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1  | INTRODUC TION

Great efforts have been directed recently in the plate kinematic com-
munity to consider the pre- breakup evolution in kinematic recon-
structions of divergent plate boundaries (Aslanian & Moulin, 2013; 
Barnett- Moore et al., 2016; Nirrengarten et al., 2018; Peace 
et al., 2019). A robust kinematic description appears crucial to a 
physics- based understanding of rifting (Brune et al., 2014; Gueydan 
et al., 2008; Williams et al., 2019). Kinematic restoration of divergent 
plate boundaries relies on a common procedure, which includes: (a) 
tight fit of seafloor magnetic anomalies, defining the position of di-
verging plates through time; (b) oceanic fracture zones, interpreted 
as flowlines, determining the direction of the motion; (c) necking 

zones, defining the tightest- fit solutions of reconstructions; and (d) 
paleomagnetic data from continental undeformed regions, outlining 
rotation and latitudinal shifts (Schettino & Turco, 2011).

This four- step approach has achieved outstanding results in re-
constructing global plate motions at divergent settings (Müller et al., 
2019). However, problems arise when obliquely deforming continen-
tal regions are considered, as shown for the Iberian case (Angrand 
et al., 2020; Barnett- Moore et al., 2016; Peace & Welford, 2020; 
Tavani et al., 2018). During a large part of its Mesozoic history, 
Iberia was a continental rigid block delimited by intracontinental de-
forming regions, 40– 200 km wide (Ady & Whittaker, 2019; Angrand 
et al., 2020; King et al., 2020) and hereafter referred to as strike- slip 
corridors. The M- series magnetic anomalies fringing Iberia on its 
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Abstract
Despite considerable progress in restoring rifted margins, none of the current kin-
ematic models can restore the Mesozoic motion of the Iberian block in full agreement 
with the circum- Iberian geology. This conflict requires a revision of the kinematic 
description at the onset of divergence. The circum- Iberian region has a unique geo-
logical dataset that allows calibration and testing of kinematic reconstructions and 
therefore it is an ideal candidate for testing intracontinental restoration approaches. 
Here we define intracontinental deforming regions, referred to as strike- slip corri-
dors, based on alignments of Mesozoic rift basins and/or transfer zones bordering 
rigid continental blocks. We use these strike- slip corridors and data from the south-
ern N- Atlantic and Tethys to define the motion path of the Flemish Cap, Ebro and 
Iberia continental blocks. The resulting Mesozoic kinematic model for the Iberian 
block is compatible with recently published data and interpretations describing the 
Mesozoic circum- Iberian geology. Large- scale intracontinental strike- slip corridors 
may offer a valid boundary condition for reconstructing continental block motion at 
the onset of divergence in intracontinental settings.
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N- Atlantic side have been shown to not represent classical oceanic 
magnetic anomalies and therefore to be unreliable for reconstruc-
tions (Nirrengarten et al., 2017; Szameitat et al., 2020). Moreover, 
kinematic reconstructions proposed Late Cretaceous subduc-
tion east of Iberia not harmonizing with tomographic data in the 
Pyrenees (Chevrot et al., 2018; Gong et al., 2008; Neres et al., 2012; 
Nirrengarten et al., 2017; Vissers & Meijer, 2012b).

The Mesozoic left- lateral motion of Africa (AFR) relative to 
Europe (EU) occurred while Iberia was diverging from North America 
(NAM) and interleaved rigid continental blocks were moving (Müller 
et al., 2019). We identify strike- slip corridors limiting rigid continen-
tal blocks, which include the Newfoundland, Flemish Pass, and Bay 
of Biscay— Iberian Rift corridors. Continental blocks are considered 
rigid if their internal estimated deformation is <30 km, that is, the 
error value introduced in restorations (Nirrengarten et al., 2018). 
The motion of blocks is assumed to be perpendicular to necking lines 
at orthogonal intracontinental rifts or parallel to the dominant trend 
of strike- slip corridors. Relying on these corridors as motion paths 
for kinematic restorations enable to build a new kinematic model for 
the southern N- Atlantic and the Bay of Biscay, and to reconstruct 
the kinematics of Iberia from 200 to 83 Ma, that is, from Late Triassic 
onset of rifting in the Central Atlantic to Anomaly C34, the first un-
ambiguous oceanic magnetic anomaly in the southern N- Atlantic.

2  | TEC TONIC SET TING

Following Nirrengarten et al. (2018), the current Iberia consisted, 
before 83 Ma, of two continental rigid blocks, Iberia (IB) and Ebro 
(EBR), that were surrounded, at different periods, by other smaller 
blocks such as Flemish Cap (FL), Porcupine (PR) and Morocco (MO) 
(Figure 1). Figure 1 summarizes the stage Euler poles reported for 
the different blocks. Flemish Cap and Porcupine blocks separate 
North America from Europe. Morocco is the northwestern prom-
ontory of Africa, while Ebro is the promontory of Europe (Angrand 
et al., 2020; Favre & Stampfli, 1992). Significant ~N– S directed ex-
tension is invoked after 126 Ma between Ebro and Europe (Jammes 
et al., 2009; Lescoutre and Manatschal, 2020; Tavani et al., 2018). 
Motion is recorded in the Atlas separating Morocco from Africa 
during Early to Middle Jurassic (El Kochri & Chorowicz, 1996; Favre 
et al., 1991; Laville et al., 2004; Stampfli & Hochard, 2009).

Three large- scale strike- slip corridors have been identified around 
IB: (a) the Newfoundland corridor, (b) the Flemish Pass corridor, and 
(c) the Bay of Biscay- Iberian Rift corridor, B- IR (Angrand et al., 2020; 
Reid, 1988; Sandoval et al., 2019) (Figure 1). These strike- slip corri-
dors are up to 200 km wide and can contain local structures with 
variable trends and kinematics. The corridors connect aligned Upper 
Jurassic– Lower Cretaceous, laterally confined and narrow depocen-
ters, sometimes reactivated during later events (Cadenas et al., 2020). 
Offshore, subvertical structures belonging to the corridors are often 
difficult to interpret on seismic reflection data.

The Newfoundland corridor extends into the Newfoundland 
Fracture Zone separating the Central and N- Atlantic and fringing 

the North America and Morocco blocks. The corridor evolved to a 
transform margin bounded by oceanic crust, allowing to use magnetic 
anomalies to define its timing. The Flemish Pass corridor is proposed 
to run south of the E and W Orphan basins and is perpendicular to the 
necking zones bounding Flemish Cap. Restoration of the Late Jurassic 
to Lower Cretaceous E and W Orphan basins result in a dextral motion 
along this corridor (Lundin & Doré, 2019; Sandoval et al., 2019; Sibuet 
et al., 2007). As suggested by Lundin and Doré (2019) an associated 
zone of strike- slip may extend north of the Orphan basins into the 
proto- Labrador Sea (Figure 1). This strike- slip corridor may continue 
in the Biscay- Iberian Rift (B- IR) corridor, which defines the boundary 
between Iberia and Europe— Ebro. The B- IR is here interpreted by the 
alignment of Late Jurassic– Lower Cretaceous basins from north of the 
Balearic Islands to the Asturian basin and the northern Bay of Biscay 
margin (Cadenas et al., 2020; Omodeo Salè et al., 2014; Sandoval 
et al., 2019; Thinon et al., 2002; Tugend et al., 2014).

3  | METHOD

The kinematic model proposed here is designed to respect boundary 
conditions defined by the global motion of the larger plates around 
IB in Mesozoic time, as described by Müller et al. (2019) (Figure 2, 
Table 1, first column, Data Repository S1– S3). Position and timing of 
present- day Edges of Continental Crust (ECC) and Restored Edge of 
Continental Crust (RECC) define the shape of the deforming regions 
(as defined in Nirrengarten et al., 2018, Figures 2a– c and 3a). The 
previously described strike- slip corridors are part of the deforming 
regions built on GPlates 2.1 software. In contrast to previous restora-
tions (e.g. Nirrengarten et al., 2018), we do not use the best- fit criteria 
as a base for the model (Figure 2d). Our method thus appears suit-
able for regions where strong oblique motions preclude RECC tight- fit 
restorations or where significant magmatic additions prevent robust 
quantification of the original volumes of continental crust.

The initial condition of the model is the position of the four main 
continental blocks (NAM, IB, EU; AFR) at 83 Ma along anomaly C34, 

Statement of significance

Evaluating intracontinental rifting remains one of the chal-
lenges of plate kinematic reconstructions. We define the 
motion of the Iberian block, sandwiched between Africa 
and Europe, to address the problem of plate motion at 
onset of divergence in the southern N- Atlantic. Zones of 
strike- slip deformation, which we call ‘corridors’, accom-
modate motion between continental rigid blocks. The use 
of these corridors significantly helps to reduce incompati-
bilities between the kinematic model and the circum- Iberia 
geological/geophysical record, calling for a possible wide-
spread use of the method at the onset of deformation in 
divergent settings.
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the first unambiguous oceanic magnetic anomaly (Figures 1 and 3a) 
(Vissers & Meijer, 2012a). The strike- slip corridors have broadly the 
same trend at 83 Ma (Figures 3a and 4a). We translate Iberia backward 
from this first step (83 Ma) using: (a) estimates of crustal extension 
in the Atlantic, and (b) a direction of motion parallel to the trend of 
the strike- slip corridors (Figure 3). Since the strike- slip corridors do 
not represent in reality simple linear plate boundaries, the motion is 
hypothetically assumed orthogonal to rift necking lines in orthogonal 
settings and parallel to the corridors borders where strike slip domi-
nates (Figure 2). For the Atlantic, between 112 and 83 Ma, we use the 
extensional template of Gómez- Romeu et al. (2020), which provides 
extension values for FL and NAM relative to IB, in strong agreement 
with independently obtained values proposed by Sutra et al. (2013). 
Concerning the strike- slip corridors, synchronous movements be-
tween 165 and 112 Ma (Late Jurassic to Aptian) allow the definition 
of coherent motion of AFR relative to NAM (Newfoundland), NAM 
relative to FL (Flemish Pass) and IB relative to EU (Biscay) as input 
(Figures 3a and 4). The motion of NAM relative to Iberia (Tagus Plain), 
and IB relative to Africa (Gorringe Bank) are considered as output 
(Figure 2d).

4  | RESULTS AND DISCUSSION

4.1 | The Iberia- Europe- Ebro region

In our kinematic model, the lateral motion of IB relative to EBR is: (a) 
370 km from 155 to 112 Ma, resulting in the development of Late 

Jurassic to Aptian depocenters along the Iberian Rift System (Salas 
et al., 2001), and (b) 320 km from 112 to 83 Ma, suggesting that strike- 
slip component of the motion continued inside the Iberian Rift System 
after the Aptian. According to Angrand et al. (2020) strike- slip motion 
stopped at 100 Ma. Our model suggests (a) a migration of orthogo-
nal extensional deformation from the B- IR corridor to the Pyrenean 
segment at 126 Ma (see Lescoutre and Manatschal, 2020; Figure 4b– 
d), and (b) defines 80 km as a maximum N– S extension within the 
Pyrenean rift between EBR and EU from 126 to 83 Ma, consistent 
with values inferred from hyperextended basins in the Pyrenees (e.g., 
Quintana et al., 2015; Teixell, 1998) and with post- 83 Ma inferred 
N– S Alpine shortening in north Iberia (Macchiavelli et al., 2017; Wang 
et al., 2016).

4.2 | The southern N- Atlantic

Although the southern N- Atlantic provides some first- order input in 
our model, due to the existence of a complete data set, including re-
flection, refraction seismic data and ODP boreholes, our model also 
has some outputs that can be tested in this region. The validity of the 
reconstruction is supported by the parallelism between the computed 
FL- IB motion path and the trend of the displacement zone shown by 
Mohn et al. (2015) and interpreted as Lower Cretaceous (Figure 1). 
Similarly, the reconstructed Jurassic IB- AFR motion path is parallel to 
displacement zones inferred by Fernández et al. (2019). Both struc-
tural trends fit with the motion path and confirm the validity of our 
approach (Figure 1).

F I G U R E  1   Present- day postulated location of strike- slip corridors and magnetic anomalies. Euler stage poles represent relative 
motions for plates and microplates (different colors) (Angrand et al., 2020; Lundin & Doré, 2019; Reid, 1988; Sandoval et al., 2019; Sibuet 
et al., 2007). Necking lines outline the boundaries of the rigid continental blocks (Figure 3; Angrand et al., 2020; Gómez et al., 2019; King 
et al., 2020; Nirrengarten et al., 2018; Peace & Welford, 2020). Symbols refer to our and previous global kinematic models that do not 
separate Iberia in numerous continental blocks (Barnett Moore et al., 2016; Nirrengarten et al., 2018; Van Hinsbergen et al., 2020). Full 
or empty symbols indicate the time span. AFR = NW Africa; Bi = Biscay; EBR = Ebro; EU = Europe; FL = Flemish Cap; MO = Morocco; 
NAM = North America; PR = Porcupine; Pyr = Pyrenees; B- IR = Biscay (B)— Iberian Rift System (IR). White squares refer to the location of 
data in columns of Figure 2 and onset of arrows in Figure 3 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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The computed total ~185 km of extension for the Orphan Basin 
during the Mesozoic (Figures 2 and 4f,g) is compatible with reported 
observations (MacMahon et al., 2020; Peace & Welford, 2020). Our or-
thogonal setting has a NAM- FL pole of rotation far from Flemish Cap, 
in contrast to previous estimations (Sibuet et al., 2007; see Figure 1). 
In the southern N- Atlantic, the progressive northward oceanization is 
compatible with the model of Szameitat et al. (2020) involving a V- 
shape propagator.

The Newfoundland intracontinental strike- slip corridor mo-
tion (MO- NAM) combined with the motion AFR- NAM, as de-
fined independently by Müller et al. (2019), implies ~80 km of 
dextral displacement in the Atlas (MO- AFR deforming region) 
during the Early Jurassic (Favre & Stampfli, 1992; Stampfli & 
Hochard, 2009). A left- lateral movement of the Morocco 
micro- block relative to the Iberia continental block during the 

whole Cretaceous after the docking of Morocco and NW Africa 
(Figure 4g) is also in agreement with geological data (Gimeno- 
Vives et al., 2019).

4.3 | Strike- slip corridors: A new approach to 
restore pre- breakup rigid blocks

The kinematic reconstruction of Iberia prior to magnetic anomaly 
C34 is problematic due to the absence of large- scale, restorable 
marker features such as oceanic fracture zones or well defined oce-
anic magnetic anomalies, and because plate separation occurred dur-
ing the magnetic quiet period (e.g. Cretaceous Normal Superchron) 
(Nirrengarten et al., 2017). Here we use intra- continental strike- slip 
corridors to assess the kinematic framework during continental 

F I G U R E  2   Simplified sketch of the restoration method with input situation (a), method representation (b), and expected results (c). 
Diagram showing the decision- making process applied to the kinematic reconstruction built on GPlates 2.1 software (d) [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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TA B L E  1   Main tectonic events in the NAM- AFR- EUR area around IB as defined by Müller et al. 2019 in the first column. Computed 
values of displacement in kilometres for the points shown in Figure 1 and time steps represented in maps of Figures 3 and 4. Input data 
are in black, while outputs are grey. Computed values and 2σ method explained in Data Repository. Colours in the background show the 
evolution from rifting to drifting [Colour table can be viewed at wileyonlinelibrary.com]
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rifting. Considering the complex strain partitioning in the strike slip 
corridors, local kinematic indicators do not necessarily provide in-
formation on the plate kinematic scale. Furthermore, strike slip and 
decoupling levels, such as the Triassic salt, can trigger local rotations, 
hampering the analysis of regional kinematics. Therefore, upscaling 
of field observations and of paleomagnetic data (Neres et al., 2012; 
López- Gómez et al., 2019; Oliva- Urcia et al., 2012; Osete et al., 2011) 
to a plate kinematic scale requires a careful study and good, large- 
scale outcrops.

4.4 | Open questions

Three intriguing issues arise from the kinematic reconstruction (Data 
Repository S4, S5). The first issue regards gaps and overlaps in the 
restored edges of continental crust (RECC), respectively in the Bay of 
Biscay and east of Flemish Cap (Figure 4h). Discrepancies are neverthe-
less expected in such an oblique setting, as underlined by Peace et al. 
(2019). Gaps at the 200 Ma reconstruction might be justified by poorly- 
constrained Triassic and older extension (López- Gómez, et al., 2019; 

F I G U R E  4   Tectonic restoration of 
Iberia and surrounding plates. Present- day 
geographic configuration is shown for 
the stable parts of the plates; deforming 
continental regions are white. Each map 
represents the incremental deformation 
in the time span between the same and 
the previous map, reported in Figure 3. (a) 
~83 Ma: magnetic anomaly C34 and onset 
of AFR- IB- EU convergence. (b) ~97 Ma: 
mantle exhumation in the Pyrenees 
and post- rift in Iberian Range basins. (c) 
~112 Ma: mantle exhumation in northern 
Southern North Atlantic and syn- rift in 
Iberian Range. (d) ~120 Ma: magnetic 
anomalies appear in southernmost 
North Atlantic. (e) ~133 Ma: Break- up 
in southernmost North Atlantic. (f) 
~145 Ma: Onset thinning continental 
crust in northernmost Southern North 
Atlantic. (g) ~165 Ma: Break- up in the 
Central Atlantic and onset IB- EUR relative 
motion. (h) ~200 Ma: Tight fit IB- NAM for 
southernmost North Atlantic. Necking 
lines in grey and edge of the continental 
crust region in green, first oceanic crust 
and magnetic anomalies in light and dark 
blue. Size of arrows is proportional to the 
stage velocities (mm/year)[Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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van Hinsbergen et al., 2020). The second issue is the post- 112 Ma large 
strike- slip motion between Ebro and Iberia. Post- 112 Ma overprint due 
to N– S extension and shortening in the Iberian Rift System could ham-
per its recognition. However, our kinematic model is able to reproduce 
for the first time strike- slip and subsequent orthogonal N– S extension 
reported by field- based studies (Cadenas et al., 2020; Lescoutre and 
Manatschal, 2020; Figure 4b– d). As a third issue, M- series magnetic 
anomalies in the Bay of Biscay do not correspond to isochrons in our 
model (Figure 4b– e). The V- shaped propagation of these magnetic 
anomalies could result from lateral contrast of magnetization between 
different types of crust, as described by Szameitat et al. (2020) for the 
M- series in the southern N- Atlantic (Figure 4b,c).

4.5 | Differences with previous kinematic 
reconstructions

The reconstruction of the southern N- Atlantic was traditionally based 
on two end- member approaches. A first group used the M- series mag-
netic anomalies as isochrons (Rowley & Lottes, 1988; Sibuet et al., 2004; 
Vissers & Meijer, 2012b; Figure 5a) while a second group used Triassic 
tight- fit restorations of rigid continental blocks (Barnett- Moore, Müller, 
et al., 2016; Nirrengarten et al., 2018; Figure 5b). Resulting models imply: 
(a) an acceleration of Iberia relative to Africa between 126 and 112 Ma 
and thus a dextral shearing in the deforming region east (Figure 5a) or 
south (Figure 5b) of Iberia; and (b) significant shortening in either the 
Pyrenean or Tethys domains, triggering subduction between 126 and 
112 Ma (Figure 5a,b) Van Hinsbergen et al. (2020) and Angrand et al. 
(2020). Our model does not produce subduction north and east of 
Iberia in Aptian- Albian time, compatible with the lack of thrust faults, 
volcanic arc, terrigenous “flysch” deposits and high- pressure metamor-
phism older than 100 Ma (Chevrot et al., 2018; Faccenna et al., 2001; 
Fernández, 2019; Fichtner & Villaseñor, 2015; Le Breton et al., 2021; Molli 
& Malavieille, 2011). Our workflow gives priority to first- order, large- scale 
onshore and offshore seismic observations and robust regional inter-
pretations (Figure 2d). Our model represents a new solution involving 
left- lateral motion between Iberia and Africa, south of Iberia (Figure 5c), 
contrarily to the latest models of Nirrengarten et al. (2018) and Angrand 

et al. (2020). As such, the left- lateral motion of Africa relative to Europe 
appears crucial to control the Mesozoic kinematics of Iberia.

5  | CONCLUSIONS

The key point of the present reconstruction of Iberia is the defini-
tion of motion paths using strike- slip corridors, mainly marked by 
alignments of laterally confined and narrow rift basins or trans-
fer zones. The resulting reconstruction of Iberia conforms at a 
first order with the circum- Iberian regional geology, suggesting 
that intracontinental strike- slip corridors may be used as a robust 
boundary condition to restore large rigid blocks back to the onset 
of rifting.
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