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1 | INTRODUCTION

Abstract

Despite considerable progress in restoring rifted margins, none of the current kin-
ematic models can restore the Mesozoic motion of the Iberian block in full agreement
with the circum-lberian geology. This conflict requires a revision of the kinematic
description at the onset of divergence. The circum-Iberian region has a unique geo-
logical dataset that allows calibration and testing of kinematic reconstructions and
therefore it is an ideal candidate for testing intracontinental restoration approaches.
Here we define intracontinental deforming regions, referred to as strike-slip corri-
dors, based on alignments of Mesozoic rift basins and/or transfer zones bordering
rigid continental blocks. We use these strike-slip corridors and data from the south-
ern N-Atlantic and Tethys to define the motion path of the Flemish Cap, Ebro and
Iberia continental blocks. The resulting Mesozoic kinematic model for the Iberian
block is compatible with recently published data and interpretations describing the
Mesozoic circum-Iberian geology. Large-scale intracontinental strike-slip corridors
may offer a valid boundary condition for reconstructing continental block motion at

the onset of divergence in intracontinental settings.

zones, defining the tightest-fit solutions of reconstructions; and (d)
paleomagnetic data from continental undeformed regions, outlining

Great efforts have been directed recently in the plate kinematic com-
munity to consider the pre-breakup evolution in kinematic recon-
structions of divergent plate boundaries (Aslanian & Moulin, 2013;
Barnett-Moore et al, 2016; Nirrengarten et al., 2018; Peace
et al., 2019). A robust kinematic description appears crucial to a
physics-based understanding of rifting (Brune et al., 2014; Gueydan
et al., 2008; Williams et al., 2019). Kinematic restoration of divergent
plate boundaries relies on a common procedure, which includes: (a)
tight fit of seafloor magnetic anomalies, defining the position of di-
verging plates through time; (b) oceanic fracture zones, interpreted
as flowlines, determining the direction of the motion; (c) necking

rotation and latitudinal shifts (Schettino & Turco, 2011).

This four-step approach has achieved outstanding results in re-
constructing global plate motions at divergent settings (Mdller et al.,
2019). However, problems arise when obliquely deforming continen-
tal regions are considered, as shown for the Iberian case (Angrand
et al,, 2020; Barnett-Moore et al., 2016; Peace & Welford, 2020;
Tavani et al.,, 2018). During a large part of its Mesozoic history,
Iberia was a continental rigid block delimited by intracontinental de-
forming regions, 40-200 km wide (Ady & Whittaker, 2019; Angrand
et al., 2020; King et al., 2020) and hereafter referred to as strike-slip
corridors. The M-series magnetic anomalies fringing Iberia on its
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N-Atlantic side have been shown to not represent classical oceanic

magnetic anomalies and therefore to be unreliable for reconstruc-
tions (Nirrengarten et al., 2017; Szameitat et al., 2020). Moreover,
kinematic reconstructions proposed Late Cretaceous subduc-
tion east of Iberia not harmonizing with tomographic data in the
Pyrenees (Chevrot et al., 2018; Gong et al., 2008; Neres et al., 2012;
Nirrengarten et al., 2017; Vissers & Meijer, 2012b).

The Mesozoic left-lateral motion of Africa (AFR) relative to
Europe (EU) occurred while Iberia was diverging from North America
(NAM) and interleaved rigid continental blocks were moving (Miiller
et al., 2019). We identify strike-slip corridors limiting rigid continen-
tal blocks, which include the Newfoundland, Flemish Pass, and Bay
of Biscay—Iberian Rift corridors. Continental blocks are considered
rigid if their internal estimated deformation is <30 km, that is, the
error value introduced in restorations (Nirrengarten et al., 2018).
The motion of blocks is assumed to be perpendicular to necking lines
at orthogonal intracontinental rifts or parallel to the dominant trend
of strike-slip corridors. Relying on these corridors as motion paths
for kinematic restorations enable to build a new kinematic model for
the southern N-Atlantic and the Bay of Biscay, and to reconstruct
the kinematics of Iberia from 200 to 83 Ma, that is, from Late Triassic
onset of rifting in the Central Atlantic to Anomaly C34, the first un-

ambiguous oceanic magnetic anomaly in the southern N-Atlantic.

2 | TECTONIC SETTING

Following Nirrengarten et al. (2018), the current Iberia consisted,
before 83 Ma, of two continental rigid blocks, Iberia (IB) and Ebro
(EBR), that were surrounded, at different periods, by other smaller
blocks such as Flemish Cap (FL), Porcupine (PR) and Morocco (MO)
(Figure 1). Figure 1 summarizes the stage Euler poles reported for
the different blocks. Flemish Cap and Porcupine blocks separate
North America from Europe. Morocco is the northwestern prom-
ontory of Africa, while Ebro is the promontory of Europe (Angrand
et al., 2020; Favre & Stampfli, 1992). Significant ~N-S directed ex-
tension is invoked after 126 Ma between Ebro and Europe (Jammes
et al., 2009; Lescoutre and Manatschal, 2020; Tavani et al., 2018).
Motion is recorded in the Atlas separating Morocco from Africa
during Early to Middle Jurassic (El Kochri & Chorowicz, 1996; Favre
et al., 1991; Laville et al., 2004; Stampfli & Hochard, 2009).

Three large-scale strike-slip corridors have been identified around
IB: (a) the Newfoundland corridor, (b) the Flemish Pass corridor, and
(c) the Bay of Biscay-Iberian Rift corridor, B-IR (Angrand et al., 2020;
Reid, 1988; Sandoval et al., 2019) (Figure 1). These strike-slip corri-
dors are up to 200 km wide and can contain local structures with
variable trends and kinematics. The corridors connect aligned Upper
Jurassic-Lower Cretaceous, laterally confined and narrow depocen-
ters, sometimes reactivated during later events (Cadenas et al., 2020).
Offshore, subvertical structures belonging to the corridors are often
difficult to interpret on seismic reflection data.

The Newfoundland corridor extends into the Newfoundland

Fracture Zone separating the Central and N-Atlantic and fringing

Statement of significance

Evaluating intracontinental rifting remains one of the chal-
lenges of plate kinematic reconstructions. We define the
motion of the Iberian block, sandwiched between Africa
and Europe, to address the problem of plate motion at
onset of divergence in the southern N-Atlantic. Zones of
strike-slip deformation, which we call ‘corridors’, accom-
modate motion between continental rigid blocks. The use
of these corridors significantly helps to reduce incompati-
bilities between the kinematic model and the circum-Iberia
geological/geophysical record, calling for a possible wide-
spread use of the method at the onset of deformation in
divergent settings.

the North America and Morocco blocks. The corridor evolved to a
transform margin bounded by oceanic crust, allowing to use magnetic
anomalies to define its timing. The Flemish Pass corridor is proposed
to run south of the E and W Orphan basins and is perpendicular to the
necking zones bounding Flemish Cap. Restoration of the Late Jurassic
to Lower Cretaceous E and W Orphan basins result in a dextral motion
along this corridor (Lundin & Doré, 2019; Sandoval et al., 2019; Sibuet
et al., 2007). As suggested by Lundin and Doré (2019) an associated
zone of strike-slip may extend north of the Orphan basins into the
proto-Labrador Sea (Figure 1). This strike-slip corridor may continue
in the Biscay-lberian Rift (B-IR) corridor, which defines the boundary
between Iberia and Europe—Ebro. The B-IR is here interpreted by the
alignment of Late Jurassic-Lower Cretaceous basins from north of the
Balearic Islands to the Asturian basin and the northern Bay of Biscay
margin (Cadenas et al., 2020; Omodeo Salé et al., 2014; Sandoval
et al., 2019; Thinon et al., 2002; Tugend et al., 2014).

3 | METHOD

The kinematic model proposed here is designed to respect boundary
conditions defined by the global motion of the larger plates around
IB in Mesozoic time, as described by Miller et al. (2019) (Figure 2,
Table 1, first column, Data Repository S1-S3). Position and timing of
present-day Edges of Continental Crust (ECC) and Restored Edge of
Continental Crust (RECC) define the shape of the deforming regions
(as defined in Nirrengarten et al., 2018, Figures 2a-c and 3a). The
previously described strike-slip corridors are part of the deforming
regions built on GPlates 2.1 software. In contrast to previous restora-
tions (e.g. Nirrengarten et al., 2018), we do not use the best-fit criteria
as a base for the model (Figure 2d). Our method thus appears suit-
able for regions where strong oblique motions preclude RECC tight-fit
restorations or where significant magmatic additions prevent robust
quantification of the original volumes of continental crust.

The initial condition of the model is the position of the four main
continental blocks (NAM, IB, EU; AFR) at 83 Ma along anomaly C34,
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FIGURE 1 Present-day postulated location of strike-slip corridors and magnetic anomalies. Euler stage poles represent relative
motions for plates and microplates (different colors) (Angrand et al., 2020; Lundin & Dor¢, 2019; Reid, 1988; Sandoval et al., 2019; Sibuet
et al., 2007). Necking lines outline the boundaries of the rigid continental blocks (Figure 3; Angrand et al., 2020; Gémez et al., 2019; King
et al,, 2020; Nirrengarten et al., 2018; Peace & Welford, 2020). Symbols refer to our and previous global kinematic models that do not
separate Iberia in numerous continental blocks (Barnett Moore et al., 2016; Nirrengarten et al., 2018; Van Hinsbergen et al., 2020). Full

or empty symbols indicate the time span. AFR = NW Africa; Bi = Biscay; EBR = Ebro; EU = Europe; FL = Flemish Cap; MO = Morocco;
NAM = North America; PR = Porcupine; Pyr = Pyrenees; B-IR = Biscay (B)—Iberian Rift System (IR). White squares refer to the location of
data in columns of Figure 2 and onset of arrows in Figure 3 [Colour figure can be viewed at wileyonlinelibrary.com]

the first unambiguous oceanic magnetic anomaly (Figures 1 and 3a)
(Vissers & Meijer, 2012a). The strike-slip corridors have broadly the
same trend at 83 Ma (Figures 3a and 4a). We translate Iberia backward
from this first step (83 Ma) using: (a) estimates of crustal extension
in the Atlantic, and (b) a direction of motion parallel to the trend of
the strike-slip corridors (Figure 3). Since the strike-slip corridors do
not represent in reality simple linear plate boundaries, the motion is
hypothetically assumed orthogonal to rift necking lines in orthogonal
settings and parallel to the corridors borders where strike slip domi-
nates (Figure 2). For the Atlantic, between 112 and 83 Ma, we use the
extensional template of Gomez-Romeu et al. (2020), which provides
extension values for FL and NAM relative to IB, in strong agreement
with independently obtained values proposed by Sutra et al. (2013).
Concerning the strike-slip corridors, synchronous movements be-
tween 165 and 112 Ma (Late Jurassic to Aptian) allow the definition
of coherent motion of AFR relative to NAM (Newfoundland), NAM
relative to FL (Flemish Pass) and IB relative to EU (Biscay) as input
(Figures 3a and 4). The motion of NAM relative to Iberia (Tagus Plain),
and IB relative to Africa (Gorringe Bank) are considered as output
(Figure 2d).

4 | RESULTS AND DISCUSSION
4.1 | The Iberia-Europe-Ebro region

In our kinematic model, the lateral motion of IB relative to EBR is: (a)
370 km from 155 to 112 Ma, resulting in the development of Late

Jurassic to Aptian depocenters along the Iberian Rift System (Salas
etal., 2001), and (b) 320 km from 112 to 83 Ma, suggesting that strike-
slip component of the motion continued inside the Iberian Rift System
after the Aptian. According to Angrand et al. (2020) strike-slip motion
stopped at 100 Ma. Our model suggests (a) a migration of orthogo-
nal extensional deformation from the B-IR corridor to the Pyrenean
segment at 126 Ma (see Lescoutre and Manatschal, 2020; Figure 4b-
d), and (b) defines 80 km as a maximum N-S extension within the
Pyrenean rift between EBR and EU from 126 to 83 Ma, consistent
with values inferred from hyperextended basins in the Pyrenees (e.g.,
Quintana et al., 2015; Teixell, 1998) and with post-83 Ma inferred
N-S Alpine shortening in north Iberia (Macchiavelli et al., 2017; Wang
etal., 2016).

4.2 | The southern N-Atlantic

Although the southern N-Atlantic provides some first-order input in
our model, due to the existence of a complete data set, including re-
flection, refraction seismic data and ODP boreholes, our model also
has some outputs that can be tested in this region. The validity of the
reconstruction is supported by the parallelism between the computed
FL-IB motion path and the trend of the displacement zone shown by
Mohn et al. (2015) and interpreted as Lower Cretaceous (Figure 1).
Similarly, the reconstructed Jurassic IB-AFR motion path is parallel to
displacement zones inferred by Fernandez et al. (2019). Both struc-
tural trends fit with the motion path and confirm the validity of our

approach (Figure 1).
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Diagram showing the decision-making process applied to the kinematic reconstruction built on GPlates 2.1 software (d) [Colour figure can be

viewed at wileyonlinelibrary.com]

The computed total ~185 km of extension for the Orphan Basin
during the Mesozoic (Figures 2 and 4f,g) is compatible with reported
observations (MacMahon et al., 2020; Peace & Welford, 2020). Our or-
thogonal setting has a NAM-FL pole of rotation far from Flemish Cap,
in contrast to previous estimations (Sibuet et al., 2007; see Figure 1).
In the southern N-Atlantic, the progressive northward oceanization is
compatible with the model of Szameitat et al. (2020) involving a V-
shape propagator.

The Newfoundland intracontinental strike-slip corridor mo-
tion (MO-NAM) combined with the motion AFR-NAM, as de-
fined independently by Miller et al. (2019), implies ~80 km of
dextral displacement in the Atlas (MO-AFR deforming region)
during the Early Jurassic (Favre & Stampfli, 1992; Stampfli &
Hochard, 2009). A left-lateral movement of the Morocco

micro-block relative to the Iberia continental block during the

whole Cretaceous after the docking of Morocco and NW Africa
(Figure 4g) is also in agreement with geological data (Gimeno-
Vives et al., 2019).

4.3 | Strike-slip corridors: A new approach to
restore pre-breakup rigid blocks

The kinematic reconstruction of Iberia prior to magnetic anomaly
C34 is problematic due to the absence of large-scale, restorable
marker features such as oceanic fracture zones or well defined oce-
anic magnetic anomalies, and because plate separation occurred dur-
ing the magnetic quiet period (e.g. Cretaceous Normal Superchron)
(Nirrengarten et al., 2017). Here we use intra-continental strike-slip

corridors to assess the kinematic framework during continental


https://onlinelibrary.wiley.com/

FRASCAET AL. 577

Terra Nova

TABLE 1 Main tectonic events in the NAM-AFR-EUR area around IB as defined by Midiller et al. 2019 in the first column. Computed
values of displacement in kilometres for the points shown in Figure 1 and time steps represented in maps of Figures 3 and 4. Input data
are in black, while outputs are grey. Computed values and 26 method explained in Data Repository. Colours in the background show the
evolution from rifting to drifting [Colour table can be viewed at wileyonlinelibrary.com]
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rifting. Considering the complex strain partitioning in the strike slip
corridors, local kinematic indicators do not necessarily provide in-
formation on the plate kinematic scale. Furthermore, strike slip and
decoupling levels, such as the Triassic salt, can trigger local rotations,
hampering the analysis of regional kinematics. Therefore, upscaling
of field observations and of paleomagnetic data (Neres et al., 2012;
Lépez-Gomez et al., 2019; Oliva-Urcia et al., 2012; Osete et al., 2011)
to a plate kinematic scale requires a careful study and good, large-

scale outcrops.

4.4 | Open questions

Three intriguing issues arise from the kinematic reconstruction (Data
Repository S4, S5). The first issue regards gaps and overlaps in the
restored edges of continental crust (RECC), respectively in the Bay of
Biscay and east of Flemish Cap (Figure 4h). Discrepancies are neverthe-
less expected in such an oblique setting, as underlined by Peace et al.
(2019). Gaps at the 200 Ma reconstruction might be justified by poorly-

constrained Triassic and older extension (Lopez-Gdémez, et al., 2019;
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FIGURE 5 Sketch view of three end-member solutions for the motion of Iberia: (a) based on the J magnetic anomaly (e.g., Van Hinsbergen
et al., 2020); (b) based on tight fit of restored continental crust (e.g., Nirrengarten et al., 2018); (c) based on strike-slip corridors, our solution.
Note that the solution by Nirrengarten et al. (2018) is influenced east of Iberia by the use of the global plate kinematic framework of Seton
et al. (2012). Note that Europe is fix in the sketch but the arrows south of Iberia represent the relative motion between Iberia and Africa.
Thick red lines represent subduction zones [Colour figure can be viewed at wileyonlinelibrary.com]

van Hinsbergen et al., 2020). The second issue is the post-112 Ma large
strike-slip motion between Ebro and Iberia. Post-112 Ma overprint due
to N-S extension and shortening in the Iberian Rift System could ham-
per its recognition. However, our kinematic model is able to reproduce
for the first time strike-slip and subsequent orthogonal N-S extension
reported by field-based studies (Cadenas et al., 2020; Lescoutre and
Manatschal, 2020; Figure 4b-d). As a third issue, M-series magnetic
anomalies in the Bay of Biscay do not correspond to isochrons in our
model (Figure 4b-e). The V-shaped propagation of these magnetic
anomalies could result from lateral contrast of magnetization between
different types of crust, as described by Szameitat et al. (2020) for the
Mb-series in the southern N-Atlantic (Figure 4b,c).

4.5 | Differences with previous kinematic
reconstructions

The reconstruction of the southern N-Atlantic was traditionally based
on two end-member approaches. A first group used the M-series mag-
netic anomalies as isochrons (Rowley & Lottes, 1988; Sibuet et al., 2004;
Vissers & Meijer, 2012b; Figure 5a) while a second group used Triassic
tight-fit restorations of rigid continental blocks (Barnett-Moore, Milller,
etal., 2016; Nirrengarten et al., 2018; Figure 5b). Resulting models imply:
(a) an acceleration of Iberia relative to Africa between 126 and 112 Ma
and thus a dextral shearing in the deforming region east (Figure 5a) or
south (Figure 5b) of Iberia; and (b) significant shortening in either the
Pyrenean or Tethys domains, triggering subduction between 126 and
112 Ma (Figure 5a,b) Van Hinsbergen et al. (2020) and Angrand et al.
(2020). Our model does not produce subduction north and east of
Iberia in Aptian-Albian time, compatible with the lack of thrust faults,
volcanic arc, terrigenous “flysch” deposits and high-pressure metamor-
phism older than 100 Ma (Chevrot et al., 2018; Faccenna et al., 2001;
Fernandez, 2019; Fichtner & Villasefior, 2015; Le Breton et al., 2021; Molli
& Malavieille, 2011). Our workflow gives priority to first-order, large-scale
onshore and offshore seismic observations and robust regional inter-
pretations (Figure 2d). Our model represents a new solution involving
left-lateral motion between Iberia and Africa, south of Iberia (Figure 5c),

contrarily to the latest models of Nirrengarten et al. (2018) and Angrand

et al. (2020). As such, the left-lateral motion of Africa relative to Europe

appears crucial to control the Mesozoic kinematics of Iberia.

5 | CONCLUSIONS

The key point of the present reconstruction of Iberia is the defini-
tion of motion paths using strike-slip corridors, mainly marked by
alignments of laterally confined and narrow rift basins or trans-
fer zones. The resulting reconstruction of Iberia conforms at a
first order with the circum-lberian regional geology, suggesting
that intracontinental strike-slip corridors may be used as a robust
boundary condition to restore large rigid blocks back to the onset

of rifting.
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