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Abstract. Since 1997 there has been a steady stream of advances for the
maximum disjoint paths problem. Achieving tractable results has usu-
ally required focusing on relaxations such as: (i) to allow some bounded
edge congestion in solutions, (ii) to only consider the unit weight (cardi-
nality) setting, (iii) to only require fractional routability of the selected
demands (the all-or-nothing flow setting). For the general form (no con-
gestion, general weights, integral routing) of edge-disjoint paths (edp)
even the case of unit capacity trees which are stars generalizes the max-
imum matching problem for which Edmonds provided an exact algo-
rithm. For general capacitated trees, Garg, Vazirani, Yannakakis showed
the problem is APX-Hard and Chekuri, Mydlarz, Shepherd provided a
4-approximation. This is essentially the only setting where a constant
approximation is known for the general form of edp. We extend their
result by giving a constant-factor approximation algorithm for general-
form edp in outerplanar graphs. A key component for the algorithm is to
find a single-tree O(1) cut approximator for outerplanar graphs. Previ-
ously O(1) cut approximators were only known via distributions on trees
and these were based implicitly on the results of Gupta, Newman, Rabi-
novich and Sinclair for distance tree embeddings combined with results
of Anderson and Feige.

? work partially supported by ANR project DISTANCIA (ANR-17-CE40-0015).



2 G. Naves et al.

1 Introduction

The past two decades have seen numerous advances to the approximability of the
maximum disjoint paths problem (edp) since the seminal paper [17]. An instance
of edp consists of a (directed or undirected) “supply” graph G = (V,E) and a
collection of k requests (aka demands). Each request consists of a pair of nodes
si, ti ∈ V . These are sometimes viewed as a demand graph H = (V (G), {siti :
i ∈ [k]}). A subset S of the requests is called routable if there exist edge-disjoint
paths {Pi : i ∈ S} such that Pi has endpoints si, ti for each i. We may also be
given a profit wi associated with each request and the goal is to find a routable
subset S which maximizes w(S) =

∑
i∈S wi. The cardinality version is where we

have unit weights wi ≡ 1.
For directed graphs it is known [20] that there is no O(n0.5−ε) approxima-

tion, for any ε > 0 under the assumption P 6= NP . Subsequently, research shifted
to undirected graphs and two relaxed models. First, in the all-or-nothing flow
model (anf) the notion of routability is relaxed. A subset S is called routable
if there is a feasible (fractional) multiflow which satisfies each request in S. In
[6] a polylogarithmic approximation is given for anf. Second, in the congestion
model [24] one is allowed to increase the capacity of each edge in G by some
constant factor. Two streams of results ensued. For general graphs, a polylog-
arithmic approximation is ultimately provided [10, 11, 5] with edge congestion
2. For planar graphs, a constant factor approximation is given [31, 4] with edge
congestion 2. There is also an f(g)-factor approximation for bounded genus g
graphs with congestion 3.

As far as we know, the only congestion 1 results known for either maximum
anf or edp are as follows; all of these apply only to the cardinality version.
In [23], a constant factor approximation is given for anf in planar graphs and
for treewidth k graphs there is an f(k)-approximation for edp [9]. More recent
results include a constant-factor approximation in the fully planar case where
G+H is planar [22, 16]. In the weighted regime, there is a factor 4 approximation
for edp in capacitated trees [8]. We remark that this problem for unit capacity
“stars” already generalizes the maximum weight matching problem in general
graphs. Moreover, inapproximability bounds for edp in planar graphs are almost
polynomial [12]. This lends interest to how far one can push beyond trees. Our
main contribution to the theory of maximum throughput flows is the following
result which is the first generalization of the (weighted) edp result for trees [8],
modulo a larger implicit constant of 224.

Theorem 1. There is a polynomial-time 224 approximation algorithm for the
maximum weight anf and edp problems for capacitated outerplanar graphs.

It is natural to try to prove this by reducing the problem in outerplanar
graphs to trees and then use [8]. A promising approach is to use results of [18] –
an O(1) distance tree embedding for outerplanar graphs – and a transfer theorem
[3, 29] which proves a general equivalence between distance and capacity embed-
dings. Combined, these results imply that there is a probabilistic embedding
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into trees which approximates cut capacity in outerplanar graphs with constant
congestion. One could then try to mimic the success of using low-distortion (dis-
tance) tree embeddings to approximate minimum cost network design problems.
There is an issue with this approach however. Suppose we have a distribution
on trees Ti which approximates cut capacity in expectation. We then apply a
known edp algorithm which outputs a subset of requests Si which are routable
in each Ti. While the tree embedding guarantees that the convex combination
of Si’s satisfies the cut condition in G, it may be that no single Si obeys the cut
condition, even approximately. Moreover, this is also a problem for anf. This
problem persists even if we ensure that each Ti is dominated (or dominating) by
G. For instance, if capacity in each Ti is upper bounded by capacity in G, then
in expectation the Ti’s will cover at least some constant fraction of G. There is
no guarantee, however, that any of the Si’s would as well.

We overcome these issues by computing a single tree which approximates
the cuts in G – see Theorem 3. Our algorithmic proof is heavily inspired by work
of Gupta [19] which gives a method for eliminating Steiner nodes in probabilistic
(distance) tree embeddings for general graphs.

It turns out that having a single-tree is not enough for us and we need
additional technical properties to apply the algorithm from [8]. First, our single
tree T should have integer capacities and be non-expansive, i.e., û(δT (S)) ≤
u(δG(S)) (where û/u are the edge capacities in T/G and δ is used to denote
the edges in the cut induced by S). To see why it is useful that T is an under-
estimator of G’s cut capacity, consider the classical grid example of [17]. They
give an instance with a set of

√
n requests which satisfy the cut condition in

2 ·G, but for which one can only route a single request in the capacity of G.
If our tree is an under-estimator, then we can ultimately obtain a “large”

weight subset of requests satisfying the cut condition in G itself. However, even
this is not generally sufficient for (integral) routability. For a multiflow instance
G/H one normally also requires that G+H is Eulerian, even for easy instances
such as when G is a 4-cycle. The final ingredient we use is that our single tree T
is actually a subtree of G which allows us to invoke the following result – see
Section 3.1.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).
Let H denote a demand graph such that G + H = (V (G), E(G) ∪ E(H)) is
outerplanar. If G,H satisfies the cut condition, then H is routable in G, and an
integral routing can be found in polynomial-time.

The key point here is that we can avoid the usual parity condition needed, such
as in [26, 32, 15]. We are not presently aware of the above result’s existence in
the literature.

1.1 A Single-Subtree Cut Sparsifier and Related Results

Our main cut approximation theorem is the following which may be of indepen-
dent interest.
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Theorem 3. There is a polynomial-time algorithm that, for any connected out-
erplanar graph G = (V,E) with integer edge capacities u(e) > 0, finds a subtree
T of G with integer edge weights û(e) ≥ 0 such that

1

14
u(δG(X)) ≤ û(δT (X)) ≤ u(δG(X)) for each proper subset X ⊆ V .

We discuss some connections of this result to prior work on sparsifiers and
metric embeddings. Celebrated work of Räcke [28] shows the existence of a single
capacitated tree T (not a subtree) which behaves as a flow sparsifier for a given
graph G. In particular, routability of demands on T implies fractional routabil-
ity in G with edge congestion polylog(n); this bound was further improved to
O(log2 n log log n) [21]. Such single-tree results were also instrumental in an ap-
plication to maximum throughput flows: a polylogarithmic approximation for
the maximum all-or-nothing flow problem in general graphs [7]. Even more di-
rectly to Theorem 3 is work on cut sparsifiers; in [30] it is shown that there is
a single tree (again, not subtree) which approximates cut capacity in a general
graph G within a factor of O(log1.5 log log n). As far as we know, our result is the
only global-constant factor single-tree cut approximator for a family of graphs.

Räcke improved the bound for flow sparsification to an optimal congestion of
O(log n) [29]. Rather than a single tree, this work requires a convex combination
of (general) trees to simulate the capacity in G. His work also revealed a beautiful
equivalence between the existence of good (low-congestion) distributions over
trees for capacities, and the existence of good (low-distortion) distributions over
trees for distances [3]. This transfer theorem states very roughly that for a graph
G the following are equivalent for a given ρ ≥ 1. (1) For any edge lengths
`(e) > 0, there is a (distance) embedding of G into a distribution of trees which
has stretch at most ρ. (2) For any edge capacities u(e) > 0, there is a (capacity)
embedding of G into a distribution of trees which has congestion at most ρ.
This work has been applied in other related contexts such as flow sparsifiers for
proper subsets of terminals [14].

The transfer theorem uses a very general setting where there are a collection
of valid maps. A mapM sends an edge of G to an abstract “path” M(e) ⊆ E(G).
The maps may be refined for the application of interest. In the so-called spanning
tree setting, each M is associated with a subtree TM of G (the setting most
relevant to Theorem 3). M(e) is then the unique path which joins the endpoints
of e in TM . For an edge e, its stretch under M is (

∑
e′∈M(e) `(e

′))/`(e). In the
context of distance tree embeddings this model has been studied in [2, 1, 13]. In
capacity settings, the congestion of an edge under M is (

∑
e′:e∈M(e′) c(e

′))/c(e).
One can view this as simulating the capacity of G using the tree’s edges with
bounded congestion. The following result shows that we cannot guarantee a
single subtree with O(1) congestion even for outerplanar graphs. This appears
in the long version [25] and the example was found independently by Anastasios
Sidiropoulos [33].
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Theorem 4. There is an infinite family O of outerplanar graphs such that for
every G ∈ O and every spanning tree T of G:

max
X

u(δG(X))

u(δT (X))
= Ω(log |V (G)|),

where the max is taken over fundamental cuts of T .

This suggests that the single-subtree result Theorem 3 is a bit lucky and
critically requires the use of tree capacities different from u. Of course a sin-
gle tree is sometimes unnecessarily restrictive. For instance, outerplanar graphs
also have an O(1)-congestion embedding using a distribution of subtrees by the
transfer theorem (although we are not aware of one explicitly given in the lit-
erature). This follows implicitly due to existence of an O(1)-stretch embedding
into subtrees [18].

Finally we remark that despite the connections between distance and capacity
tree embeddings, Theorem 3 stands in contrast to the situation for distance
embeddings. Every embedding of the n point cycle into subtrees suffers distortion
Ω(n), and indeed this also holds for embedding into arbitrary (using Steiner
nodes etc.) trees [27].

2 Single spanning tree cut approximator in Outerplanar
Graphs

In this section we first show the existence of a single-tree which is an O(1) cut
approximator for an outerplanar graph G. Subsequently we show that there is
such a tree with two additional properties. First, its capacity on every cut is at
most the capacity in G, and second, all of its weights are integral. These addi-
tional properties (integrality and conservativeness) are needed in our application
to edp. The formal statement we prove is as follows.

Theorem 3. There is a polynomial-time algorithm that, for any connected out-
erplanar graph G = (V,E) with integer edge capacities u(e) > 0, finds a subtree
T of G with integer edge weights û(e) ≥ 0 such that

1

14
u(δG(X)) ≤ û(δT (X)) ≤ u(δG(X)) for each proper subset X ⊆ V .

In Section 2.1, we show how to view capacity approximators in G as (con-
strained) distance tree approximators in the planar dual graph. From then on,
we look for distance approximators in the dual which correspond to trees in G. In
Section 2.2 we prove there exists a single-subtree cut approximator. In the long
version of the paper [25] we show how to make this conservative while maintain-
ing integrality of the capacities on the tree. This is essential for our application
to disjoint paths.
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2.1 Converting flow-sparsifiers in outerplanar graphs to
distance-sparsifiers in trees

Let G = (V,E) be an outerplanar graph with capacities u : E → R+. Without
loss of generality, we can assume that G is 2-node connected, so the boundary
of the outer face of G is a cycle that contains each node exactly once. Let G∗ be
the dual of G; we assign weights to the dual edges in G∗ equal to the capacities
on the corresponding edges in G. Let Gz be the graph obtained by adding an
apex node z to G which is connected to each node of G, that is V (Gz) = V ∪{z}
and E(Gz) = E ∪ {(z, v) : v ∈ V }. We may embed z into the outer face of G, so
Gz is planar. Let G∗z denote the planar dual of Gz.

z

G

T ∗

δ(z)

Fig. 1. The solid edges form the outerplanar graph G, and the dotted edges are the
edges incident to the apex node z in Gz. The dashed edges form the dual tree T ∗.

Note that δ(z) = {(z, v) : v ∈ V } are the edges of a spanning tree of Gz, so
E(Gz)

∗ \ δ(z)∗ are the edges of a spanning tree T ∗ of G∗z. Each non-leaf node of
T ∗ corresponds to an inner face of G, and each leaf of T ∗ corresponds to a face
of Gz whose boundary contains the apex node z. Also note that we obtain G∗ if
we combine all the leaves of T ∗ into a single node (which would correspond to
the outer face of G). We will call T ∗ the dual tree of the outerplanar graph G
(Figure 1).

Let a central cut of G be a cut δ(S) such that both of its shores S and V \S
induce connected subgraphs of G. Hence, the shores of a central cut are subpaths
of the outer cycle, so the dual of δ(S) is a leaf-to-leaf path in T ∗. Since the edges
of any cut in a connected graph is a disjoint union of central cuts, it suffices to
only consider central cuts.

We want to find a strictly embedded cut-sparsifier T = (V, F, u∗) of G (ie. a
spanning tree T of G with edges weights u∗) such that for any nonempty X ( V ,
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we have
αu(δG(X)) ≤ u∗(δT (X)) ≤ βu(δG(X)). (1)

In the above inequality, we can replace u∗(δT (X)) with u∗(δG(X)) if we set
u∗(e) = 0 for each edge e /∈ E(T ). In the dual tree (of G), δG(X)∗ is a leaf-to-
leaf path for any central cut δ(X), so inequality (1) is equivalent to

αu(P ) ≤ u∗(P ) ≤ βu(P ) (2)

for any leaf-to-leaf path P in T ∗.
Finally, we give a sufficient property on the weights u∗ assigned to the edges

such that all edges of positive weight are in the spanning tree of G. Recall that
the dual of the edges not in the spanning tree of G would form a spanning tree
of G∗. Since we assign weight 0 to edges not in the spanning tree of G, it is
sufficient for the 0 weight edges to form a spanning subgraph of G∗. Since G∗
is obtained by combining the leaves of T ∗ into a single node, it suffices for each
node v ∈ V (T ∗) to have a 0 weight path from v to a leaf of T ∗.

2.2 An algorithm to build a distance-sparsifier of a tree

In this section, we present an algorithm to obtain a distance-sparsifier of a tree.
In particular, this allows us to obtain a cut-approximator of an outerplanar graph
from a distance-sparsifier of its dual tree.

Let T = (V,E, u) be a weighted tree where u : E → R+ is the length function
on T . Let L ⊂ V be the leaves of T . We assign non-negative weights u∗ to the
edges of T . Let d be the shortest path metric induced by the original weights u,
and let d∗ be the shortest path metric induced by the new weights u∗. We want
the following two conditions to hold:

1. there exists a 0 weight path from each v ∈ V to a leaf of L.
2. for any two leaves x, y ∈ L, we have

1

4
d(x, y) ≤ d∗(x, y) ≤ 2d(x, y). (3)

We define u∗ recursively as follows. If |L| ≤ 1, we are done by setting u∗ = 0
on every edge. If every node is in L, we are done by setting u = u∗.

Let r ∈ T \L be a non-leaf node, and consider T to be rooted at r. For v ∈ V ,
let T (v) denote the subtree rooted at v, and let h(v) denote the height of v,
defined by h(v) = min{d(v, x) : x ∈ L∩T (v)}. Now, let r1, ..., rk be the points in
T that are at distance exactly h(r)/2 from r. Without loss of generality, suppose
that each ri is a node (otherwise we can subdivide the edge to get a node), and
order the ri’s by increasing h(ri), that is h(ri−1) ≤ h(ri) for each i = 2, ..., k.
Furthermore, suppose that we have already assigned weights to the edges in
each subtree T (ri) using this algorithm recursively with Li = L ∩ V (T (ri)), so
it remains to assign weights to the edges not in any of these subtrees. We assign
a weight of h(ri) to the first edge on the path from ri to r for each i = 2, ..., k,
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and weight 0 to all other edges (Figure 2). In particular, all edges on the path
from r1 to r receive weight 0.

The algorithm terminates on components with at most one vertex in L. Let
w ∈ L be a leaf closest to r, d(r, w) = h(r), and let l be the length of the edge
incident to w. As the length of the longest path from the root to w is halved at
each recursive step, w will be isolated after at most log2

h(r)
l recursive steps.

r1

r2 r3

r

h(r)
2

h(r2) h(r3)

0

0

T (r1)

T (r2)

T (r3)

Fig. 2. The algorithm assigns weights to the edges above r1, ..., rk, and is run recursively
on the subtrees T (r1), ..., T (rk).

Since we assign 0 weight to edges on the r1r path, Condition 1 is satisfied for
all nodes above the ri’s in the tree by construction. It remains to prove Condition
2. We use the following upper and lower bounds. For each leaf x ∈ L,

d∗(x, r) ≤ 2d(x, r)− h(r), (4)
d∗(x, r) ≥ d(x, r)− h(r). (5)

We prove the upper bound in (4) by induction. We are done if T only has 0
weight edges, and the cases that cause the algorithm to terminate will only have
0 weight edges. For the induction, we consider two separate cases depending on
whether x ∈ T (r1).

Case 1: x ∈ T (r1).

d∗(x, r) = d∗(x, r1) + d∗(r1, r) (r1 is between x and r)
= d∗(x, r1) (by definition of u∗)
≤ 2d(x, r1)− h(r1) (by induction)
= 2d(x, r)− 2d(r, r1)− h(r1) (r1 is between x and r)

= 2d(x, r)− 3

2
h(r) (h(r1) = h(r)/2 by definition of r1)

≤ 2d(x, r)− h(r)
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Case 2: x ∈ T (ri) for some i 6= 1.

d∗(x, r) = d∗(x, ri) + d∗(ri, r) (ri is between x and r)
= d∗(x, ri) + h(ri) (by definition of u∗)
≤ 2d(x, ri)− h(ri) + h(ri) (by induction)
= 2d(x, r)− 2d(ri, r) (ri is between x and r)
= 2d(x, r)− h(r) (d(ri, r) = h(r)/2 by definition of ri)

This proves inequality (4).
We prove the lower bound in (5) similarly.
Case 1: x ∈ T (r1).

d∗(x, r) = d∗(x, r1) + d∗(r1, r) (r1 is between x and r)
= d∗(x, r1) (by definition of u∗)
≥ d(x, r1)− h(r1) (by induction)
= d(x, r)− d(r, r1)− h(r1) (r1 is between x and r)
= d(x, r)− h(r) (by definition of r1)

Case 2: x ∈ T (ri) for some i 6= 1.

d∗(x, r) = d∗(x, ri) + d∗(ri, r) (ri is between x and r)
= d∗(x, ri) + h(ri) (by definition of u∗)
≥ d(x, ri)− h(ri) + h(ri) (by induction)
= d(x, r)− d(ri, r) (ri is between x and r)
= d(x, r)− h(r)/2 (d(ri, r) = h(r)/2 by definition of ri)
≥ d(x, r)− h(r)

This proves inequality (5)
Finally, we prove property 2, that is inequality (3), by induction. Let x, y ∈ L

be two leaves of T . Suppose that x ∈ T (ri) and y ∈ T (rj). By induction, we may
assume that i 6= j, so without loss of generality, suppose that i < j.

We prove the upper bound.

d∗(x, y) = d∗(x, ri) + d∗(ri, rj) + d∗(rj , y)

≤ 2d(x, ri)− h(ri) + 2d(y, rj)− h(rj) + d∗(ri, rj) (by (4))
≤ 2d(x, ri)− h(ri) + 2d(y, rj)− h(rj) + h(ri) + h(rj) (by definition of u∗)
= 2d(x, ri) + 2d(y, rj)

≤ 2d(x, y)
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We prove the lower bound.

d(x, y) = d(x, ri) + d(ri, rj) + d(rj , y)

≤ d(x, ri) + d(rj , y) + h(ri) + h(rj)

(because d(r, ri) = h(r)/2 ≤ h(ri) for all i ∈ [k])
≤ 2d(x, ri) + 2d(rj , y) (by definition of h)
≤ 2d∗(x, ri) + 2h(ri) + 2d∗(y, rj) + 2h(rj) (by (5))
= 2d∗(x, y)− 2d∗(ri, rj) + 2h(ri) + 2h(rj).

Now we finish the proof of the lower bound by considering two cases.
Case 1: i = 1, that is x is in the first subtree.

d(x, y) ≤ 2d∗(x, y)− 2d∗(r1, rj) + 2h(r1) + 2h(rj)

= 2d∗(x, y)− 2h(rj) + 2h(r1) + 2h(rj) (by definition of u∗)
≤ 2d∗(x, y) + 2h(r1)

≤ 4d∗(x, y)

Case 2: i > 1, that is neither x nor y is in the first subtree.

d(x, y) ≤ 2d∗(x, y)− 2d∗(ri, rj) + 2h(ri) + 2h(rj)

= 2d∗(x, y)− 2h(ri)− 2h(rj) + 2h(ri) + 2h(rj) (by definition of u∗)
= 2d∗(x, y)

This completes the proof of property 2.

3 Maximum Weight Disjoint Paths

In this section we prove our main result for edp, Theorem 1.

3.1 Required Elements

We first prove the following result which establishes conditions for when the cut
condition implies routability.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).
Let H denote a demand graph such that G + H = (V (G), E(G) ∪ E(H)) is
outerplanar. If G,H satisfies the cut condition, then H is routable in G, and an
integral routing can be found in polynomial-time.

The novelty in this statement is that we do not require the Eulerian condition
on G + H. This condition is needed in virtually all classical results for edge-
disjoint paths. In fact, even when G is a 4-cycle and H consists of a matching of
size 2, the cut condition need not be sufficient to guarantee routability. The main
exception is the case when G is a tree and a trivial greedy algorithm suffices to
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route H. We prove the theorem by giving a simple (but not so simple) algorithm
to compute a routing.

To prove this theorem, we need the following 2-node reduction lemma which
is generally known.

Lemma 1. Let G be a graph and let H be a collection of demands that satis-
fies the cut condition. Let G1, ..., Gk be the blocks of G (the 2-node connected
components and the cut edges (aka bridges) of G). Let Hi be the collection of
nontrivial (i.e., non-loop) demands after contracting each edge e ∈ E(G)\E(Gi).
Then each Gi, Hi satisfies the cut condition. Furthermore, if G (or G+H) was
outerplanar (or planar), then each Gi (resp. Gi +Hi) is outerplanar (resp. pla-
nar). Moreover, if each Hi is routable in Gi, then H is routable in G.

G1

G2

G3

G4

G5

G4

G5

G3
G2

G1

Fig. 3. The new demand edges that replace a demand edge whose terminals belong in
different blocks. Solid edges represent edges of G and dashed edges represent demand
edges.

Proof. Consider the edge contractions to be done on G+H to obtain Gi +Hi.
Then, any cut in Gi +Hi was also a cut in G+H. Since G,H satisfies the cut
condition, then Gi, Hi must also satisfy the cut condition. Furthermore, edge
contraction preserves planarity and outerplanarity.

For each st ∈ H and each Gi, the reduction process produces a request siti in
Gi. If this is not a loop, then si, ti lie in different components of G after deleting
the edges of Gi. In this case, we say that st spawns siti. Let J be the set of edges
spawned by a demand st. It is easy to see that the edges of J form an st path.
Hence if each Hi is routable in Gi, we have that H is routable in G.

Proof (Proof of theorem 2). Without loss of generality, we may assume that the
edges of G (resp.H) have unit capacity (resp. demand). Otherwise, we may place
u(e) (resp. d(e)) parallel copies of such an edge e. In the algorithmic proof, we
may also assume that G is 2-node connected. Otherwise, we may apply Lemma 1
and consider each 2-node connected component of G separately. When working
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v1

v2

vn

vn−1

......

vi

vj

Fig. 4. The solid edges form the outerplanar graphG. The dashed edges are the demand
edges. The thick dashed edge is a valid edge to route because there are no terminals
vk with i < k < j.

with 2-node connected G, the boundary of its outer face is a simple cycle. So we
label the nodes v1, ..., vn by the order they appear on this cycle.

If there are no demand edges, then we are done. Otherwise, since G +H is
outerplanar, without loss of generality there exists i < j such that vivj ∈ E(H)
and no vk is a terminal for i < k < j (Figure 4). Consider the outer face path
P = vi, vi+1, ..., vj . We show that the cut condition is still satisfied after removing
both the path P and the demand vivj . This represents routing the demand vivj
along the path P .

Consider a central cut δG(X). Suppose that vi and vj are on opposite sides
of the cut. Then, we decrease both δG(X) and δH(X) by 1, so the cut condition
holds. Suppose that vi, vj /∈ X, that is vi and vj are on the same side of the cut.
Then, either X ⊂ V (P )\{vi, vj} or X∩V (P ) = ∅. We are done if X∩V (P ) = ∅
because δG(X)∩E(P ) = 0. Otherwise,X ⊂ V (P )\{vi, vj} contains no terminals,
so we cannot violate the cut condition.

We also need the following result from [8].

Theorem 5. Let T be a tree with integer edge capacities u(e). Let H denote a
demand graph such that each fundamental cut of H induced by an edge e ∈ T
contains at most ku(e) edges of H. We may then partition H into at most 4k
edges sets H1, . . . ,H4k such that each Hi is routable in T .

3.2 Proof of the Main Theorem

Theorem 1. There is a polynomial-time 224 approximation algorithm for the
maximum weight anf and edp problems for capacitated outerplanar graphs.
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Proof. We first run the algorithms to produce an integer-capacitated tree T, û
which is an 14 cut approximator for G. In addition T is a subtree and it is a
conservative approximator for each cut in G. First, we prove that the maximum
weight routable in T is not too much smaller than for G (in either the edp or anf
model). To see this let S be an optimal solution in G, whose value is opt(G).
Clearly S satisfies the cut condition in G and hence by Theorem 3 it satisfies,
up to a factor of 14, the cut condition in T, û. Thus by Theorem 5 there are 56
sets such that S = ∪56i=1Si and each Si is routable in T . Hence one of the sets Si
accrues at least 1

56

th the profit from opt(G).
Now we use the factor 4 approximation [8] to solve the maximum edp=anf

problem for T, û. Let S be a subset of requests which are routable in T and have
weight at least 1

4 opt(T) ≥ 1
224 opt(G). Since T is a subtree of G we have

that G+T is outerplanar. Since T, û is an under-estimator of cuts in G, we have
that the edges of T (viewed as requests) satisfies the cut condition in G. Hence
by Theorem 2 we may route these single edge requests in G. Hence since S can
route in T , we have that S can also route in G, completing the proof.

4 Conclusions

The technique of finding a single-tree constant-factor cut approximator (for a
global constant) appears to hit a limit at outerplanar graphs. It would be in-
teresting to find a graph parameter k which ensures a single-tree O(f(k)) cut
approximator.
The authors thank Nick Harvey for his valuable feedback on this article. We also
thank the conference reviewers for their helpful remarks. The authors Shepherd
and Xia are grateful for support from the Natural Sciences and Engineering
Research Council of Canada.
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