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Abstract. Since 1997 there has been a steady stream of advances for the maximum disjoint paths problem. Achieving tractable results has usually required focusing on relaxations such as: (i) to allow some bounded edge congestion in solutions, (ii) to only consider the unit weight (cardinality) setting, (iii) to only require fractional routability of the selected demands (the all-or-nothing flow setting). For the general form (no congestion, general weights, integral routing) of edge-disjoint paths (edp) even the case of unit capacity trees which are stars generalizes the maximum matching problem for which Edmonds provided an exact algorithm. For general capacitated trees, Garg, Vazirani, Yannakakis showed the problem is APX-Hard and Chekuri, Mydlarz, Shepherd provided a 4-approximation. This is essentially the only setting where a constant approximation is known for the general form of edp. We extend their result by giving a constant-factor approximation algorithm for generalform edp in outerplanar graphs. A key component for the algorithm is to find a single-tree O(1) cut approximator for outerplanar graphs. Previously O(1) cut approximators were only known via distributions on trees and these were based implicitly on the results of Gupta, Newman, Rabinovich and Sinclair for distance tree embeddings combined with results of Anderson and Feige.
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Introduction

The past two decades have seen numerous advances to the approximability of the maximum disjoint paths problem (edp) since the seminal paper [START_REF] Garg | Primal-dual approximation algorithms for integral flow and multicut in trees[END_REF]. An instance of edp consists of a (directed or undirected) "supply" graph G = (V, E) and a collection of k requests (aka demands). Each request consists of a pair of nodes s i , t i ∈ V . These are sometimes viewed as a demand graph H = (V (G), {s i t i : i ∈ [k]}). A subset S of the requests is called routable if there exist edge-disjoint paths {P i : i ∈ S} such that P i has endpoints s i , t i for each i. We may also be given a profit w i associated with each request and the goal is to find a routable subset S which maximizes w(S) = i∈S w i . The cardinality version is where we have unit weights w i ≡ 1.

For directed graphs it is known [START_REF] Guruswami | Nearoptimal hardness results and approximation algorithms for edge-disjoint paths and related problems[END_REF] that there is no O(n 0.5-) approximation, for any > 0 under the assumption P = N P . Subsequently, research shifted to undirected graphs and two relaxed models. First, in the all-or-nothing flow model (anf) the notion of routability is relaxed. A subset S is called routable if there is a feasible (fractional) multiflow which satisfies each request in S. In [START_REF] Chekuri | The all-or-nothing multicommodity flow problem[END_REF] a polylogarithmic approximation is given for anf. Second, in the congestion model [START_REF] Kleinberg | Approximations for the disjoint paths problem in highdiameter planar networks[END_REF] one is allowed to increase the capacity of each edge in G by some constant factor. Two streams of results ensued. For general graphs, a polylogarithmic approximation is ultimately provided [START_REF] Chuzhoy | A polylogarithimic approximation algorithm for edge-disjoint paths with congestion 2[END_REF][START_REF] Chuzhoy | A polylogarithimic approximation algorithm for edge-disjoint paths with congestion 2[END_REF][START_REF] Chekuri | Poly-logarithmic approximation for maximum node disjoint paths with constant congestion[END_REF] with edge congestion 2. For planar graphs, a constant factor approximation is given [START_REF] Seguin-Charbonneau | Maximum edge-disjoint paths in planar graphs with congestion 2[END_REF][START_REF] Chekuri | Edge-disjoint paths in planar graphs with constant congestion[END_REF] with edge congestion 2. There is also an f (g)-factor approximation for bounded genus g graphs with congestion 3.

As far as we know, the only congestion 1 results known for either maximum anf or edp are as follows; all of these apply only to the cardinality version. In [START_REF] Kawarabayashi | All-or-nothing multicommodity flow problem with bounded fractionality in planar graphs[END_REF], a constant factor approximation is given for anf in planar graphs and for treewidth k graphs there is an f (k)-approximation for edp [START_REF] Chekuri | Maximum edge-disjoint paths in k-sums of graphs[END_REF]. More recent results include a constant-factor approximation in the fully planar case where G+H is planar [START_REF] Huang | An approximation algorithm for fully planar edge-disjoint paths[END_REF][START_REF] Garg | Integer plane multiflow maximisation: Flow-cut gap and one-quarter-approximation[END_REF]. In the weighted regime, there is a factor 4 approximation for edp in capacitated trees [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF]. We remark that this problem for unit capacity "stars" already generalizes the maximum weight matching problem in general graphs. Moreover, inapproximability bounds for edp in planar graphs are almost polynomial [START_REF] Chuzhoy | New hardness results for routing on disjoint paths[END_REF]. This lends interest to how far one can push beyond trees. Our main contribution to the theory of maximum throughput flows is the following result which is the first generalization of the (weighted) edp result for trees [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF], modulo a larger implicit constant of 224.

Theorem 1. There is a polynomial-time 224 approximation algorithm for the maximum weight anf and edp problems for capacitated outerplanar graphs.

It is natural to try to prove this by reducing the problem in outerplanar graphs to trees and then use [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF]. A promising approach is to use results of [START_REF] Gupta | Cuts, trees and 1embeddings of graphs[END_REF] an O(1) distance tree embedding for outerplanar graphs -and a transfer theorem [START_REF] Andersen | Interchanging distance and capacity in probabilistic mappings[END_REF][START_REF] Räcke | Optimal hierarchical decompositions for congestion minimization in networks[END_REF] which proves a general equivalence between distance and capacity embeddings. Combined, these results imply that there is a probabilistic embedding into trees which approximates cut capacity in outerplanar graphs with constant congestion. One could then try to mimic the success of using low-distortion (distance) tree embeddings to approximate minimum cost network design problems. There is an issue with this approach however. Suppose we have a distribution on trees T i which approximates cut capacity in expectation. We then apply a known edp algorithm which outputs a subset of requests S i which are routable in each T i . While the tree embedding guarantees that the convex combination of S i 's satisfies the cut condition in G, it may be that no single S i obeys the cut condition, even approximately. Moreover, this is also a problem for anf. This problem persists even if we ensure that each T i is dominated (or dominating) by G. For instance, if capacity in each T i is upper bounded by capacity in G, then in expectation the T i 's will cover at least some constant fraction of G. There is no guarantee, however, that any of the S i 's would as well.

We overcome these issues by computing a single tree which approximates the cuts in G -see Theorem 3. Our algorithmic proof is heavily inspired by work of Gupta [START_REF] Gupta | Steiner points in tree metrics don't (really) help[END_REF] which gives a method for eliminating Steiner nodes in probabilistic (distance) tree embeddings for general graphs.

It turns out that having a single-tree is not enough for us and we need additional technical properties to apply the algorithm from [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF]. First, our single tree T should have integer capacities and be non-expansive, i.e., û(δ T (S)) ≤ u(δ G (S)) (where û/u are the edge capacities in T /G and δ is used to denote the edges in the cut induced by S). To see why it is useful that T is an underestimator of G's cut capacity, consider the classical grid example of [START_REF] Garg | Primal-dual approximation algorithms for integral flow and multicut in trees[END_REF]. They give an instance with a set of √ n requests which satisfy the cut condition in 2 • G, but for which one can only route a single request in the capacity of G.

If our tree is an under-estimator, then we can ultimately obtain a "large" weight subset of requests satisfying the cut condition in G itself. However, even this is not generally sufficient for (integral) routability. For a multiflow instance G/H one normally also requires that G + H is Eulerian, even for easy instances such as when G is a 4-cycle. The final ingredient we use is that our single tree T is actually a subtree of G which allows us to invoke the following result -see Section 3.1.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).

Let H denote a demand graph such that

G + H = (V (G), E(G) ∪ E(H)) is outerplanar. If G, H satisfies the cut condition, then H is routable in G,
and an integral routing can be found in polynomial-time.

The key point here is that we can avoid the usual parity condition needed, such as in [START_REF] Okamura | Multicommodity flows in planar graphs[END_REF][START_REF] Paul | Matroids and multicommodity flows[END_REF][START_REF] Frank | Edge-disjoint paths in planar graphs[END_REF]. We are not presently aware of the above result's existence in the literature.

A Single-Subtree Cut Sparsifier and Related Results

Our main cut approximation theorem is the following which may be of independent interest.

Theorem 3. There is a polynomial-time algorithm that, for any connected outerplanar graph G = (V, E) with integer edge capacities u(e) > 0, finds a subtree T of G with integer edge weights û(e) ≥ 0 such that

1 14 u(δ G (X)) ≤ û(δ T (X)) ≤ u(δ G (X)) for each proper subset X ⊆ V .
We discuss some connections of this result to prior work on sparsifiers and metric embeddings. Celebrated work of Räcke [START_REF] Räcke | Minimizing congestion in general networks[END_REF] shows the existence of a single capacitated tree T (not a subtree) which behaves as a flow sparsifier for a given graph G. In particular, routability of demands on T implies fractional routability in G with edge congestion polylog(n); this bound was further improved to O(log 2 n log log n) [START_REF] Harrelson | A polynomial-time tree decomposition to minimize congestion[END_REF]. Such single-tree results were also instrumental in an application to maximum throughput flows: a polylogarithmic approximation for the maximum all-or-nothing flow problem in general graphs [START_REF] Chekuri | The all-or-nothing multicommodity flow problem[END_REF]. Even more directly to Theorem 3 is work on cut sparsifiers; in [START_REF] Räcke | Improved guarantees for tree cut sparsifiers[END_REF] it is shown that there is a single tree (again, not subtree) which approximates cut capacity in a general graph G within a factor of O(log 1.5 log log n). As far as we know, our result is the only global-constant factor single-tree cut approximator for a family of graphs.

Räcke improved the bound for flow sparsification to an optimal congestion of O(log n) [START_REF] Räcke | Optimal hierarchical decompositions for congestion minimization in networks[END_REF]. Rather than a single tree, this work requires a convex combination of (general) trees to simulate the capacity in G. His work also revealed a beautiful equivalence between the existence of good (low-congestion) distributions over trees for capacities, and the existence of good (low-distortion) distributions over trees for distances [START_REF] Andersen | Interchanging distance and capacity in probabilistic mappings[END_REF]. This transfer theorem states very roughly that for a graph G the following are equivalent for a given ρ ≥ 1. (1) For any edge lengths (e) > 0, there is a (distance) embedding of G into a distribution of trees which has stretch at most ρ. (2) For any edge capacities u(e) > 0, there is a (capacity) embedding of G into a distribution of trees which has congestion at most ρ. This work has been applied in other related contexts such as flow sparsifiers for proper subsets of terminals [START_REF] Englert | Vertex sparsifiers: New results from old techniques[END_REF].

The transfer theorem uses a very general setting where there are a collection of valid maps. A map M sends an edge of G to an abstract "path" M (e) ⊆ E(G). The maps may be refined for the application of interest. In the so-called spanning tree setting, each M is associated with a subtree T M of G (the setting most relevant to Theorem 3). M (e) is then the unique path which joins the endpoints of e in T M . For an edge e, its stretch under M is ( e ∈M (e) (e ))/ (e). In the context of distance tree embeddings this model has been studied in [START_REF] Noga Alon | A graph-theoretic game and its application to the k-server problem[END_REF][START_REF] Abraham | Nearly tight low stretch spanning trees[END_REF][START_REF] Michael Elkin | Lowerstretch spanning trees[END_REF]. In capacity settings, the congestion of an edge under M is ( e :e∈M (e ) c(e ))/c(e). One can view this as simulating the capacity of G using the tree's edges with bounded congestion. The following result shows that we cannot guarantee a single subtree with O(1) congestion even for outerplanar graphs. This appears in the long version [START_REF] Naves | Maximum weight disjoint paths in outerplanar graphs via single-tree cut approximators[END_REF] and the example was found independently by Anastasios Sidiropoulos [33].

Theorem 4. There is an infinite family O of outerplanar graphs such that for every G ∈ O and every spanning tree T of G:

max X u(δ G (X)) u(δ T (X)) = Ω(log |V (G)|),
where the max is taken over fundamental cuts of T .

This suggests that the single-subtree result Theorem 3 is a bit lucky and critically requires the use of tree capacities different from u. Of course a single tree is sometimes unnecessarily restrictive. For instance, outerplanar graphs also have an O(1)-congestion embedding using a distribution of subtrees by the transfer theorem (although we are not aware of one explicitly given in the literature). This follows implicitly due to existence of an O(1)-stretch embedding into subtrees [START_REF] Gupta | Cuts, trees and 1embeddings of graphs[END_REF].

Finally we remark that despite the connections between distance and capacity tree embeddings, Theorem 3 stands in contrast to the situation for distance embeddings. Every embedding of the n point cycle into subtrees suffers distortion Ω(n), and indeed this also holds for embedding into arbitrary (using Steiner nodes etc.) trees [START_REF] Rabinovich | Lower bounds on the distortion of embedding finite metric spaces in graphs[END_REF].

Single spanning tree cut approximator in Outerplanar Graphs

In this section we first show the existence of a single-tree which is an O(1) cut approximator for an outerplanar graph G. Subsequently we show that there is such a tree with two additional properties. First, its capacity on every cut is at most the capacity in G, and second, all of its weights are integral. These additional properties (integrality and conservativeness) are needed in our application to edp. The formal statement we prove is as follows.

Theorem 3. There is a polynomial-time algorithm that, for any connected outerplanar graph G = (V, E) with integer edge capacities u(e) > 0, finds a subtree T of G with integer edge weights û(e) ≥ 0 such that

1 14 u(δ G (X)) ≤ û(δ T (X)) ≤ u(δ G (X)) for each proper subset X ⊆ V .
In Section 2.1, we show how to view capacity approximators in G as (constrained) distance tree approximators in the planar dual graph. From then on, we look for distance approximators in the dual which correspond to trees in G. In Section 2.2 we prove there exists a single-subtree cut approximator. In the long version of the paper [START_REF] Naves | Maximum weight disjoint paths in outerplanar graphs via single-tree cut approximators[END_REF] we show how to make this conservative while maintaining integrality of the capacities on the tree. This is essential for our application to disjoint paths.

Converting flow-sparsifiers in outerplanar graphs to distance-sparsifiers in trees

Let G = (V, E) be an outerplanar graph with capacities u : E → R + . Without loss of generality, we can assume that G is 2-node connected, so the boundary of the outer face of G is a cycle that contains each node exactly once. Let G * be the dual of G; we assign weights to the dual edges in G * equal to the capacities on the corresponding edges in G. Let G z be the graph obtained by adding an apex node z to G which is connected to each node of G, that is Note that δ(z) = {(z, v) : v ∈ V } are the edges of a spanning tree of G z , so E(G z ) * \ δ(z) * are the edges of a spanning tree T * of G * z . Each non-leaf node of T * corresponds to an inner face of G, and each leaf of T * corresponds to a face of G z whose boundary contains the apex node z. Also note that we obtain G * if we combine all the leaves of T * into a single node (which would correspond to the outer face of G). We will call T * the dual tree of the outerplanar graph G (Figure 1).

V (G z ) = V ∪ {z} and E(G z ) = E ∪ {(z, v) : v ∈ V }. We may embed z into the outer face of G, so G z is planar. Let G * z denote the planar dual of G z . z G T * δ(z)
Let a central cut of G be a cut δ(S) such that both of its shores S and V \ S induce connected subgraphs of G. Hence, the shores of a central cut are subpaths of the outer cycle, so the dual of δ(S) is a leaf-to-leaf path in T * . Since the edges of any cut in a connected graph is a disjoint union of central cuts, it suffices to only consider central cuts.

We want to find a strictly embedded cut-sparsifier T = (V, F, u * ) of G (ie. a spanning tree T of G with edges weights u * ) such that for any nonempty X V ,

we have αu(δ G (X)) ≤ u * (δ T (X)) ≤ βu(δ G (X)). (1) 
In the above inequality, we can replace u * (δ T (X)) with u * (δ G (X)) if we set u * (e) = 0 for each edge e / ∈ E(T ). In the dual tree (of G), δ G (X) * is a leaf-toleaf path for any central cut δ(X), so inequality (1) is equivalent to

αu(P ) ≤ u * (P ) ≤ βu(P ) (2) 
for any leaf-to-leaf path P in T * . Finally, we give a sufficient property on the weights u * assigned to the edges such that all edges of positive weight are in the spanning tree of G. Recall that the dual of the edges not in the spanning tree of G would form a spanning tree of G * . Since we assign weight 0 to edges not in the spanning tree of G, it is sufficient for the 0 weight edges to form a spanning subgraph of G * . Since G * is obtained by combining the leaves of T * into a single node, it suffices for each node v ∈ V (T * ) to have a 0 weight path from v to a leaf of T * .

An algorithm to build a distance-sparsifier of a tree

In this section, we present an algorithm to obtain a distance-sparsifier of a tree. In particular, this allows us to obtain a cut-approximator of an outerplanar graph from a distance-sparsifier of its dual tree.

Let T = (V, E, u) be a weighted tree where u : E → R + is the length function on T . Let L ⊂ V be the leaves of T . We assign non-negative weights u * to the edges of T . Let d be the shortest path metric induced by the original weights u, and let d * be the shortest path metric induced by the new weights u * . We want the following two conditions to hold:

1. there exists a 0 weight path from each v ∈ V to a leaf of L. 2. for any two leaves x, y ∈ L, we have

1 4 d(x, y) ≤ d * (x, y) ≤ 2d(x, y). (3) 
We define u * recursively as follows. If |L| ≤ 1, we are done by setting u * = 0 on every edge. If every node is in L, we are done by setting u = u * .

Let r ∈ T \L be a non-leaf node, and consider T to be rooted at r. For v ∈ V , let T (v) denote the subtree rooted at v, and let h(v) denote the height of v, defined by h(v) = min{d(v, x) : x ∈ L ∩ T (v)}. Now, let r 1 , ..., r k be the points in T that are at distance exactly h(r)/2 from r. Without loss of generality, suppose that each r i is a node (otherwise we can subdivide the edge to get a node), and order the r i 's by increasing h(r i ), that is h(r i-1 ) ≤ h(r i ) for each i = 2, ..., k. Furthermore, suppose that we have already assigned weights to the edges in each subtree T (r i ) using this algorithm recursively with L i = L ∩ V (T (r i )), so it remains to assign weights to the edges not in any of these subtrees. We assign a weight of h(r i ) to the first edge on the path from r i to r for each i = 2, ..., k, and weight 0 to all other edges (Figure 2). In particular, all edges on the path from r 1 to r receive weight 0.

The algorithm terminates on components with at most one vertex in L. Let w ∈ L be a leaf closest to r, d(r, w) = h(r), and let l be the length of the edge incident to w. As the length of the longest path from the root to w is halved at each recursive step, w will be isolated after at most log 2 h(r) l recursive steps.

r1 r2 r3 r h(r) 2 h(r2) h(r3) 0 0 T (r1) T (r2) T (r3) 
Fig. 2. The algorithm assigns weights to the edges above r1, ..., r k , and is run recursively on the subtrees T (r1), ..., T (r k ).

Since we assign 0 weight to edges on the r 1 r path, Condition 1 is satisfied for all nodes above the r i 's in the tree by construction. It remains to prove Condition 2. We use the following upper and lower bounds. For each leaf x ∈ L,

d * (x, r) ≤ 2d(x, r) -h(r), (4) 
d * (x, r) ≥ d(x, r) -h(r). (5) 
We prove the upper bound in (4) by induction. We are done if T only has 0 weight edges, and the cases that cause the algorithm to terminate will only have 0 weight edges. For the induction, we consider two separate cases depending on whether x ∈ T (r 1 ).

Case 1: x ∈ T (r 1 ).

d * (x, r) = d * (x, r 1 ) + d * (r 1 , r) (r 1 is between x and r) = d * (x, r 1 ) (by definition of u * ) ≤ 2d(x, r 1 ) -h(r 1 ) (by induction) = 2d(x, r) -2d(r, r 1 ) -h(r 1 ) (r 1 is between x and r) = 2d(x, r) - 3 2 h(r) (h(r 1 ) = h(r)/2 by definition of r 1 ) ≤ 2d(x, r) -h(r)
Case 2: x ∈ T (r i ) for some i = 1.

d * (x, r) = d * (x, r i ) + d * (r i , r) (r i is between x and r) = d * (x, r i ) + h(r i ) (by definition of u * ) ≤ 2d(x, r i ) -h(r i ) + h(r i ) (by induction) = 2d(x, r) -2d(r i , r) (r i is between x and r) = 2d(x, r) -h(r) (d(r i , r) = h(r)/2 by definition of r i )
This proves inequality (4). We prove the lower bound in (5) similarly.

Case 1: x ∈ T (r 1 ).

d * (x, r) = d * (x, r 1 ) + d * (r 1 , r) (r 1 is between x and r) = d * (x, r 1 ) (by definition of u * ) ≥ d(x, r 1 ) -h(r 1 ) (by induction) = d(x, r) -d(r, r 1 ) -h(r 1 ) (r 1 is between x and r) = d(x, r) -h(r) (by definition of r 1 )
Case 2: x ∈ T (r i ) for some i = 1. This proves inequality (5) Finally, we prove property 2, that is inequality (3), by induction. Let x, y ∈ L be two leaves of T . Suppose that x ∈ T (r i ) and y ∈ T (r j ). By induction, we may assume that i = j, so without loss of generality, suppose that i < j.

We prove the upper bound.

d * (x, y) = d * (x, r i ) + d * (r i , r j ) + d * (r j , y) ≤ 2d(x, r i ) -h(r i ) + 2d(y, r j ) -h(r j ) + d * (r i , r j ) (by (4)) ≤ 2d(x, r i ) -h(r i ) + 2d(y, r j ) -h(r j ) + h(r i ) + h(r j ) (by definition of u * ) = 2d(x, r i ) + 2d(y, r j ) ≤ 2d(x, y)
We prove the lower bound.

d(x, y) = d(x, r i ) + d(r i , r j ) + d(r j , y)

≤ d(x, r i ) + d(r j , y) + h(r i ) + h(r j ) (because d(r, r i ) = h(r)/2 ≤ h(r i ) for all i ∈ [k])
≤ 2d(x, r i ) + 2d(r j , y) (by definition of h) ≤ 2d * (x, r i ) + 2h(r i ) + 2d * (y, r j ) + 2h(r j ) (by ( 5))

= 2d * (x, y) -2d * (r i , r j ) + 2h(r i ) + 2h(r j ).

Now we finish the proof of the lower bound by considering two cases.

Case 1: i = 1, that is x is in the first subtree.

d(x, y) ≤ 2d * (x, y) -2d * (r 1 , r j ) + 2h(r 1 ) + 2h(r j ) = 2d * (x, y) -2h(r j ) + 2h(r 1 ) + 2h(r j ) (by definition of u * ) ≤ 2d * (x, y) + 2h(r 1 )

≤ 4d * (x, y)
Case 2: i > 1, that is neither x nor y is in the first subtree.

d(x, y) ≤ 2d * (x, y) -2d * (r i , r j ) + 2h(r i ) + 2h(r j ) = 2d * (x, y) -2h(r i ) -2h(r j ) + 2h(r i ) + 2h(r j ) (by definition of u * ) = 2d * (x, y)
This completes the proof of property 2.

Maximum Weight Disjoint Paths

In this section we prove our main result for edp, Theorem 1.

Required Elements

We first prove the following result which establishes conditions for when the cut condition implies routability.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).

Let H denote a demand graph such that

G + H = (V (G), E(G) ∪ E(H)) is outerplanar.
If G, H satisfies the cut condition, then H is routable in G, and an integral routing can be found in polynomial-time.

The novelty in this statement is that we do not require the Eulerian condition on G + H. This condition is needed in virtually all classical results for edgedisjoint paths. In fact, even when G is a 4-cycle and H consists of a matching of size 2, the cut condition need not be sufficient to guarantee routability. The main exception is the case when G is a tree and a trivial greedy algorithm suffices to route H. We prove the theorem by giving a simple (but not so simple) algorithm to compute a routing.

To prove this theorem, we need the following 2-node reduction lemma which is generally known.

Lemma 1. Let G be a graph and let H be a collection of demands that satisfies the cut condition. Let G 1 , ..., G k be the blocks of G (the 2-node connected components and the cut edges (aka bridges) of G). Let H i be the collection of nontrivial (i.e., non-loop) demands after contracting each edge e ∈ E(G)\E(G i ).

Then each G i , H i satisfies the cut condition. Furthermore, if G (or G + H) was outerplanar (or planar), then each G i (resp. Proof. Consider the edge contractions to be done on G + H to obtain G i + H i . Then, any cut in G i + H i was also a cut in G + H. Since G, H satisfies the cut condition, then G i , H i must also satisfy the cut condition. Furthermore, edge contraction preserves planarity and outerplanarity.

G i + H i ) is outerplanar (resp. pla- nar). Moreover, if each H i is routable in G i , then H is routable in G. G1 G2 G3 G4 G5 G4 G5 G3 G2 G1
For each st ∈ H and each G i , the reduction process produces a request s i t i in G i . If this is not a loop, then s i , t i lie in different components of G after deleting the edges of G i . In this case, we say that st spawns s i t i . Let J be the set of edges spawned by a demand st. It is easy to see that the edges of J form an st path. Hence if each H i is routable in G i , we have that H is routable in G.

Proof (Proof of theorem 2). Without loss of generality, we may assume that the edges of G (resp. H) have unit capacity (resp. demand). Otherwise, we may place u(e) (resp. d(e)) parallel copies of such an edge e. In the algorithmic proof, we may also assume that G is 2-node connected. Otherwise, we may apply Lemma 1 and consider each 2-node connected component of G separately. When working with 2-node connected G, the boundary of its outer face is a simple cycle. So we label the nodes v 1 , ..., v n by the order they appear on this cycle.

If there are no demand edges, then we are done. Otherwise, since G + H is outerplanar, without loss of generality there exists i < j such that v i v j ∈ E(H) and no v k is a terminal for i < k < j (Figure 4). Consider the outer face path P = v i , v i+1 , ..., v j . We show that the cut condition is still satisfied after removing both the path P and the demand v i v j . This represents routing the demand v i v j along the path P .

Consider a central cut δ G (X). Suppose that v i and v j are on opposite sides of the cut. Then, we decrease both δ G (X) and δ H (X) by 1, so the cut condition holds. Suppose that v i , v j / ∈ X, that is v i and v j are on the same side of the cut. Then, either X ⊂ V (P )\{v i , v j } or X ∩V (P ) = ∅. We are done if X ∩V (P ) = ∅ because δ G (X)∩E(P ) = 0. Otherwise, X ⊂ V (P )\{v i , v j } contains no terminals, so we cannot violate the cut condition.

We also need the following result from [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF].

Theorem 5. Let T be a tree with integer edge capacities u(e). Let H denote a demand graph such that each fundamental cut of H induced by an edge e ∈ T contains at most ku(e) edges of H. We may then partition H into at most 4k edges sets H 1 , . . . , H 4k such that each H i is routable in T .

Proof of the Main Theorem

Theorem 1. There is a polynomial-time 224 approximation algorithm for the maximum weight anf and edp problems for capacitated outerplanar graphs.

Fig. 1 .

 1 Fig. 1. The solid edges form the outerplanar graph G, and the dotted edges are the edges incident to the apex node z in Gz. The dashed edges form the dual tree T * .

d

  * (x, r) = d * (x, r i ) + d * (r i , r) (r i is between x and r)= d * (x, r i ) + h(r i ) (by definition of u * ) ≥ d(x, r i ) -h(r i ) + h(r i ) (by induction) = d(x, r) -d(r i , r) (r i is between x and r) = d(x, r) -h(r)/2 (d(r i , r) = h(r)/2 by definition of r i ) ≥ d(x, r) -h(r)

Fig. 3 .

 3 Fig. 3. The new demand edges that replace a demand edge whose terminals belong in different blocks. Solid edges represent edges of G and dashed edges represent demand edges.

Fig. 4 .

 4 Fig.4. The solid edges form the outerplanar graph G. The dashed edges are the demand edges. The thick dashed edge is a valid edge to route because there are no terminals v k with i < k < j.

Proof. We first run the algorithms to produce an integer-capacitated tree T, û which is an 14 cut approximator for G. In addition T is a subtree and it is a conservative approximator for each cut in G. First, we prove that the maximum weight routable in T is not too much smaller than for G (in either the edp or anf model). To see this let S be an optimal solution in G, whose value is opt(G). Clearly S satisfies the cut condition in G and hence by Theorem 3 it satisfies, up to a factor of 14, the cut condition in T, û. Thus by Theorem 5 there are 56 sets such that S = ∪ 56 i=1 S i and each S i is routable in T . Hence one of the sets S i accrues at least 1 56 th the profit from opt(G). Now we use the factor 4 approximation [START_REF] Chekuri | Multicommodity demand flow in a tree and packing integer programs[END_REF] to solve the maximum edp=anf problem for T, û. Let S be a subset of requests which are routable in T and have weight at least 1 4 opt(T) ≥ 1 224 opt(G). Since T is a subtree of G we have that G + T is outerplanar. Since T, û is an under-estimator of cuts in G, we have that the edges of T (viewed as requests) satisfies the cut condition in G. Hence by Theorem 2 we may route these single edge requests in G. Hence since S can route in T , we have that S can also route in G, completing the proof.

Conclusions

The technique of finding a single-tree constant-factor cut approximator (for a global constant) appears to hit a limit at outerplanar graphs. It would be interesting to find a graph parameter k which ensures a single-tree O(f (k)) cut approximator. The authors thank Nick Harvey for his valuable feedback on this article. We also thank the conference reviewers for their helpful remarks. The authors Shepherd and Xia are grateful for support from the Natural Sciences and Engineering Research Council of Canada.