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Abstract: Crop maps are key inputs for crop inventory production and yield estimation and can
inform the implementation of effective farm management practices. Producing these maps at detailed
scales requires exhaustive field surveys that can be laborious, time-consuming, and expensive
to replicate. With a growing archive of remote sensing data, there are enormous opportunities
to exploit dense satellite image time series (SITS), temporal sequences of images over the same
area. Generally, crop type mapping relies on single-sensor inputs and is solved with the help of
traditional learning algorithms such as random forests or support vector machines. Nowadays,
deep learning techniques have brought significant improvements by leveraging information in both
spatial and temporal dimensions, which are relevant in crop studies. The concurrent availability
of Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical) data offers a great opportunity to
utilize them jointly; however, optimizing their synergy has been understudied with deep learning
techniques. In this work, we analyze and compare three fusion strategies (input, layer, and decision
levels) to identify the best strategy that optimizes optical-radar classification performance. They are
applied to a recent architecture, notably, the pixel-set encoder–temporal attention encoder (PSE-TAE)
developed specifically for object-based classification of SITS and based on self-attention mechanisms.
Experiments are carried out in Brittany, in the northwest of France, with Sentinel-1 and Sentinel-2
time series. Input and layer-level fusion competitively achieved the best overall F-score surpassing
decision-level fusion by 2%. On a per-class basis, decision-level fusion increased the accuracy of
dominant classes, whereas layer-level fusion improves up to 13% for minority classes. Against single-
sensor baseline, multi-sensor fusion strategies identified crop types more accurately: for example,
input-level outperformed Sentinel-2 and Sentinel-1 by 3% and 9% in F-score, respectively. We have
also conducted experiments that showed the importance of fusion for early time series classification
and under high cloud cover condition.

Keywords: fusion; satellite image time series; Sentinel-1; Sentinel-2; pixel-set encoder; temporal
attention encoder

1. Introduction

Causal factors such as climate change have a high likelihood to threaten food security
at global, regional, and local levels [1]. Recent reports reveal that agriculture absorbs 26% of
the economic impact of climate-induced disasters, which rises to more than 80% for drought
in developing countries [2]. The agricultural sector is not only impacted by changing
climates but contributes about 24% of greenhouse gas (GHG) emissions together with
forestry and other land use [3]. Under certain conditions, warmer temperatures and carbon
dioxide presence can stimulate crop growth [4], especially in temperate regions. Extreme
thresholds, however, may have dire consequences on crop productivity [5]. Remote sensing
has become an integral tool supporting the monitoring and management of agriculture as
well as efforts to mitigate climate change.
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The contribution of remote sensing is demonstrated in studies related to land cover
mapping [6–8], urban studies [9], forest inventories [10], and burnt area mapping [11].
They are the backbone for diverse large-scale operational services (e.g., European Coperni-
cus services), addressing issues concerning land, disasters, marine, and atmosphere. In
agriculture, they have been used for crop classification [12], phenology studies [13,14],
yield estimation [15,16], and insurance applications [17]. The availability and access to
open satellite data archives (e.g., moderate resolution imaging spectroradiometer (MODIS),
Landsat, and Sentinel) is advancing methodologies to solve environmental and societal
challenges. One interesting context, especially in crop studies and land cover mapping, is
the use of satellite image time series (SITS) where images of the same area are acquired at
different dates. SITS presents opportunities for studying the seasonality or evolution of
objects through time to aid their discrimination [14,18].

Until recently, land cover and crop type mapping tasks mainly focused on single-
sensor data (e.g., optical SITS), which was used to feed traditional algorithms such as
random forests or support vector machines [6,19]. Although successful, these learning
algorithms do not harness temporal information, an essential dimension for vegetation
studies [20]. Current advances in SITS classification are marked by the use of deep learning,
which can make the most of the temporal structure of SITS data. They are designed to
leverage high-end computational power and can attain similar or higher classification
performance compared to classical machine learning algorithms [7,21,22].

Moreover, the diversity in sensor characteristics (spatial, spectral, or polarimetric)
has triggered multi-sensor data fusion to enhance information for discriminating objects.
For example, the combination of polarimetric radar and optical data provides information
on different physical characteristics: the former describes structure and moisture content,
whereas the latter provides spectral information across a wide range of spectra. Such
synergy can complement information loss rising from cloud cover in optical data. Even in
the absence of this limitation, their unison has resulted in increased performance compared
to the use of each sensor [23–25].

Although promising, the combined use of optical and radar data is sparingly explored
compared to the use of a single sensor, especially in the case of deep learning techniques
for crop classification. There have been only a few attempts, to the extent of our literature
review, to leverage optical and radar synergies through deep learning [7,26]. Our study
extends these research works by investigating more forms of fusion along with an advanced
deep learning architecture, namely pixel set encoder–temporal attention encoder (PSE-TAE),
and proposes the optimal level of synergy in this setup between Sentinel-1 and Sentinel-2
for crop classification. Additionally, we explore (i) sparse SITS to mimic scenarios where
the presence of clouds hinders the use of a complete Sentinel-2 SITS in optical-radar fusion,
and (ii) incremental learning to assess the benefit of fusion for mapping crops before having
a full year of data.

The rest of this paper is organized as follows: Section 2 presents related works with an
overview of current state-of-the-art approaches for the classification of Earth observation
(EO) time series in Section 2.1, and fusion strategies and application to radar and optical
time series in Section 2.2. Section 3 describes the study area and the data used. In Section 4,
we present the fusion strategies as well as the deep learning architecture employed in
the study. Section 5 is the core section of this paper with qualitative and quantitative
comparison of fusion strategies. Finally, we draw the conclusion in Section 6.

2. Related Work
2.1. Satellite Image Time Series Classification

The tremendous increase in the amount of free satellite data has triggered the de-
velopment of robust methodologies to efficiently exploit high volumes and varieties of
data for automated mapping at large scales. During the last decade, the classification
of SITS data mainly relied on standard machine learning algorithms, notably decision-
based (e.g., random forests [27]) and kernel-based (e.g., support vector machines [28])
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for crop recognition [25,29,30] and land cover mapping [6,31–34]. Several studies have
established that random forests perform better than support vector machines in winter
land use mapping [24], in crop mapping [19], or in land cover mapping [6]. Presently,
techniques based on deep learning have become prominent given their capacity to adap-
tively discover patterns from dense data, leveraging high-end computational power. In the
context of SITS, they have attained similar or higher classification performance compared
to classical machine learning techniques [7,21,22] and improved the separation of mixed or
under-represented classes [33]. Deep learning has been applied using convolutional neural
networks (CNNs) for handling the temporal dimension [21,35]; recurrent neural networks
(RNNs)-like models [36,37], including long short term memory (LSTM) [33,38] or gated
recurrent unit (GRU); and strategies that combine CNN with recurrent models [39,40], or
ConvLSTM [41,42]. Recently, attention-based architectures have been proposed for the
SITS classification in the context of crop type mapping [22,43]. The work presented in [22]
shows that attention-based mechanisms outperformed CNNs but are at par with LSTM on
unprocessed data, e.g., cloudy optical SITS; however, when extensive data pre-processing is
applied, results are comparable to random forests. In [43], a modified self-attention-based
mechanism architecture, namely pixel-set encoder–temporal-attention encoder (PSE-TAE),
extracts more expressive features than CNNs and GRUs. PSE-TAE is an object-based
classifier developed for crop type mapping, which is composed of a spatial encoder (PSE)
to exploit the spatial context in SITS and a temporal encoder (TAE) to encode the temporal
structure of SITS. A light-weight TAE also exists [44].

2.2. Fusion Strategies for Satellite Image Time Series

The single use of optical or radar data has been beneficial to produce parcel-level
crop maps at national and continental scales [45,46]. At times, data from a single sen-
sor may not be enough to optimize target class separation. Given the different acquisi-
tion mechanisms of optical and radar sensors, they can enrich information for discrimi-
nating targets by respectively contributing information on reflectance and structural or
moisture properties. This is evidenced in studies relating to land cover mapping [7,34],
grassland monitoring [47], burnt area detection [11], urban mapping [34,48], crop map-
ping [12,18,26,29,49–51], soil moisture mapping [52], soil texture estimation [53], and
crop phenological studies [14]. Today, the consistent acquisitions of ESA’s Sentinel-1
and Sentinel-2 images has allowed their exploitation in unison.

According to [54], multi-modal image fusion can be grouped into pixel, feature, and
decision levels. In deep learning, the pixel- and feature-level fusions have been redefined
as input-level and layer-level, respectively [55].The input level fundamentally combines
image bands from multi-source data (usually through resampling and concatenation, or
image to image co-registration). This is the simplest and common form of fusion, but it
might suffer some drawbacks due to the resulting high dimension of stacked data [56].
Layer fusion requires the extraction and concatenation of high-level features allowing each
modality to learn individual feature representations. At the decision level, each modality
is independently processed by a network to generate class confidence scores (in the case
of classification), which are combined statistically (e.g., averaged) to yield a final fused
decision. An interested reader can also refer to [57,58] for a general review of data fusion
in remote sensing and its main challenges.

In multi-modal (typically optical and radar) SITS, fusion has been commonly applied
using traditional machine learning algorithms. Most of the studies used an early fusion
strategy with a random forest classifier, where optical and radar time series are stacked
together in one data cube [7,11,12,24,29,34,49–51,53,59]. A late fusion strategy was also
adopted in [7,56], where class probability vectors obtained by training two independent
random forest models are combined together to obtain the final prediction. The combined
use of Sentinel-1 and Sentinel-2 has been shown to improve accuracies compared to a
single sensor but has mainly been explored with random forests. Although deep learning
techniques achieved significant performance in crop and land cover mapping, only few
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studies [7,26], have leveraged optical and radar synergies through deep learning. The
authors of [26] used 1D-CNN, whereas 2D-CNN and RNN are integrated in [7] to combine
Sentinel-1 and Sentinel-2 time series. One of the best performances from [7] is yielded by
feeding a random forest classifier with high-level spatio-temporal features extracted from
two deep networks trained independently on each modality. SITS have also been fused with
single-date high spatial resolution data using U-Net, CNN and/or GRU approaches [60,61].
Moreover, optical and radar data have also been used together without, strictly speaking,
fusing them [47,62]. In these works, radar time series serve as the input of a deep learning
model, while the target is a derived feature (e.g., normalized difference vegetation index
(NDVI) time series [47] or a segmentation map [62]) extracted from optical data.

Our study extends these research works by investigating more forms of fusion along
with an advanced deep learning architecture, namely pixel set encoder–temporal attention
encoder (PSE-TAE), and proposes the optimal level of synergy in this setup between
Sentinel-1 and Sentinel-2 for crop classification.

3. Data
3.1. Study Area

The study area, Finistère, is a department in the Western Brittany region, France (see
Figure 1). It consists of four districts, namely Quimper, Châteaulin, Morlaix, and Brest,
covering an area of 6733 km2, which corresponds to about a quarter of Brittany. Bordered
by the English Channel and the Atlantic Ocean on a 1200 km coastline, the department
experiences a temperate oceanic climate characterized by mild temperatures in winter,
temperate in summer, and rainfall distributed all throughout the year. Finistère features a
high variety of crops, making it an interesting consideration for crop classification studies.
The prevalent crops cultivated are meadows , maize, vegetables, barley, and wheat (see Figure 2).
On average, croplands measure about two hectares in this area.

N

30UVU30UUU

N

1 2

3

4

1 – Brest 
2 – Morlaix
3 – Châteaulin
4 – Quimper

Figure 1. The study area, Finistère, is a French department in the Western Brittany region (in red). Finistère consists of four
districts: Quimper, Châteaulin, Morlaix, and Brest. Sentinel-1 footprints and Sentinel-2 granule tiles are displayed in blue
and white, respectively.
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3.2. Crop Type Labels

Farmer declarations, which form the basis of subsidy disbursement under the Eu-
ropean Union Common Agricultural Policy, have resulted in a huge archive of publicly
available crop labels (Land Parcel Identification System). In France, this information is
collated under the Registre Parcellaire Graphique (RPG), a comprehensive geographical de-
pository allowing the identification of land use on agricultural parcels. RPG is obtained
from the French open data platform (www.data.gouv.fr, accessed on 16 February 2021) for
the year 2019. It is published, for each France region, with a hierarchical nomenclature of
more than 300 categories for the lower level and 28 for the higher level. In Finistère, 20 out
of the 28 categories of agricultural land use are identified. Although subject to some issues
(e.g., mis-registration errors), we assume here that these data are free of errors.

N

Figure 2. Reference crop map of Finistère. Red boxes are selected sites for qualitative evaluation. See Table 1 for the legend.

As an initial data preparation step, classes representing mixed crops or classes with
relatively low occurrences (below 0.02% of total reference data) are discarded from the
analysis. There is an exception for the class “other cereals”, which includes buckwheat, a
regional cereal. Permanent and temporary meadows are consolidated into one class as they
cannot be distinguished within the time frame considered. In the end, a total of 12 classes
are considered: maize, wheat, barley, rapeseed, protein crops, gel (frozen surfaces), fodder, pasture
and moor, meadows, orchards, vegetables/flowers and other cereals. The crop type distribution is
highly imbalanced with the meadow class representing the highest frequency, nearly half of
the total samples. The code for the different data preprocessing steps is publicly available
at https://github.com/ellaampy/CropTypeMapping (accessed on 16 February 2021).

www.data.gouv.fr
https://github.com/ellaampy/CropTypeMapping
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Table 1. Number of parcels per crop type and per district.

Legend Quimper Châteaulin Morlaix Brest Total %Training Training Validation Testing

Maize 11,237 7670 7830 10,934 37,671 20.87
Wheat 4820 4684 2583 3227 15,314 8.48
Barley 2378 2072 3417 3017 10,884 6.03

Rapeseed 899 1092 338 300 2629 1.46
Other cereals 1591 883 629 352 3455 1.91
Protein crops 169 104 58 46 377 0.21

Vegetables/flowers 1080 472 10,030 2502 14,084 7.8
Orchards 218 69 33 45 365 0.2
Meadows 25,020 22,602 18,414 21,151 87,187 48.3

Gel 1651 1059 579 354 3643 2.02
Fodder 1373 890 846 647 3756 2.08

Pasture/moor 153 369 466 176 1164 0.64

Total 50,589 41,966 45,223 42,751 180,529 100

Figure 2 displays the reference crop map for the whole studied area, and Table 1 gives
the actual number of parcels per class and per district. In the experiments (presented in
Section 4.2), the train–validation–test split is made at district level. Crop instances from
Châteaulin and Quimper are combined to form the training set, whereas Morlaix crops
form the validation set. The Brest district is used to report the final performance for the
different baselines and fusion scenarios.

3.3. Satellite Data

The Copernicus mission is the European Earth observation program with a constel-
lation of optical and radar satellites called Sentinel, providing free, accurate, continuous,
global coverage for a better understanding and sustainable management of the environ-
ment. Sentinel-1 (radar) and Sentinel-2 (optical) image time series are acquired between
October 2018 and December 2019 to obtain enough information to capture the phenology
of different crops. Data from the end of 2018 are retained to provide additional information
on soil structural changes during tilling in preparation for sowing [13]. We consider a
multi-seasonal rather than a multi-annual time series. Figure 3 displays the acquisition
dates for Sentinel-1 and Sentinel-2 time series.

Sentinel-1     Sentinel-2 (    parcel 1,      parcel 2,      parcel 3)

Figure 3. Acquisition dates of Sentinel-1 (in blue) and Sentinel-2 (in cyan, orange, and green) time
series. Dates differ for Sentinel-2 depending on the parcel’s location. Figure 1 displays colored dots
(cyan, orange, and green) to infer the location of the three parcels.

Each mission is equipped with twin polar-orbiting satellites at 180° apart, enabling
acquisitions at about 5 and 6 days repeat cycles for Sentinel-2 and Sentinel-1, respectively.
Sentinel-2 provides multi-spectral images, whereas Sentinel-1 provides data from a dual-
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polarized C-band SAR enabling imaging through clouds. Both data are collected from
Google earth engine (GEE), a cloud-based geospatial analysis platform hosting a rich
catalog of publicly available data [63] including Sentinel, Landsat, and MODIS.

Figure 4 shows NDVI extracted from Sentinel-2 images (left) and Sentinel-1 VV
backscatter (right) in a time composite, highlighting different vegetation dynamics (which
corresponds to winter and summer crops) observed through an optical and radar lens.
Changes prominent between January and April, May and August, and September and
December are shown as red, green, and blue, respectively. We describe in the following
paragraphs the different preprocessing steps applied for each type of data.

Jan - Apr

May - Aug Sept - Dec

Figure 4. Multi-temporal RGB composite. Sentinel-2 NDVI (left). Sentinel-1 VV (right).

Sentinel-1: The Sentinel-1 collection comprises ground range detected (GRD) scenes in
interferometric wide (IW) swath mode with dual polarization (VV and VH). The maximum
number of acquisitions (in our given time frame) over a swath in Finistère is 75. Only data
from one pass (descending) and the same orbit number (154) are used to ensure similar
acquisition conditions. GEE adopts a standard processing workflow implemented in ESA’s
Sentinel-1 toolbox [64] to produce analysis-ready data. The workflow is applied in the order
of: border noise removal, thermal noise removal, radiometric calibration, terrain correction,
and conversion to decibels. Sentinel-1 images (provided at a 10 m spatial resolution in
GEE) are co-registered to Sentinel-2. We further apply a ratio-based multi-temporal speckle
filtering technique proposed by [65].

Sentinel-2: Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mis-
sion. Sentinel-2 bands vary in spatial resolution at 10, 20, and 60 m. Surface reflectance
products (level-2A) available in GEE are gathered. These have been generated using
Sen2Cor [66], a processor for the atmospheric, terrain, and cirrus correction of top-of-
atmosphere Level 1C data. Atmospheric bands (coastal aerosol, water vapor, and cirrus
bands at 60 m) are excluded, and the remaining bands (in the visible and infra-red range)
are considered. Bands at 20 m are resampled to 10 m. The collection is filtered for images
with a cloudy cover percentage below 80% to limit the occurrence of cloudy observations.
Then, for each month, two acquisitions with the least cloudy cover percentage are re-
tained. This results in a total of 30 images or less (27) for few parcels, where available
images could not meet the cloud criteria. As seen in Figure 3, temporal gaps in Sentinel-2
are irregular using this strategy, yet specific to parcels within the same scene footprints.
Moreover, the strategy is hindered by its dependency on metadata, which is subject to
quality issues [67]. Inglada et al. [12] have shown that using Sentinel-1 and Sentinel-2
without gap-filling cloudy areas can yield results equivalent to using Sentinel-2 only in a
cloud-free setting; hence, the analysis proceeds without any pixel-based cloud masking or
gap-filling approach.
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3.4. Data Preparation

Feature normalization: For every image, the individual bands are normalized (per
image, date, and channel) to transform pixel values into a common scale while preserving
inherent similarities and variations. This process is known to accelerate convergence with
machine learning algorithms and to avoid exerting importance on features with higher
dynamic ranges. Normalization is applied using feature min-max normalization, which
deduces minimum and maximum values from 2% and 98% percentile to be less sensitive
to outlier values.

Input data organization: Besides features values, acquisition dates for each parcel
are stored for both sensors. Acquisition dates for Sentinel-1 are constant, but vary for
Sentinel-2 due to the cloud reduction strategy adopted. All parcels are cropped to the time
series collection and stored per sensor as NumPy arrays of shape T × C × N, where T is
the time series length, C is the number of channels, and N is the number of pixels within
a parcel.

4. Methods
4.1. Overview of Pixel Set Encoder–Temporal Attention Encoder

To explore different fusion strategies, we adopted pixel set encoder–temporal attention
encoder (PSE–TAE) [43] as the deep learning architecture over existing supervised learning
algorithms dedicated to SITS classification. The PSE-TAE architecture is a spatio-temporal
classifier for the classification of SITS at object-level. We thus assume that field geometries
are accessible and known, which is the case for most fields in Europe [68]. Besides being
the state-of-the-art algorithm for SITS classification, the choice of PSE-TAE lies in its ability
to (i) address variable parcel size and account for irregular temporal sampling, (ii) learn
long-term dependencies through self-attention mechanisms, and (iii) operate with lesser
memory requirement, thus improving computational efficiency. The two main components
of the architecture are (i) the spatial encoder (pixel set encoders) and (ii) the temporal
attention encoder.

Pixel set encoder (PSE): In deep learning, textural information is usually extracted
using CNNs. This information is lost when input images have a rather coarse resolution [69].
To overcome this limitation, the architecture uses pixel-set encoders, which computes
learned statistical descriptors of the spectral distribution of the parcel’s observations from a
randomly selected number of pixels. The pixels are processed by shared consecutive MLPs
to obtain a spatio-spectral embedding per date.

Temporal attention encoder (TAE): The TAE is founded on self-attention mecha-
nisms [70]. Using this concept emphasizes the relationship among the different positions of
an input sequence (here a time series) in order to compute a representation of the sequence.
The relative positions of the sequences are preserved by using a positional encoder (based
on sine and cosine functions), and this information is added to the PSE embeddings. The
TAE takes the sum of both embeddings as direct inputs. The use of multi-head attention
allows the model to jointly attend to information from different representation subspaces at
different temporal positions while facilitating parallelization and improving computation
as opposed to the sequential processing of RNNs.

Finally, the resulting TAE embeddings are processed by a multi-layer perceptron
(MLP) to generate class logits.

4.2. Fusion Strategies

Per the research objectives, the synergy between Sentinel-1 and Sentinel-2 is explored
along different parts of the architecture to determine where they enhance classification
performance. Figure 5 denotes the different forms of fusion termed (a) early fusion, (b) PSE
fusion, (c) TAE fusion, and (d) statistical fusion of class probabilities. According to standard
definitions in deep learning, the fusion strategies are classified as (a) input-level, (b–c)
layer-level, and (d) decision-level.
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Early fusion: In the early fusion scenario, the ten processed spectral bands of Sentinel-
2 are combined along the channel dimension with the two polarizations (VV and VH)
of Sentinel-1. This concatenation is only possible if both Sentinel-1 and Sentinel-2 time
series have the same number of acquisitions. Hence, we decide to reduce the temporal
dimension of Sentinel-1 to 27 from 75 to match the dimension of Sentinel-2. We explored
two strategies for this temporal interpolation operation: (i) a temporal nearest neighbor
resampling, where the Sentinel-1 observations having the same or near acquisition dates to
Sentinel-2 are selected, and (ii) a linear temporal interpolation on the acquisition dates of
Sentinel-2. While the second strategy should reduce the reconstruction error, especially if
some big temporal gaps occur in Sentinel-2 time series, we observed that the first strategy
is a good enough approximation for the classification task given.

Sentinel-2 time series
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(a) Early fusion (input-level) (b) PSE fusion (layer-level)

Sentinel-2 time series

pixel set 
encoder

temporal 
attention 
encoder

Sentinel-1 time series

M
L

P

pixel set 
encoder

temporal 
attention 
encoder

Concatenate 𝑝𝑐𝑖
𝑆1,𝑆2

temporal 
sampling

Sentinel-2 time series

pixel set 
encoder

temporal 
attention 
encoder

Sentinel-1 time series

M
L

P
pixel set 
encoder

temporal 
attention 
encoder M

L
P

Statistical 
operation

𝑝𝑐𝑖
𝑆1 (𝑥)

𝑝𝑐𝑖
𝑆2 (𝑥)

𝑝𝑐𝑖
𝑆1,𝑆2

temporal 
sampling

(c) TAE fusion (layer-level) (d) Late fusion (decision-level)

Sentinel-2 time series

pixel set 
encoder

temporal 
attention 
encoder

Sentinel-1 time series

M
L

P

pixel set 
encoder

temporal 
attention 
encoder M

L
P

𝑝𝑐𝑖
𝑆1

𝑝𝑐𝑖
𝑆2temporal 

sampling

(e) No fusion

Figure 5. Levels of multi-modal fusion strategies with pixel set encoder (PSE)–temporal attention encoder (TAE): (a) early
fusion, (b) PSE fusion, (c) TAE fusion, (d) late fusion, and (e) no fusion.

PSE fusion: In this scenario, the layer-level fusion is performed after the PSE module
by using also a concatenation operation. The output of PSE is a time series embedding,
whose length is the same as the input time series. The concatenation between Sentinel-1
and Sentinel-2 embeddings is thus possible if and only if Sentinel-1 and Sentinel-2 PSE
embeddings have the same length. We adopt the same strategy as for the early fusion and
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resample Sentinel-1 input time series to match the length of Sentinel-2 time series. We
could also directly resample the Sentinel-1 PSE embedding, but this would result in a PSE
module for Sentinel-1 larger than necessary.

TAE fusion: For this second layer-level strategy, the fusion is performed after the TAE
module by concatenating embeddings learned by two independent PSE-TAE networks.
The concatenation occurs before the MLP classifier. It is a straightforward operation as
both embeddings have the same size.

Late fusion: In this last scenario, we apply a decision-level fusion where the class
probabilities generated by two independent PSE-TAE classifiers are combined. We explore
two computation strategies: (i) a simple average between probabilities produced by both
classifiers and (ii) the product of experts proposed by [56]. We observed that a simple
average obtains higher performance, and thus report only these results.

In Section 5, two categories of experiments are designed. Firstly, data from one sensor
(either Sentinel-1 or Sentinel-2) is fed into the architecture to generate class predictions
(Figure 5e). An identical setup of the architecture is used in each case. This serves as the
baseline. Secondly, their synergy is examined through the four fusion strategies previously
presented. Please note that a temporal resampling of Sentinel-2 time series is required for
all our experiments. Sentinel-2 sequence lengths vary between 27 and 30 acquisitions due
to the cloud cover filtering strategy (see Figure 3); it thus creates feature vectors of variable
length for each parcel. Such inconsistencies become an issue when training most machine
and deep learning algorithms (e.g., distance computation or use of batches). Hence, we
randomly sample 27 observations (minimum sequence length observed in Sentinel-2 time
series) for each parcel.

Table 2 displays the number of trainable parameters for all the presented configu-
rations. The numbers of parameters for single-sensor experiments are also displayed
(Sentinel-1 only and Sentinel-2 only).

Table 2. Number of parameters for the different fusion strategies.

Experiments No. Parameters

Sentinel-1 only 163,084
Sentinel-2 only 163,340

Early fusion 163,404
PSE fusion 798,956
TAE fusion 323,692
Late fusion 326,424

Sentinel-1 data have longer time series but only two (polarimetric) features, whereas
Sentinel-2 data present shorter time series but a higher number of (spectral) features. This
results in a similar number of trainable parameters for the two baseline models and slightly
different training times (about 1 h for Sentinel-2 and 2 h for Sentinel-1). The early fusion
also results in a similar number of trainable parameters such as the single sensor baselines,
which is expected as only the amount of features slightly increases. The TAE and late fusion
strategies double the number of trainable parameters as two PSE-TAE streams are used
to process independently the two modalities. Finally, the PSE fusion implies the highest
number of trainable parameters. This is due to the increase in the input embedding size for
the TAE module that would require double the size of the weight matrix involved in the
self-attention computations.

4.3. Experimental Setting

We adapt and extend the original GitHub implementation of the PSE-TAE [43] to (i)
accommodate multi-sensor inputs and (ii) design the different fusion strategies. Our code
is made publicly available at https://github.com/ellaampy/CropTypeMapping (accessed
on 16 February 2021).

https://github.com/ellaampy/CropTypeMapping
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We use a similar configuration to the original PSE-TAE work. Networks are trained
using the Adam optimizer with a learning rate of 0.001 for 100 epochs, which is, as in the
original paper and in our experiments, enough for all models to achieve convergence. The
loss function used is the focal loss (γ = 2 as suggested in [71]), which was proposed to
address the class imbalance issue. As in [43], the number of randomly sampled pixels per
parcel in the PSE module is set to 64, and the dropout rate (used in TAE) is set to 0.2. The
model is trained using one RTX-2080-Ti GPU of RAM 11 GB. The influence of batch size is
evaluated on the validation set, and a size of 512 is found to provide better performance.
The best model is selected by monitoring the mean Intersection over Union (mIoU) on the
validation set (see Section 3.2).

For each iteration, the parcel data, as well as the dates of acquisition (transformed into
days of the year), are forwarded to the PSE-TAE architecture. The dates are used to index
into a pre-computed positional encoding of maximum length 460 (maximum day of the
year spanning October 2018 to December 2019) and added to the embeddings to preserve
their order. The randomization processes, including the sampling of pixels per parcel is
fixed for each run across all experiments. This ensures that the variations in results are
independent of the input. We also ensure that the same pixels are selected per parcel for
Sentinel-1 and Sentinel-2 data in fusion experiments.

4.4. Evaluation Metrics

Classification performance is assessed using established metrics including overall
accuracy, average F-score, mean Intersection over Union (mIoU), and Kappa statistics. To
produce reliable assessments, the result from each experiment is averaged over five runs.
Prediction maps are also qualitatively compared to the ground truth labels over selected
subsets of the test study area (red squares in Figure 2).

5. Experimental Results
5.1. Comparative Evaluation of Fusion Strategies

Table 3 summarizes the evaluation metrics for single and multi-sensor experiments
averaged over five runs. Early and PSE fusions use a nearest-neighbor interpolation,
whereas the late fusion strategy uses the average of class probabilities (see Section 4.2).
We observe that for over 150,000 parcels, the PSE-TAE training and testing time averaged
between 1–2 h for single-sensor and up to 3 h for multi-sensor experiments.

Table 3. Per-class accuracy and overall accuracy, F-score, and Kappa averaged (± one standard
deviation) over 5 runs for each experiment. Bold values show the highest performance.

S1 S2 Early PSE TAE Late

Maize 0.943 0.968 0.967 0.973 0.972 0.975
Wheat 0.921 0.960 0.958 0.952 0.962 0.971
Barley 0.816 0.927 0.924 0.939 0.942 0.946

Rapeseed 0.911 0.900 0.891 0.935 0.943 0.942
Other cereals 0.260 0.341 0.375 0.411 0.430 0.335
Protein crops 0.213 0.213 0.284 0.307 0.271 0.218

Vegetables/flowers 0.652 0.736 0.771 0.738 0.736 0.761
Orchards 0.004 0.089 0.102 0.138 0.098 0.040
Meadows 0.961 0.952 0.957 0.937 0.951 0.980

Gel 0.003 0.047 0.040 0.085 0.042 0.001
Fodder 0.289 0.341 0.403 0.442 0.377 0.309

Pasture/moor 0.168 0.475 0.546 0.441 0.502 0.248

OA 0.896±.003 0.916±.007 0.922±.002 0.913±.008 0.913±.008 0.934±.004

Kappa 0.842±.003 0.875±.011 0.883±.003 0.872±.01 0.881±.013 0.901±.006

mIoU 0.444±.002 0.502±.013 0.525±.007 0.519±.014 0.519±.014 0.515±.009

F-score 0.522±.003 0.587±.015 0.612±.007 0.611±.015 0.611±.015 0.591±.008
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Between single sensor baselines, Sentinel-2 outperforms Sentinel-1, as established in
previous studies using random forests [12,14,24]. Sentinel-2 achieves 2% increase in overall
accuracy, ≈7% units in F-score, and up to 30% gains in per-class accuracies. Both sensors
have a comparable performance for protein crops, rapeseed, and meadows. The highest per-
class accuracies and overall metrics are obtained by multi-sensor fusion. Fusion scenarios
outperform Sentinel-1 with 2–4% gain in overall accuracy and up to 9% units in F-score.
Lower gains in overall accuracy (below 2%) are observed over Sentinel-2 except for PSE
and TAE where performance is comparable.

Interestingly, we also notice that under-represented classes (below 3%, see Table 1)—
rapeseed, other cereals, protein crops, orchards, gel, fodder, and pasture/moor—are better predicted
at input and layer levels (early, PSE, and TAE). Conversely, late fusion is well suited
for dominant classes. Although rapeseed is an under-represented class, it was highly
distinguishable in all scenarios with over 85% accuracy and small confusion with other
winter crops (wheat and barley).

5.2. Qualitative Analysis

Figure 6 compares prediction maps for single (second and third column) and multi-
sensor (last column) scenarios over subsets of Brest (see Table 1 for the legend). Protein
crops and maize are rightly classified by Sentinel-1 in site A (black rectangle) but missed
by early fusion. Subsequently, vegetables are confused with other cereals and fodder in early
fusion (black square) but predicted accurately by Sentinel-2. In test site B (blue ellipses),
fodder and meadow are missed by Sentinel-1 and Sentinel-2 but classified correctly through
fusion. However, there are cases where neither single or multi-sensor predicts correctly
(red box).

Reference map Sentinel-1 Sentinel-2 Early fusion

Si
te

A
Si

te
B

Figure 6. Qualitative comparison of prediction maps for two different sites. The first column displays the reference land
cover map, the second and third column present predictions from Sentinel-1 and Sentinel-2, and the last column from early
fusion. See Table 1 for the legend.

5.3. Sparser Time Series

We study the performance of PSE-TAE architecture on sparse time series by reducing
the number of Sentinel-2 observations. The aim is to mimic cloudy scenarios, where the
number of non-cloudy optical observations is limited. A certain percentage of the minimum
length of Sentinel-2 (27) is randomly sampled at each trial of the five runs. We compare
single sensor baseline (Sentinel-2 only and Sentinel-1 only) to three other forms of fusion:
early, TAE, and late fusion with averaging. We exclude experiments using PSE fusion
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due to the relatively higher number of trainable parameters yet comparable results to
other forms of fusion (see Table 2). Table 4 shows the average F-score. Except for early
fusion where Sentinel-1 images are selected at nearest dates of Sentinel-2, we have used all
Sentinel-1 time series.

Table 4. Sparse time series: F-score averaged (±one standard deviation) over 5 runs considering n%
of Sentinel-2 data. Bold values show the highest performance for different quantities of missing data.

20% 40% 60% 80% 100%
5 obs. 11 obs. 16 obs. 22 obs. 27 obs.

Sentinel-2 0.443±.012 0.537±.015 0.576±.012 0.587±.012 0.587±.017

Sentinel-1 0.522±.003 0.522±.003 0.522±.003 0.522±.003 0.522±.003

Early 0.478±.013 0.564±.005 0.595±.004 0.603±.014 0.612±.008

TAE 0.558±.010 0.575±.017 0.590±.007 0.605±.007 0.611±.017

Late 0.540±.007 0.564±.014 0.584±.012 0.583±.010 0.591±.009

As more data are ingested, i.e., increasing the number of Sentinel-2 acquisitions, there
is a general increase observed in F-score. Up until 100% sampling of optical data, most of
the fusion strategy outperforms Sentinel-2. The TAE fusion, which uses all Sentinel-1 data,
outperforms early fusion when the number of Sentinel-2 observations available is low. If
a higher number of Sentinel-2 observations is available, early and TAE fusion strategies
perform similarly. We also observe that the use of only five Sentinel-2 observations already
allows a significant increase (about 0.036) in the F-Score compared to the use of only
Sentinel-1 time series data.

5.4. Incremental Learning

The goal of this experiment is to study the benefit of fusion for mapping crops before
having a full year of data. For this purpose, we rerun our experiments by quarterly
increments in data from October 2018. Figure 7 displays the overall F-Score averaged over
five runs for single sensors and the best fusion strategy (early fusion).

Dec 2018 Mar 2019 Jun 2019 Sep 2019 Dec 2019
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

F-
Sc

or
e

Sentinel-1
Sentinel-2
Early fusion

Figure 7. Average F-Score for quarterly classification for three scenarios: Sentinel-1 only (in blue),
Sentinel-2 only (in green), and early fusion (in red).
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We observe similar incremental patterns in F-score across all experiments as the season
progresses. Sentinel-1 time series yields the lower performance, which is expected as optical
data are a better estimator of phenological activity that is crucial to distinguish crops.
Moreover, the early fusion dominates from March 2019 and onward. The performance
tends to saturate after September 2019, which corresponds to the harvesting period of
the summer crops. The use of both optical and radar modalities leads thus to a slight
performance improvement for early crop type mapping.

6. Conclusions

The interplay between publicly available satellite data and current state-of-the-art
remote sensing techniques can provide cost-effective, accurate, and timely information
on crop extent and dynamics. In this study, Sentinel-1 and Sentinel-2 time series are
harmonized for crop type mapping in Finistère, France using PSE-TAE, a deep learning
architecture that leverages both spatial and temporal dimensions of SITS data. The com-
putational efficiency offered by PSE-TAE allows the rapid assessment of different model
configurations. Key findings from the study are summarized below:

• Combined Sentinel-1 and Sentinel-2 modalities are beneficial to increase classification
performance [23–25] in majority and minority classes. Depending on the availability
of class samples, different forms of fusion are suggested. When classes of interest
are under-represented, it is better to use input or layer level fusion. In the case of
well-represented classes, any form of fusion is sufficient, but decision-level fusion
introduces more gains.

• The fusion of high-level temporal features obtained from Sentinel-1 and Sentinel-2
time series produces reliable results when optical data are very limited.

• Our experiments also confirm main results in the existing literature [12,14,24]: the use
of optical time series results in higher performance than the use of radar time series.

Due to the limited research in optical and radar SITS fusion using deep learning, future
work is required to investigate the contributions of radiometric indices, e.g., vegetation
indices and polarimetric ratios [13] as well as augmentation techniques to improve the
instances for under-represented classes.
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