(i, j)P (i, j) + i,j,k∈[n], #{i,j,k}=3,j<k α≥0 q(i, j, k, α)Q(i, j, k, α)

+ i<j∈[n] α≥0
q ′ (i, j, α)Q ′ (i, j, α)

+ i<j<k∈[n] α,β≥0
s ′′ (i, j, k, α, β)S ′′ (i, j, k, α, β)

+ i<j<k∈[n] α,β≥0
s ′′′ (i, j, k, α, β)S ′′′ (i, j, k, α, β)

+ i,j,k,l∈[n],#{i,j,k,l}=3, i<j,k<l,i<k α,β≥0
s(i, j, k, l, α, β)S(i, j, k, l, α, β),

where p(i, j), etc., are suitable scalars. Assume that i 0 , j 0 , k 0 , l 0 ∈ [n] are all distinct, and that i 0 < j 0 , k 0 < l 0 , i 0 < k 0 . By Corollary 6.1, ̺ fi 0 j 0 (k0)fi 0 j 0 (l0) • ̺

(2) i0j0 (σ) = 0, so α,β s(i 0 , j 0 , k 0 , l 0 , α, β)

(-t) α (-t ′ ) β α!β! = 0, therefore s(i 0 , j 0 , k 0 , l 0 , α, β) = 0. Assume that i 0 < j 0 < k 0 ∈ [n]. By Corollary 6.1, ̺ i0f i 0 k 0 (j0) • ̺ (2) i0k0 (σ) = 0, so α,β
s ′′′ (i 0 , j 0 , k 0 , α, β) (-t) α (t ′ ) β α!β! = 0, therefore s ′′′ (i 0 , j 0 , k 0 , α, β) = 0. By Corollary 6.1, ̺ i0fi 0 j 0 (k0) • ̺

(2)

i0j0 (σ) = 0, so α,β s ′′ (i 0 , j 0 , k 0 , α, β) (-t) α (-t ′ ) β α!β! = 0, therefore s ′′ (i 0 , j 0 , k 0 , α, β) = 0. It follows that σ = i<j∈[n]
p(i, j)P (i, j)

+ i,j,k∈[n], #{i,j,k}=3,j<k α≥0 q(i, j, k, α)Q(i, j, k, α) + i<j∈[n] α≥0 q ′ (i, j, α)Q ′ (i, j, α). Assume that i 0 < j 0 < k 0 ∈ [n]
. By Lemma 6.18, ̺

(2)

i0j0 (σ) = 0, so α≥0 ( i∈[n]-{i0,j0}
q(i, i 0 , k 0 , α)dp fi 0 j 0 (i) + q ′ (i 0 , j 0 , α)dp i0 )(-

(-t) α α! ) = 0.
As the restriction of the map f i0j0 to [n] -{i 0 , j 0 } is injective and as its image does not contain i 0 , we have q(i, i 0 , k 0 , α) = 0 for any i ∈ [n] -{i 0 , j 0 }, α ≥ 0 and q ′ (i 0 , j 0 , α) = 0 for any α ≥ 0. This implies that σ = i<j∈[n] p(i, j)P (i, j). The relation (σ) = 0 yields i<j∈ [n] p(i, j)dp i dp j = 0.

where

ω c = i∈[n] X i ⊗ dc i , ω p = i∈[n] Y i ⊗ dp i + i<j∈[n],α≥0 T α ij ⊗ ω α ij .
It follows from the construction of I that the map : Λ 2 (Ω 1 ) → I is compatible with the decompositions ( 89) and (90) of both sides. Namely,

(Λ 2 (Ω 1 c )) = Λ 2 (Ω 1 c ), (Ω 1 c ⊗ Ω 1 p ) = Ω 1 c ⊗ Ω 1 p , (Λ 2 (Ω 1 p )) = Σ. On the other hand, d : Ω 1 → I is such that d(Ω 1 c ) = 0, d(Ω 1 p ) ⊂ Ω 1 c ⊗ Ω 1 p . Then dω + 1 2 ω 2 decomposes as dω + 1 2 ω 2 = 1 2 ω 2 c + (dω p + ω p • ω c ) + 1 2 ω 2 p
according to the decomposition of L((Ω 1 ) * ) ⊗I induced by ( 90). The decomposition (90) induces a decomposition of I * , and therefore of the map I * → L((Ω 1 ) * ) as the sum of three maps

(103) Λ 2 (Ω 1 c ) * → L((Ω 1 ) * ), (Ω 1 c ⊗ Ω 1 p ) * → L((Ω 1 ) * ), Σ * → L((Ω 1 ) *
). These maps correspond respectively to 1 2 ω 2 c , dω p + ω c • ω p , and 1 2 ω 2 p . One then has the decomposition (91) where R cc , R cp and R pp , are the images of the maps induced by (103).

One computes

ω 2 c = 1 2 i,j∈[n] [X i , X j ] ⊗ (dc i dc j ) = i<j∈[n]
[X i , X j ] ⊗ (dc i dc j ); since (dc i dc j ) i<j∈[n] is a linearly independent family of Λ 2 (Ω 1 c ), one obtains (92). One computes

dω p + 1 2 ω p • ω c = i<j∈[n],α≥0 T α ij ⊗ d(ω α ij ) + i,j∈[n] [X i , Y j ] ⊗ (dc i dp j ) + 1 2 k∈[n],i<j∈[n],α≥0 [X k , T α ij ] ⊗ (dc k ω α ij ) = i∈[n] ([X i , Y i ] - j|j>i T 0 ij - j|j<i T 0 ji ) ⊗ (dc i dp i ) + i<j∈[n] ([X i , Y j ] + T 0 ij ) ⊗ (dc i dp j ) + i>j∈[n] ([X i , Y j ] + T 0 ji ) ⊗ (dc i dp j ) + i<j∈[n],k =i,j,α≥0 [X k , T α ij ] ⊗ (dc k ω α ij ) + i<j∈[n] ([X i , T α ij ] -T α+1 ij ) ⊗ (dc i ω α ij ) + i<j∈[n] ([X j , T α ij ] + T α+1 ij ) ⊗ (dc j ω α ij ).
As the second factors in the last expressions form a basis of Ω 1 c ⊗ Ω 1 p , one gets (93). One computes

1 2 ω 2 p = 1 2 i,j∈[n] [Y i , Y j ] ⊗ (dp i dp j ) + i<j∈[n],k∈[n],α≥0 [Y k , T α ij ] ⊗ (dp k ω α ij ) + 1 2 i<j∈[n],k<l∈[n],α,β≥0 [T α ij , T β kl ] ⊗ (ω α ij ω β kl )
of relation ( 93) of G to 0. By the second relations of (1) of t 1,n , this morphism takes the first line of relation ( 94) of G to 0. Let i, j, k, l, α, β be as in the second line of relation (94) of G. It follows from relations [x i , t kl ] = [y j , t kl ] = 0 and [x i , y j ] = t ij in t 1,n that [t ij , t kl ] = 0 holds in t 1,n . Moreover, relations [x i , t kl ] = 0, [x k , t ij ] = 0 and [x i , x k ] = 0 imply that relation [(adx i ) α (t ij ), (adx k ) β (t kl )] = 0 holds in t 1,n . This implies that the morphism takes the second line of relation ( 94) of G to 0.

Let i, j, k, α, β be as in the third line of relation ( 94) of G. The following equalities hold in t 1,n :

[(adx i ) α (t ij ), (adx j ) β (t jk )] = [(adx i ) α (t ij ), (-adx k ) β (t jk )] (by [x j + x k , t jk ] = 0 and [x j , x k ] = 0) = (adx i ) α (-adx k ) β ([t ij , t jk ]) (by [x i , t jk ] = [x k , t ij ] = 0) = -(adx i ) α (-adx k ) β ([t ij , t ik ]) (by [t ij , x i + x j ] = [t ij , y k ] = 0 and [x i , y k ] = t ik , [x j , y k ] = t jk , which imply [t ij + t ik , t jk ] = 0) = - α γ=0 α γ [(adx i ) γ (t ij ), (adx i ) α-γ (-adx k ) β (t ik )] (by [x k , t ij ] = 0) = - α γ=0 α γ [(adx i ) γ (t ij ), (adx i ) α+β-γ (t ik )] (by [x i + x k , t ik ] = 0 and [x i , x k ] = 0). (107) 
It follows that the morphism takes the third line of relation ( 94) of G to 0. Let i, j, k, α, β be as in the fourth line of relation (94) of G. Taking into account that identity (107) holds more generally under the assumption #{i, j, k} = 3, exchanging j and k in this identity, and replacing the mute index γ by δ, one gets

[(adx i ) α (t ik ), (adx k ) β (t jk )] = - α δ=0 α δ [(adx i ) δ (t ik ), (adx i ) α+β-δ (t ij )],
which using [x j , x k ] = 0 and [x j + x k , t jk ] = 0 for rewriting the second factor of the first bracket, gives

[(adx i ) α (t ik ), (adx j ) β (t jk )] = (-1) β α δ=0 α δ [(adx i ) α+β-δ (t ij ), (adx i ) δ (t ik )].
It follows that the morphism takes the fourth line of relation ( 94) of G to 0.

Let i, j, k, α be as in the fifth line of relation (94

) of G. Then [y k , (adx i ) α (t ij )] = - α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 (adx i ) α ′ ([t ik , (adx i ) α ′′ (t ij )]) (by [y k , t ij ] = 0 and [y k , x i ] = -t ik ) = - α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 (adx i ) α ′ ([t ik , (-adx j ) α ′′ (t ij )]) (by [x i , x j ] = [x i + x j , t ij ] = 0) = - α ′ ,α ′′ ,α ′′′ ≥0 α ′ +α ′′ +α ′′′ =α-1 α ′ + α ′′ α ′ [(adx i ) α ′ (t ik ), (adx i ) α ′′ (-adx j ) α ′′′ (t ij )] = - α ′ ,α ′′ ,α ′′′ ≥0 α ′ +α ′′ +α ′′′ =α-1 α ′ + α ′′ α ′ [(adx i ) α ′ (t ik ), (adx i ) α ′′ +α ′′′ (t ij )] (by [x i , x j ] = [x i + x j , t ij ] = 0) = - γ,δ≥0 γ+δ=α-1 ( δ α ′′ =0 γ + α ′′ γ )[(adx i ) γ (t ik ), (adx i ) γ (t ij )] (replacing α ′ , α ′ + α ′′ by γ, δ) = - γ,δ≥0 γ+δ=α-1 α δ [(adx i ) γ (t ik ), (adx i ) δ (t ij )] (using δ α ′′ =0 γ + α ′′ γ = γ + δ + 1 γ + 1 = α δ ) (108) 
It follows that the morphism takes the fifth line of relation ( 94) of G to 0 when i < k < j.

Exchanging the roles of γ and δ, equality (108) can be rewritten as follows

[y k , (adx i ) α (t ij )] = γ,δ≥0 γ+δ=α-1 α γ [(adx i ) γ (t ij ), (adx i ) δ (t ik )],
which implies that the morphism takes the fifth line of relation ( 94) of G to 0 when k > j.

One also has

[y k , (adx i ) α (t ij )] = - α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 (adx i ) α ′ ([t ik , (-adx j ) α ′′ (t ij )]) (by the beginning of (108)) = - α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 (adx i ) α ′ (-adx j ) α ′′ ([t ik , t ij ]) (using [x j , t ik ] = 0) = α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 (adx i ) α ′ (-adx j ) α ′′ ([t ki , t kj ]) (using t ik = t ki and [t ik , t ij + t jk ] = 0) = α ′ ,α ′′ ≥0 α ′ +α ′′ =α-1 [(adx i ) α ′ (t ki ), (-adx j ) α ′′ (t kj )] (using [x i , t kj ] = [x j , t ki ] = 0) = γ,δ≥0 γ+δ=α-1 [(-adx k ) γ (t ki ), (adx k ) δ (t kj )] (replacing α ′ , α ′′ by γ, δ and using [x i , x k ] = [x i + x k , t ik ] = 0),
which implies that the morphism takes the fifth line of relation ( 94) of G to 0 when k < j. All this implies that the morphism takes the fifth line of relation ( 94) of G to 0 in all cases.

Let i, j, α be as in the last line of relation (94) of G. One has

[y i + y j , (adx i ) α (t ij )] = α ′ +α ′′ =α-1 (adx i ) α ′ ([- k =i,j t ik , (adx i ) α ′′ -1 (t ij )]) = k =i,j α ′ +α ′′ =α-1 -(adx i ) α ′ (-adx j ) α ′′ ([t ik , t ij ]) = k =i,j Term k , (109) 
where the second equality relies on [y i +y j , x i ] =k =i,j t ik and where Term k is the summand corresponding to k in the last expression. One has

Term k = α ′ +α ′′ =α-1 (adx i ) α ′ (-adx j ) α ′′ ([t ki , t kj ]) = γ+δ=α-1 [(adx i ) γ (t ki ), (-adx j ) δ (t kj )] = γ+δ=α-1 (-1) γ [(adx k ) γ (t ki ), (adx k ) δ (t kj )], (110) 
where the first equality relies on [t ki , t ij + t kj ] = 0 and the second equality is obtained by replacing α ′ , α ′′ by γ, δ and by using [x j , t ki ] = [x i , t kj ] = 0.

One also has

Term k = α ′ ,α ′′ ,α ′′′ ≥0 α ′ +α ′′ +α ′′′ =α-1 - α ′ + α ′′ α ′ [(adx i ) α ′ (t ik ), (adx i ) α ′′ (-adx j ) α ′′′ (t ij )] (using [x j , t ik ] = 0) = γ,δ≥0 γ+δ=α-1 δ α ′′ =0 - γ + α ′′ γ [(adx i ) γ (t ik ), (adx i ) δ (t ij )] (renaming α ′ , α ′′ + α ′′′ as γ, δ) = γ,δ≥0 γ+δ=α-1 - α δ [(adx i ) γ (t ik ), (adx i ) δ (t ij )] (using δ α ′′ =0 γ + α ′′ γ = γ + δ + 1 γ + 1 = α δ ), (111) which implies 
(112) Term k = γ,δ≥0 γ+δ=α-1 α γ [(adx i ) γ (t ij ), (adx i ) δ (t ik )].
Substituting in (109) the identities (110) when k < i, (111) when i < k < j and (112) when k > j, one sees that the morphism takes the last line of line of relation ( 94) of G to 0. All this proves Lemma 7.5.

Combining Lemmas 7.4 and 7.5, one obtains:

Proposition 7.1. Formula (106) gives rise to an isomorphism of Lie algebras G → t C 1,n .

8. Elements of a description of VBFC(X, D) unip (equiv. (e))

8.1. Reduction of a space of forms to Σ log . Let g be a finite dimensional nilpotent Lie algebra over C, G the corresponding group. Let X be a smooth complex algebraic variety with a divisor D.

Recall also that a 1-form α on X -D is called logarithmic at D if both α and dα have simple poles at D (see §1.2.3). This is equivalent to saying that if D is locally defined by the equation z = 0 near its generic point then α = f dz z + β, where f is a regular function and β a regular 1-form.

Let ω ∈ Ω 1 (X -D, g) be a 1-form satisfying the Maurer-Cartan equation

dω + 1 2 ω 2 = 0
where ω 2 is defined using (102). In other words, d+ω is a flat connection on the trivial G-bundle on X -D.

Lemma 8.1. If ω has a first order pole at D then it is logarithmic.

Proof. Let z, x 1 , ..., x n be local coordinates such that D is locally defined by z = 0 near a smooth point. Let ω = f dz z + i gi z dx i , where f, g i are regular functions. Our job is to show that g i vanish at z = 0.

Let ψ = zω. Then ψ = f dz + i g i dx i , a regular 1-form. We have dψ = dz ∧ ω + zdω. Thus from the Maurer-Cartan equation we have that

zdψ = dz ∧ ψ - 1 2 ψ 2 .
Thus, dz ∧ ψ -1 2 ψ 2 vanishes coefficientwise at z = 0. In particular, for the coefficient of dz ∧ dx i we get that g i -[f, g i ] vanishes at z = 0. In other words, if g i0 , f 0 are restrictions of g i , f to z = 0, then

g i0 = [f 0 , g i0 ].
But f 0 ∈ g, which is a nilpotent Lie algebra. Thus, g i0 = 0, as desired.

Now assume that D = ∪ N j=1 D j is a union of smooth irreducible divisors, intersecting pairwise transversally.

Lemma 8.2. Let ω ∈ Ω 1 log (X -D). Then for any 1 ≤ m ≤ N , the residue of ω at D m (originally defined generically on D m ) extends to a regular function on the whole D m .

Proof. For each m, let f m0 be the residue of ω at D m . This is a regular function on D m -∪ j:j =m D j .

Let p ∈ D m be a generic point and z, x 1 , ..., x n be local coordinates near p such that D m is locally defined by z = 0. Using that ω ∈ Ω 1 log (X -D), on a small ball B p around p one may write ω as f dz z + β, where β is regular. Let β 0 be the restriction of β to B p ∩ D m . Then β 0 is a regular 1-form. Moreover, it is easy to check that β 0 is canonically attached to ω, i.e., it does not depend on the choice of coordinates and the representation ω = f dz z + β. Therefore, β 0 is defined globally on D m -∪ i =m D i .

Moreover, the Maurer-Cartan equation for ω implies the Maurer-Cartan equation for β 0 , i.e., d + β 0 is a flat connection on the trivial bundle over D m -∪ i =m D i . Namely, d + β 0 is the "restriction" of the flat connection d + ω to the pole divisor D m . Concretely, if D ε m is a perturbation of D m (defined locally near some point) then d + β 0 is the limit of the restriction of d + ω to D ε m as ε → 0. Since the connection d + ω has first order poles, it follows from the work of Deligne ( [Del]) that so does the connection d + β 0 . Indeed, pick q ∈ D m ∩ D i for some i, and let us work on a small ball B q around q. Let C be a generic smooth curve in D m ∩ B q passing through q. We need to show that the restriction of d + β 0 to C has a first order pole at q. To this end, consider a generic perturbation C ε of C in X, still passing through q (i.e., C ε is not contained in D m ). Then the restriction of d + ω to C ε has a pole only at q inside B q (because of pairwise transversality of D j ). Moreover, this pole is simple, since by [Del], flat sections of d + ω| Cε have logarithmic growth near q (as ω has first order poles). Hence, taking the limit ε → 0, we find that d + β 0 | C has a simple pole at q, as claimed.

Relation with the universal KZB connection

Let us fix τ ∈ H. In §3.8, we attach to τ a principal bundle with flat connection over C n (trivial exp( tC 1,n )-bundle, d + A KZB ), a principal bundle with flat connection over (E # τ ) n , (trivial exp(G)-bundle, d + ω), and maps C 2n → C n , C 2n → (E # τ ) n . We will construct an isomorphism between the lifts to C 2n of these two pairs of bundles with flat connection, thereby proving Theorem 3.1. 

X i • dc i + i∈[n] Y i • dp i + i<j∈[n],α≥0 T α ij [ θ(p ij + z|τ ) θ(z|τ )θ(p ij |τ ) - 1 z e -cijz dp ij |z α ]
where (p 1 , c 1 , . . . , p n , c n ) are the standard coordinates on C n . 9.2. The universal KZB system. The corresponding configuration space for E τ is

C(E τ , n) := {(p 1 , . . . , p n ) ∈ E τ |p i = p j for i < j ∈ [n]}.
In [CEE], we defined a pair (P KZB , ∇ KZB ) of a principal exp( tC where p ij := p i -p j ; the expression under the second sum sign should be computed as α≥0 F α (p ij )(adx i ) α (y j )dp i , where the function (p, x) → θ(p+x|τ )x θ(p|τ )θ(x|τ ) -1 is viewed as formal in x and meromorphic in p, expanding as α≥0 F α (p)x α . Note also that the function F 0 (p) in this expansion is 0. Therefore

A KZB = - i∈[n] -y i + j|j∈[n],j =i θ(p ij + adx i |τ ) θ(p ij |τ )θ(adx i |τ ) - 1 adx i (t ij ) dp i ,
with the same conventions as above, based on the fact that (p, x) → θ(p+x|τ ) θ(p|τ )θ(x|τ ) -1 x =: g(p, x) may be viewed as formal in x and meromorphic in p. As g(p, x) = g(-p, -x), one has 

if i = j ∈ [n],
x i • dc i - i<j∈[n],α≥0 θ(p ij + adx i |τ ) θ(adx i |τ )θ(p ij |τ ) - 1 adx i (t ij ) = d + A KZB .
We have proved:

Theorem 9.1. The map C 2n → exp(G), (p 1 , . . . , c n ) → e i∈ [n] cixi sets up an isomorphism between the following principal bundles with flat connections over C 2n :

• the pull-back under C 2n → C n → (E τ ) n of (P KZB , ∇ KZB );

• the pull-back under C 2n → (E # τ ) n of ((E # τ ) n × exp(G), d + ω) given by Lemma 3.19.
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 3 Deligne extension (equiv. (c)). In this §, we assume that Y is a smooth quasiprojective k-variety and that D ⊂ Y is a NCD. Let τ : C/Z → C be a lift of the canonical projection C → C/Z. Let VBFC(Y -D) unip.mon. be the full subcategory of VBFC(Y -D) corresponding to the vector bundles with flat connection over Y -D for which the monodromy around each component of D is unipotent. Let VBFC(Y, D) nilp.res. (resp., VBFC(Y, D) τ ) be the full subcategory of VBFC(Y, D) corresponding to the vector bundles over Y with flat connection on Y -D with at most simple poles at D, whose residue at each component of D is nilpotent (resp., has spectrum contained in the image of τ ). Contrary to VBFC(Y, D) τ , the categories VBFC(Y, D) nilp.res. and VBFC(Y -D) unip.mon. are tensor subcategories of their ambient categories. We decorate by the superscript an the analytic analogues of these categories. Restriction induces a tensor functor (20) res : VBFC(Y, D) an → VBFC(Y -D) an , which further restricts to a functor res : VBFC(Y, D) an nilp.res. → VBFC(Y -D) an unip.mon. . In [Del], Prop. 5.2, p. 91, Deligne constructed a tensor functor (21) can.ext. : VBFC(Y -D) an unip.mon. → VBFC(Y, D) an nilp.res.(canonical extension), such that res • can.ext. = id. This functor is extended in[Del], Prop. 5.4, to a functor can.ext. : VBFC(Y -D) an → VBFC(Y, D) an τ such that res • can.ext. = id. In [Bri], Cor. 2, it is proved that res is a category equivalence. It follows that res is a (tensor) category equivalence. Taking unipotent parts, one obtains: Lemma 3.6. If Y is a quasiprojective k-variety and if D ⊂ Y is a NCD, then there is an equivalence of tensor categories VBFC(Y -D) an unip ≃ VBFC(Y, D) an unip Remark 3.7. The category VBFC(Y, D) unip is "much smaller" than VBFC(Y, D) unip.mon. . For example, if

  Vec(Y, D) (equiv. (e)). 3.5.1. A tensor category Vec(Y, D). Let Y be a quasiprojective k-variety such that H 0 (Y, O Y ) = k and H 1 (Y, O Y ) = 0, and let D ⊂ Y be a divisor. Let Vec(Y, D) be the following category:

  3.5.3. Full subcategories of Vec(X, D). Let us come back to the framework of §3.5.1, so Y is a projective k-variety and D ⊂ Y is a divisor. Let Σ ⊂ Γ(Y, Ω 1 Y (D)) be a vector subspace. Define Vec Σ (Y, D) as the full subcategory of Vec(Y, D), where the objects are the pairs (V, ω) as in the definition of Vec(Y, D), such that ω ∈ Σ ⊗ End(V ). Then: Lemma 3.12. Let Y be a projective k-variety, let D ⊂ Y be a divisor, and let Σ ⊂ Γ(Y, Ω 1 Y (D)) be a vector subspace. Then Vec Σ (Y, D) is a tensor subcategory of Vec(Y, D). 3.5.4. Equality Vec(Y, D) = Vec Σ log (Y, D). Let (D i ) i∈I be the components of D, so D = ∪ i∈I D i ; we assume that each divisor D i is smooth and that these divisors intersect pairwise transversally. Let Σ log ⊂ Γ(Y, Ω 1 Y (D)) be the subspace of differentials α defined by the following conditions: a) α is a logarithmic form with poles only at D (see §1.2.3); b) for each i ∈ I, res Di (α) is regular of the whole of D i . Lemmas 8.1 and 8.2 from §8 imply: Lemma 3.13. Let Y be a projective k-variety, let D ⊂ Y be a divisor, then Vec(Y, D) = Vec Σ log (Y, D). Remark 3.14. There are bundle injections Ω 1 Y

  3.6. A Lie coalgebra attached to a pair (Y, D) (equiv. (f )). Let again (Y, D) be a pair of a quasiprojective k-variety and a divisor D ⊂ Y , and let Σ ⊂ Γ(Y, Ω 1 Y (D)) be a vector subspace. 3.6.1. Relation between Vec Σ (Y, D) and a category of comodules over a Lie coalgebra. The composed map Σ

  where ... is the regular part and A im is the residue of the connection at D im . Let d m be the degree of intersection of D im with C, i.e. the order of vanishing of z m | C at P . Then it is easy to see that the connection on C has a simple pole at P with residue A = m d m A im . (In fact, if C is generic, then d m = 1.) Since the connection on W is unipotent, A im are strictly upper triangular in the same basis. Hence, so is A. Thus A is nilpotent, as desired.
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 1 A flat connection on (E # τ ) n . Recall from (101) the element ω ∈ Γ rat ((E # τ ) n , Ω 1 (E # τ ) n ) ⊗G.It follows from Lemma 3.19 that d + ω is a flat connection on the trivial bundle over (E # τ ) n with group exp(G). It follows from (101) and (57) that the lift to C 2n of ω is ω = i∈[n] 

  1,n )-bundle P KZB over C(E τ , n) and of a flat connection ∇ KZB over it. The projection C → E τ gives rise to a fibered productC(E τ , n) := C(E τ , n) × (Eτ ) n C n . Then C(E τ , n) = {(p 1 , . . . , p n ) ∈ C n |p i -p j / ∈ Z + τ Z for i < j ∈ [n]}.There is a natural projection C(E τ , n)p → C(E τ , n) with covering group Z 2n .There is a natural isomorphism of p * P KZB with the trivial principal bundle over C(E τ , n) with group exp( tC 1,n ). The pull-back p * ∇ KZB of the KZB connection over C(E τ , n) is then the operatord + A KZB , where A KZB ∈ Γ( C(E τ , n), Ω 1 C(Eτ ,n) ⊗ tC 1,n ) is given by A KZB := -i∈[n] -y i + j|j∈[n],j =i θ(p ij + adx i |τ )adx i θ(p ij |τ )θ(adx i |τ ) -1 (y j ) dp i ,

  Computation of G in the context of §2.2 (equiv. (g)). Recall the Lie algebra t C Lemma 3.20. There is an isomorphism of graded Lie algebras G ≃ t C 1,n . 3.8. Relation with the universal KZB connection. For τ ∈ H, set E τ

	1,n
	from the Introduction. In §7 (Prop. 7.1), we prove:

  (p ij + adx i |τ ) θ(p ij |τ )θ(adx i |τ ) -1 adx i (t ij ) • dp ij .9.3. Relation between the two systems. The image of ω under the isomorphismt 1,n ≃ G -cijadxi θ(p ij + adx i |τ ) θ(adx i |τ )θ(p ij |τ ) -1 adx i (t ij )dp ijThe expression (p 1 , . . . , c n ) → e i∈[n] cixi defines a holomorphic map C 2n → exp(G). One may therefore conjugate d + im(ω) by this map. One hase i∈[n] cixi de -i∈[n] cixi = d -i∈[n]x i • dc i ,and e i∈[n] cixi t ij e -i∈[n] cixi = e cijadxi (t ij ), moreover e i∈[n] cixi commutes with all the x k , k ∈ [n], so e i∈[n] cixi (d + im(ω))e -i∈[n] cixi = d +

	so	A KZB :=	i∈[n]	y i dp i -	1 2	i =j∈[n]
	is					
	im(ω) =	i∈[n]	x i • dc i +	i∈[n]	y i • dp i -	i<j∈[n],α≥0
							-	1 adx j	(t ij ) = 0,

then θ(p ij + adx i |τ ) θ(p ij |τ )θ(adx i |τ ) -1 adx i (t ij ) + θ(p ji + adx j |τ ) θ(p ji |τ )θ(adx j |τ ) θe i∈[n]
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Basic material and constructions

In this paper, we work over an algebraically closed field k of characteristic 0.

1.1. Categories. In this §, we attach, to each tensor functor C → D, a tensor functor C unip → D unip . We will denote by Vec the tensor category of finite dimensional k-vector spaces.

Operations on

A and A arising from the group laws of E and E # . Let (E, 0) be given by the model y 2 = 4x 3 -g 2 x -g 3 and the point at infinity, so that A = k[E -{0}] is as in (27).

Lemma 5.9. The addition law on (E, 0) gives rise to a coproduct morphism

x (1) -x (2) ], x → -x (1) -x (2) + 1 4 y (1) -y (2)

x (1) -x (2) 2 , y → -1 2 (y (1) + y (2) ) + 3 2 (x (1) + x (2) ) y (1) -y (2)

x (1) -x (2) -

x (1) -x (2) 3

, where a (1) := a ⊗ 1, a (2) := 1 ⊗ a for a = x, y.

Proof. The addition E × E → E is given by ((x P , y P ), (x Q , y Q )) → (x R , y R ), where

Recall that A := k[E # -π -1 (0)] is given by (36).

Lemma 5.10. The addition law on E # gives rise to the coproduct morphism

x (1) -x (2) ], extending ∆ A by c → c(1) + c(2) + y (1) -y (2)

x (1) -x (2) . Proof. This follows from the description of this addition law in §5.2.2.

We now describe the compatibility of these morphisms with A → k((p)), A → k[t]((p)).

Lemma 5.11. There are well-defined morphisms

x (1) → ℘ E,ω (p), x (2) → ℘ E,ω (p ′ ), y (1) → ℘ ′ E,ω (p), y (2) → ℘ ′ E,ω (p ′ ), y (1) -y (2) x (1) -x (2) →

and

Proof. The expansion A → k((p)) takes x, y to series 1/p 2 + n≥0,even a n p n and -2/p 3 + + n≥0,odd b n p n . Then the ratio y (1) -y (2)

x (1) -x (2) expands as (-2/p 3 + 2/p ′3 ) + n≥0,odd b n (p n -p ′n )

(1/p 2 -1/p ′2 ) + n≥0,even a n (p n -p ′n )

The isomorphisms Γ

(in the analytic context, t = c ij , see Remark 5.16).

Definition 6.5. For α ≥ 0 and (i, j) ∈ I, define ω α ij as the image of ω α under the composed map

Lemma 6.6. The map µ ij in ( 53) is surjective.

Proof. One checks that the image of ω α ij by the residue map Γ(X, Ω 1

(see §6.2.1).

Lemma 6.7. The family

It follows from the definition of ω α ij and from Lemma 6.7 that (56

is surjective. Moreover, the image of (ω α ij ) α≥0 under the residue map is a linearly independent family in Γ(D ij , O Dij ), and the family (

) is also linearly independent, which implies that family (56) is linearly independent. All this proves the result.

It follows from the definition of ω

where the notation is as in § §5.3.3, 5.3.4 (identity in Γ rat ((

Remark 6.9. Assume that k = C and a uniformization E an ≃ C/(Z + τ Z) as in §5.2.4 (i.e., such that dx/y ↔ dp) is fixed. Then a uniformization of (E

and

and are the images of the elements dc i , dp i . 6.2.3. Computation of (i,j)∈I Γ(X, Ω 1 X (logD ij )). Recall that for each (i, j) ∈ I, Γ(X, Ω 1 X (logD ij )) is a vector subspace of Γ rat (X, Ω 1 X ). Then according to §3.5.5,

is the sum of these subspaces. It follows from Lemma 6.8 that the following family (58)

lies in, and spans, this vector space. According to §1.3.2, the residue along D ij induces a linear map Res

(1) 55)), we obtain a linear map (59)

Lemma 6.10. The map ̺ ij is given by

Proof. This follows from the fact that ̺ ij is the sum of the residue maps computed in §6.2.2, from (50), and from the fact that if (i, j) = (i ′ , j ′ ) ∈ I, then the residue along D ij of ω α i ′ j ′ is zero.

Lemma 6.11. The family (58) is a basis of

Proof. Lemma 6.10 implies that the family (ω α ij ) (i,j)∈I,α≥0 maps to a basis under the map

The remaining elements in family (58) form a basis in the kernel Γ(X, Ω 1 X ) of this map. It follows that the family (58) is also linearly independent. Recall that

). Lemma 6.11 then implies: 6.3.2. Construction of a subspace K of Ker(Λ 2 (Ω 1 p ) → Γ pp rat ). By Lemma 6.12, a basis of Ω 1 p is given by the family

One derives from there the following basis of Λ 2 (Ω 1 p ): ( 68)

where ∧ is the product in the algebra Λ • (Ω 1 p ).

Definition 6.14. K ⊂ Λ 2 (Ω 1 p ) is the subspace spanned by ( 77)

The wedge product of forms defines a linear map Λ

, where is the operation introduced in §1.3.2, and

The product of identity ( 48) by dp ij dp ik expresses as the statement that the element

induced by (67). As this element is equal to α,β≥0 T (i, j, k, α, β)z α u β , this implies that each

) be the linear span of elements (68) (resp., ( 69), ( 70), ( 71), ( 72), ( 73), ( 74), ( 75), ( 76)); the notation of these vector spaces has been chosen in agreement with the notation for their generating sets, the index indicating the number of free Latin indices.

According to the beginning of §6.3.2, the space Λ 2 (Ω 1 p ) decomposes as a direct sum Λ

where Y is the image of the linear map

), and Z is the image of the linear map

We recall that if φ : X → Y is a linear map between the vector spaces X and Y , then the graph

The spaces Y and Z are therefore the graphs of the linear maps ỹ :

obtained from y and z by composition with the direct sum of all the summands but the first of their target spaces. Lemma 6.16. Let A, B, C, D be vector spaces and f :

One similarly has a direct sum decomposition

The result follows from the combination of this decomposition with (79).

Applying this lemma with

. Taking the direct sum with P 2 ⊕ S 4 ⊕ S 2 and distributing the summands, we obtain

). This implies: Lemma 6.17.

α, β ≥ 0.

6.3.4. Residue maps. According to §1.3.2, there exists for any (i, j) ∈ I a linear map (86) Res

(2)

and for any (k, l) = (i, j) ∈ I, a linear map

Res

(1)

Combining diagram (88) with the above diagram, one gets, for any (i, j) = (k, l) ∈ I, a commutative diagram

which gives an interpretation of the map in Corollary 6.1. 6.3.6. Compositions of residue maps. Computation yields: Lemma 6.21. Assume that i 0 , j 0 , k 0 , l 0 ∈ [n] are all distinct, such that i 0 < j 0 , k 0 < l 0 , i 0 < k 0 . Then

3 ⊕ S ′′′ 3 to 0, and its restriction to S 4 is given by S(i, j, k, l, α, β) →

if (i, j, k, l) = (i 0 , j 0 , k 0 , l 0 ), 0 else, for distinct i, j, k, l ∈ [n], such that i < j, k < l, i < k, and α, β ≥ 0. Lemma 6.22. Assume that i 0 < j

3 ⊕ S 4 to 0, and its restriction to S ′′′ 3 is given by

3 ⊕ S 4 to 0, and its restriction to S ′′ 3 is given by

As the family (dp i dp j ) is linearly independent over k in Ω 2 , we obtain p(i, j) = 0 for any i, j, therefore σ = 0. Lemma 6.25. The kernel of : Λ 2 (Ω 1 p ) → Ω 2 , and therefore also of the map

→ Ω 2 and that K ⊂ Ker( ). The result now follows from Lemma 6.24.

Combining this result with those from §6.3.1, we obtain: Proposition 6.1. The kernel of the wedge product map

7. Presentation and computation of the Lie algebra G (equivs. (f) and (g))

7.1. Grading on Ω 1 . Taking into account Lemma 6.11 which makes explicit a basis of Ω 1 , we may define a grading on

7.2.

A graded space I. The linear map : Λ 2 (Ω 1 ) → Ω 2 has been defined in §1.3.2 and its kernel has been identified with K (see Def. 6.14) in Lemma 6.25. The grading of Ω 1 from §7.1 induces a grading on Λ 2 (Ω 1 ). The generators of K ⊂ Λ 2 (Ω 1 ) are homogeneous for this grading: R(i, j, α) is pure of degree α + 1, and S(i, j, α, β) and T (i, j, k, α, β) are pure of degree α + β + 2. This implies that K is a graded subspace of Λ 2 (Ω 1 ). It follows that the quotient space Λ 2 (Ω 1 )/K inherits a grading from Λ 2 (Ω 1 ). We make the following definition:

As I is isomorphic to Λ 2 (Ω 1 )/K, one defines a grading on I by transport of structure. Then the composed map Λ 2 (Ω 1 ) → Λ 2 (Ω 1 )/K ≃ I is compatible with the gradings. Therefore: Lemma 7.2. The space I is equipped with a grading which is compatible with the map

p ) and that a complement Σ of K in Λ 2 (Ω 1 p ) has been constructed in Lemma 6.17. It follows that there is an isomorphism

One derives from there:

the images under Λ 2 (Ω 1 )/K ≃ I of the classes in Λ 2 (Ω 1 )/K of the elements of the family

(S(i, j, k, l, α, β)) i<j,k<l,i<k∈[n],#{i,j,k,l}=4,α,β≥0 , (see ( 80)-( 85)) of elements in Λ 2 (Ω 1 ) form a graded basis of I.

Computation of the map d

: Ω 1 → Ω 2 . The map d : Ω 1 → Ω 2 may be computed as follows:

where dc ij := dc i -dc j , dp ij := dp i -dp j .

7.4. Grading on the coalgebra C and the Lie coalgebra C. It follows from §7.3 that the image of d is contained in I, and that the resulting corestricted map d : Ω 1 → I is graded.

Recall also that : Λ 2 (Ω 1 ) → Ω 2 corestricts to a graded map : Λ 2 (Ω 1 ) → I. All this implies that the map µ :

). This implies that the bialgebra

Since Ω 1 has finite dimensional graded parts, so does C. It follows that the Lie coalgebra C := Coprim(C) is also graded with finite dimensional graded parts. We denote by G the graded dual Lie algebra. 7.5. Computation of the Lie algebra G. Denote by V * the graded dual of a graded vector space V ; so for

Denote also by L the free Lie algebra functor and by L k is degree k component. Then G may be presented as the quotient

where

and (R) is the ideal generated by R.

We now compute the space R. Let

be the basis of (Ω 1 ) * dual to the basis (58) of Ω 1 .

Lemma 7.3. The space R decomposes as

where

where

Proof. Set ( 101)

this is the canonical element of (Ω 1 ) * ⊗Ω 1 . For any Lie algebra (g, [, ] g ), define the product

Then dω + 1 2 ω 2 is an element of L((Ω 1 ) * ) ⊗I, and R is the image of the map I * → L((Ω 1 ) * ) induced by this element. So modding out by (R) corresponds to formally imposing the relation dω + 1 2 ω 2 = 0. Recall that Ω 1 decomposes as

This induces a decomposition of (Ω 1 ) * ⊗Ω 1 . The corresponding decomposition of ω is

π(i, j) ⊗ P (i, j)

σ(i, j, k, l, α, β) ⊗ S(i, j, k, l, α, β)

σ ′′′ (i, j, k, α, β) ⊗ S ′′′ (i, j, k, α, β)

where π(i, j), σ(i, j, k, l, α, β), σ ′′ (i, j, k, α, β), σ ′′′ (i, j, k, α, β), κ(k, i, j, α), and κ ′ (i, j, α) are given by ( 95), ( 96), ( 97), ( 98), ( 99), (100).

As the second factors in (104) form a basis of Σ, one gets (94).

7.6. ), where R = R pp + R cp + R pp , and R pp , R cp , R pp are given by ( 92), ( 93), (94).

Recall that t 1,n is the Lie algebra with generators

), and relations (1), ( 2), ( 3), ( 4), (5).

Lemma 7.4. There is a unique morphism of Lie algebras t 1,n → G, given by (105)

Proof. There is a unique morphism from the free Lie algebra with generators x i , y i (i ∈ All this implies that the above morphism factors through a morphism t 1,n → G.

Lemma 7.5. There is a unique Lie algebra morphism G → t 1,n , such that

There is a unique morphism from the free Lie algebra with generators X 

we see that this morphism takes the third line of relation ( 93) of G to 0. By the definitions of the images of X i and T α ij , we see that this morphism takes the fourth line of relation ( 93) of G to 0. Combining the definitions of the images of X j and T α ij with the relations [x i , x j ] = 0 and [x i + x j , t ij ] = 0 of t 1,n , we see that this morphism takes the last line Also, f m0 is a flat section of the adjoint bundle for the trivial G-bundle with the connection d + β 0 , i.e., df m0 + [β 0 , f m0 ] = 0. Since G is unipotent and β 0 has simple poles, this means that f m0 has logarithmic growth when approaching D m ∩(∪ i|i =n D i ). Hence f m0 cannot have a pole at D m ∩(∪ i|i =n D i ), i.e., it extends to a regular function on D m , as desired.

Remark 8.3. One can also prove that ω can locally be written as j ω j , where ω j is a logarithmic form with pole only on D j . Indeed, according to Lemma 8.2, locally near each point p ∈ D j we may extend f j0 to a regular function f j on a neighborhood of p. Also near p the divisor D j may be defined by the equation z j = 0. Then since ω ∈ Ω 1 log (X -D), ωj:p∈Dj f j dzj zj is regular near p, which implies the required statement.

8.2.

Equality Ω 1 = Σ log . Recall that Ω 1 is the subspace i∈I Γ(X, Ω 1 X (logD i ))

of Γ rat (X, Ω 1 X (D)). On the other hand, Σ log is the subspace {α ∈ Γ rat (X, Ω 1 X (D))|α ∈ Γ(X, Ω 1 X (logD)) and ∀i ∈ I, res Di (α) ∈ Γ(D i , O Di )} of Γ rat (X, Ω 1 X (D)). Lemma 8.4. One has Ω 1 = Σ log .

Proof. For each i ∈ I, one has the inclusion Γ(X, Ω 1 X (logD i )) ⊂ Γ(X, Ω 1 X (logD)) and the map res Di : Γ(X, Ω 1 X (logD)) → Γ(D i -(∪ j|j =i D j ), O Di ) maps Γ(X, Ω 1 X (logD j )) to 0 if j = i, and to Γ(D i , O Di ) if j = i. All this implies that

It follows from the definition of Σ log that this space fits in an exact sequence 0 → Γ(X, Ω 1 X ) → Σ log

In §6.2.2, it is proved that for each i ∈ I, the map res Di : Γ(X, Ω 1 X (logD i )) → Γ(D i , O Di ) is surjective (Lemma 6.6). Together with the fact that the restriction of res Di to Γ(D j , O Dj ) is 0 if i = j, this implies that the composed map

is surjective.

On the other hand, we also have an inclusion Γ(X, Ω 1 X ) ⊂ Ω 1 . We have therefore a commutative diagram Σ log

where the map a is surjective. It follows that the map ⊕ i∈I res Di is surjective as well and that the map Ω 1 ֒→ Σ log is an isomorphism. This proves the result.