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Abstract

With the fast expansion of Electric and Hybrid Vehicles, the demand of Li-ion batteries is increasing exponentially. This
creates an opportunity for a second life of these cells once they are no longer suitable for their original application.
An accurate modelling of the second life can be a powerful tool for these new applications. In this work, we propose
a complete second life model parameterization for a Li-Ion cell, with its parameters based on experimental data of
NMC/LMO cells cycled through their first and second lives. The resulting model parameters span a State of Health
from 80 % to 50 % of the cell original capacity, a State of Charge from 0 to 100 %, two current values and two first life
temperature points. The model parameters are presented in an open data fashion in the form of look-up tables, ready
to be implemented in simulation softwares.
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1. Introduction

In recent years, a significant expansion in the popular-
ity of Electric Vehicles (EVs) has been observed, and is
expected to continue to do so in the next decades [1]. One
consequence of such an expansion is that the demand of
Li-Ion Batteries (LIBs) is also increasing at a fast pace.
As EV batteries are usually discarded at a State of Health
(SoH) of 80 %, there is a growing availability of Second-
Life Batteries (SLBs).

As mentioned in [2], several studies estimate a SLB
availability on the order of several GWh to some TWh over
the next decades. A widespread use of SLBs is expected to
have a positive economical and environmental impact, and
comes hand in hand with the renewable energies context [2,
3]. This creates room for several interesting applications
of SLBs, such as:

• Energy storage for residential applications [4–6];

• Support for renewable energies (photovoltaic, wind
turbines), from residential to industrial power levels
[7, 8];

• Support for electrical grids, such as peak load man-
agement [4, 9];

• Charging stations for EVs, Vehicle to Grid [9, 10];

• Less demanding mobile applications [11].
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Interesting reviews of SLB applications and current
works can be found in [2, 3, 9].

An appropriate modelling of the SLB behaviour can be
useful for simulation purposes. Currently, most publica-
tions on the subject focus on modelling the capacity loss
as a function of known stress factors [10, 12–14].

Some interesting works focus on the second life evolu-
tion of a LIB parameters: [15] compared some parameters
before and after ageing, but did not present the results as
a function of the SoH; [16] presents the increment of some
parameters due to distinct ageing conditions, but focuses
on the SoH estimation technique; [17, 18] present param-
eters at some SoH points, but each SoH point comes from
a cell at a different condition. Moreover, none of the men-
tioned works published their models in open data.

Therefore, to the extent of our knowledge, studies rep-
resenting the evolution of each parameter of a LIB model
during the second life are underexplored in the literature.
In order to bridge this gap, we propose a complete electri-
cal model parameterization for the second life of a NMC/LMO
LIB. Each parameter of the model evolves as a function of
the cell State of Charge (SoC), SoH and current. This
model has the following features:

• A simple model and parameterization methodology,
allowing easy implementation and reproducibility;

• Results spanning a SoH from 80 % to 50 % and a
SoC from 0 % to 100 %.

• Two current modes, representing a charge and a dis-
charge;
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• Two different first life temperature conditions, tar-
geting different ageing mechanisms;

• Experimental data from three cells for each first life
condition, allowing us to evaluate the similarities;

• Results published in an open data fashion in the form
of look-up tables.

The novelty of this work is in that we display the evo-
lution of a common battery model parameters throughout
the entire second life SoH range, as well as the impact of
the first-life operation temperature. We believe these re-
sults can be useful for uncertainty analysis related to SLB
applications.

This work is organized as it follows: Section 2 presents
a literature review of SLB models and parametrization
methods, our model of choice and some important defi-
nitions. Section 3 details the experimental setup used and
the method to obtain our model parameters. Section 4
present the model results and discussion. Section 5 con-
cludes this work.

2. Li-Ion Cell Modelling and Definitions

2.1. Literature Review

According to [19, 20], one can separate the most com-
mon types of LIB models available on the literature into
some categories: statistical models, electrochemical mod-
els, electric equivalent circuit models, or a combination of
these.

Statistical models are usually based on experimental
data, using tools such as pattern extraction [21], Kalman
filters [22, 23], regression techniques and other tools [24,
25]. The objective is usually to analyse large amounts of
data and find the best possible estimator. These models
are, however, often limited by the data, not being repre-
sentative of different situations.

Electrochemical models often use chemical or physical
equations to accurately model a LIB, sometimes to the
atomic level. This approach can also be used to accu-
rately model the capacity loss or the thermal behaviour of
a cell, for example. These models are also used to represent
different battery technologies, such as new all-solid-state
batteries, as in [26]. Some examples of such models can
be found on [26–30]. Whereas their accuracy is a clear
advantage, these models can be numerically complicated
and have difficulty relating microscopic and macroscopic
behaviours [31].

Electric Equivalent Circuits (EEC) represent the be-
haviour of a LIB using standard electrical elements, such
as voltage sources, impedances and RLC elements. They
can vary in complexity, going from as simple as a voltage
source and a resistance to a model with impedances to rep-
resent complex, frequency-domain behaviours. Reviews of
several of these models can be found in [2, 32–34].

EEC models have the advantage of being computation-
ally light and easy to understand and implement. They

are, however, representative models, not being directly
connected to the electrochemical phenomena at play.

The parameters of EEC models can be made variable
in function of the stress factors that impact the LIB age-
ing. Common stress factors that have been explored in
the literature are: Temperature [35–37], Current (C-rate)
[37, 38], Overcharge and overdischarge [38, 39] and Depth
of Discharge [38, 40, 41] of the cell.

Regarding the parameterization procedure for EEC mod-
els, two strategies are commonly found in the literature:
current steps and Electrochemical Impedance Spectroscopy
(EIS) [20].

EIS is a powerful tool for representing a LIB behaviour.
It consists of applying small voltage perturbations on the
LIB over a wide range of frequencies. This results on
an impedance behaviour over the test frequencies. This
impedance can, then, be represented by electrical elements,
with varying degrees of accuracy and performance. Good
examples of EIS being used to parameterize an EEC model
can be found in [18, 42–44].

Despite its accuracy, performing an EIS requires spe-
cialized equipment, hindering its utilisation on some con-
texts: it is not practical, for instance, to disassemble a
pack of batteries in order to characterize it.

Current steps are a simple and practical option to pa-
rameterize an EEC model. It consists of performing cur-
rent steps of a known amplitude and measuring the ensu-
ing voltage response. By using electrical circuit equations,
one can find parameters that resemble said voltage-current
behaviour. Good examples of this technique can be found
in [14, 36, 37, 45].

Despite not containing as much information as an EIS,
current pulses have the advantage of being simple to per-
form and only using current and voltage measurements.
Usually, this data is already acquired and used by a Bat-
tery Management System (BMS).

2.2. Formal Definitions

In this work, some concepts related to li-ion batteries
(LIBs) will be often used, and will be described in the next
paragraphs.

The State of Health - SoH is defined as the actual ca-
pacity of the cell relative to its nominal capacity, as shown
in Eq. 1. This means that for a cell with a nominal capac-
ity Qn of 2.1 Ah, a SoH of 80 % means an actual capacity
Qa of 1.68 Ah.

SoH[%] =
Qa

Qn
· 100 (1)

The State of Charge - SoC is defined as the current
amount of charge Q of the cell relative to its actual capac-
ity Qa, as shown in Eq. 2. In this work, the SoC is always
relative to the actual capacity, not the nominal one - so
that no matter the SoH of the cell, the SoC will always be
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between 0 and 100 %.

SoC[%] =
Q

Qa
· 100 (2)

The First Life is defined as when a cell has a SoH ∈
[100 80] %. The Second Life begins then at a SoH = 80 %.

The C-Rate is a way to represent the electric current
going through the battery. In this work, we adopt the
following convention: during the first life, C means the
nominal current of the cell; during the second life, C means
the current equivalent to the capacity at SoH = 80 %. For
a cell with a nominal capacity of 2.1 Ah, C means 2.1 A on
the first life and 1.68 A on the second life.

A positive value of current means the cell is being
charged; a negative value stands for a discharge.

The Lithium Plating is a degradation mechanism of
LIBs that causes metallic lithium to deposit around the
anode of the cell, reducing its capacity. It is usually caused
by overcharging or by cycling at low temperatures.

The Loss of Active Material (LAM) is a degradation
mode that can happen in both anode and cathode, hap-
pening when the mass of these electrodes loses the capacity
to be inserted with lithium particles. A comprehensive re-
view of the degradation mechanisms and modes of Li-ion
cells can be found in [46].

2.3. Model of Choice

We choose to use a classic R-2RC model to represent
our SLB. It consists of an open-circuit voltage Voc, an in-
ternal resistance Rint and two RC branches R1, C1, R2,
C2, as it can be seen in Fig. 1. The voltage Vcell represents
the measurable voltage between the positive and negative
electrodes of the cell.

Figure 1: Illustration of the R-2RC model used in this work.

This model has been extensively used in the literature
to represent Li-ion batteries and cells. As previously men-
tioned, it has the advantage of being simple and computa-
tionally light while retaining a good level of representation
of the dynamic behaviour of a cell.

However, when using such a model, the evolution of
both SoC and SoH has to be calculated separately. The
most common SoC estimation technique is Coulomb Count-
ing, where the current is measured and integrated in order
to obtain the instantaneous capacity. The SoH estimation

can be performed in several ways, using electrochemical
equations and statistical models, for example.

The chosen parameterization strategy consists of per-
forming current steps at fixed points of SoC and SoH, as
will be explained in Subsec. 3.2. Our model parameters
are, then, a function of the SoC, SoH and electrical cur-
rent.

3. Methods

In this section, the methodology to obtain our model
parameters is disclosed. Subsections 3.1 and 3.2 detail the
experimental setup and the testing protocol used, respec-
tively. A description of the data treatment and equations
used to find the model parameters follows in Subsec. 3.3,
and the extrapolation method for the missing parameter
points is explained in Subsec. 3.4.

3.1. Experimental Setup

The experimental tests were carried out in a testbed
consisting of the following power supplies and instrumen-
tation tools:

• An Arbin Bt2000 and a Maccor Series 4000 battery
test systems, capable of performing preprogrammed
battery charge and discharge cycles. They are also
responsible for the acquisition of the current and
voltage measurements of the Li-ion cells.

• A battery climatic chamber, responsible for manag-
ing the ambient temperature of the cells.

As shown in recent works [47, 48], this experimental
testbed has been used to investigate the ageing mecha-
nisms from an electrochemical perspective and to assess
the second life viability of Li-ion cells. In [47], several cells
are cycled through two distinct first life conditions, aiming
to cause two different ageing mechanisms.

Then, some of these cells are also cycled through their
second life. The data from these second life tests is used
to develop the parameters in this work, and the details of
these tests are explained in the following paragraphs.

The cell technology chosen for this study has a blend
NMC + LMO positive electrode, a graphite negative elec-
trode and a nominal capacity of 2.1 Ah. This cell is consid-
ered to be a power cell due to its lower resistance and ca-
pacity when compared to other technologies (energy cells),
and is suited for Electric Vehicles (EVs) application. The
main characteristics of the investigated cell are disclosed
on Table 1 below.

Six of those cells were subjected to the first life condi-
tions detailed on Table 2 below. Cell identifiers are kept
in order to be consistent with [47].

The different first life temperature conditions are cho-
sen to explore two different ageing mechanisms: Loss of
Active Material (LAM) for cycling at 25 °C and Lithium
Plating for cycling at 0 °C.

3



Table 1: Investigated cell characteristics

Cell Format 18650
Positive Electrode NMC + LMO
Specific Capacity 158.5 mAh g−1

Negative Electrode Graphite
Specific Capacity 309 mAh g−1

Cell Capacity 2.1 Ah
Max. charge rate 1C
Max. discharge current −10 A
Operating Temperature 0 °C - 45 °C

Table 2: First life cycling protocols

Cell Identifier Cycling C-Rate Cycling Temperature

#1, #2, #3 1C/-1C 25 °C
#7, #8, #9 1C/-1C 0 °C

The cycling of the cells during the first life is performed
with a Depth of Discharge - DoD of 100 %, meaning the
cells are fully charged and discharged after every cycle.

When these cells reach a SoH of 80 %, their second life
begins. The second life protocol is the same for all 6 cells,
with a cycling C-rate of C/2 and a temperature of 25 °C.

During the second life, a check-up protocol is carried
out every 50 cycles. This routine, explained in detail in
Subsec. 3.2, is useful to keep track of the SoH evolution
and allows identifying the model parameters.

Even though the second life conditions are the same,
we are able to find two distinct models, denoted FL25◦C
and FL0◦C in the remainder of this work, for both first
life conditions presented above.

3.2. Experimental Characterization Test

The methodology to obtain the model parameters con-
sists of performing check-up tests at the beginning of the
second life and then every 50 full cycles of charge and dis-
charge.

As the life of a LIB usually last for hundreds or even
thousands of cycles [2], we make the hypothesis that the
SoH loss during a characterization test is negligible. This
means that each test yields a set of parameters considered
to be at a constant SoH.

A check-up consists of the following procedures, as pre-
viously mentioned in [47]:

1. A C/2 discharge in order to fully discharge the cell;

2. A C/10 cycle of charge and discharge;

3. Two C/2 cycles of charge and discharge;

4. A charge consisting of C current steps at 10 SoC
points. A C/2 charge is carried out between the steps
in order to bring the cell to the next SoC. Before
each step, there is a one-hour resting time (with no
current);

5. A discharge consisting of -2C current steps at 10 SoC
points. Similarly to the previous procedure, a -C/2
discharge and the one-hour resting time are observed
between each step.

6. A C/2 charge to SoC = 50 %.

The current steps mentioned on procedures 4 and 5 of
the list above are carried out at precise points of SoC and
last for 10s. The SoC points are, for a:

• Charge: SoC = [0 5 10 20 30 50 70 80 90 95] %

• Discharge: SoC = [100 95 90 80 70 50 30 20 10 5] %

This characterization routine (procedures 4 and 5 only)
is illustrated in Fig. 2.

Figure 2: Characterization Test of a SLB via current steps

However, it is not to safe to do a charging current step
at SoC = 100 % or a discharging step at SoC = 0 %, as
it would mean overcharging and overdischarging the Li-
ion cell, respectively. Moreover, the final charging current
steps usually incur in a voltage saturation of the charging
station, as the safety limit of Vcell = 4.2 V is reached. This
can also be seen in Fig. 2.

It is not possible to find parameters for our model on
these SoC points. In order to circumvent this and have a
complete simulation model, extrapolation of the parame-
ters on these points is needed. This issue will be discussed
in Subsec. 3.4.

3.3. Parameter Calculation

As previously mentioned in Subsec. 2.1, using current
steps do parameterize a battery model is a common yet
powerful strategy. Even though it does not yield frequency-
domain information as an Electrochemical Impedance Spec-
troscopy (EIS), it has the advantages of being simple, non-
invasive and requiring only current and voltage measure-
ments.

Moreover, the evolution of parameters as the internal
resistance is often used as a SoH estimator and prognostic
tool [13]. Such a parameter can be easily obtained with
current and voltage measurements.
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By analyzing the voltage response to the current steps
data, we can quickly see the importance of a model that
considers the evolution of the RC parameters. Figure 3
shows two discharging current step responses on a cell at
the same SoH, but in two different points of SoC. The clear
difference of resistive and capacitive effect is highlighted.

Figure 3: Illustration of the different RC behaviour of cell #1 for a
charging current, under different SoC values and a SoH of 80.3 %.

By knowing the voltage time response to a constant
current step, we can use circuit equations to find the pa-
rameters of our model that will best fit the voltage vs.
current pattern. The time-domain behaviour of our cho-
sen cell circuit (Fig. 1) can be described by Eq. 3

Vcell = Voc −Rint · I − V1 − V2 (3)

Where I is the current. The voltages V1, V2 across
the capacitors have the following differential formulation,
where i = 1 or 2:

dVi

dt
= − 1

Ri · Ci
(Vi −Ri · I) (4)

If we consider the initial voltage across the capacitors
as zero, we can solve the differential equations and rear-
range the terms in order to obtain Eq. 5 below:

Vcell = Voc−(Rint+R1+R2)·I+R1·I·e−
t

R1·C1 +R2·I·e−
t

R2·C2

(5)
However, fitting the curve with this equation does not

yield the best results. The reason is that the experimental
test bed used does not have a fixed sampling rate, so the
first measurement after the current step is applied usually
takes 100 ms. After this point, the sampling rate increases
to match the voltage dynamics.

Fitting without taking this in consideration yields a
small value of Rint, as the fitting algorithm finds the op-
timal solution with a strong exponential behaviour. To
avoid this inconsistency, we calculate the internal resis-
tance as:

Rint =
V 100ms
cell − Voc

I
(6)

Where the open-circuit voltage Voc is the cell voltage
just before the current step. This is a valid assumption as
there is an one-hour resting time before the step.

Equation 6 means that we consider that the voltage
variation from 0 to 100 ms is exclusively due to the internal
resistance. Then, we can fit the rest of the curve with an
equation similar to (5), but without the effect of Rint, as
in (7):

Vcell = Voc − b− d + b · e−c·t + d · e−f ·t (7)

Where:

b = R1 · I (8)

c =
1

C1 ·R1
(9)

d = R2 · I (10)

f =
1

C2 ·R2
(11)

When the curve fitting algorithm finds the values of
the terms b, c, d and f of Eqs. 8-11 above, we can then
find the parameters R1, C1, R2 and C2, as we have four
equations and four variables.

Figure 4 below illustrates this idea: the internal resis-
tance is calculated at the first 100ms of data as mentioned
in Eq. 6, and the rest of the data is used for the curve
fitting described in Eqs. 7-11.

In Fig. 4, the voltage and current behaviours are shown
for a cell subjected to a charging current. The cell had a
SoH = 80.3 % and a SoC = 50 % at the moment of the
current step.

Figure 4: Voltage response to a current step of cell #1 at a SoC of
50 % and a SoH of 80.3 %

Doing so allows us to obtain a set of parameters that
can very closely represent the actual behaviour of the Li-
ion cell. Figure 5 below shows a comparison between
the experimental data and a simulation carried out on
Simulink with the parameters found. The simulation data
is sampled at the same rate than the experimental data.
In this case, a R2 of 99.89 % is obtained.

We then carry out this method to the many SoC and
SoH points where a current step has been applied, for
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Figure 5: Real and simulated voltage response of cell #1 at a SoC
of 50 % and a SoH of 80.3 %

both charging and discharging currents. A high value of
R2 > 99 % is always obtained when comparing real and
simulated data. This allows us to obtain, for each parame-
ter, an evolution in function of its SoC and SoH, so that Voc

is a function of the SoH and SoC and Rint, R1, R2, C1, C2

are functions of the SoH, SoC and I.
We are then able to obtain curves such as the one shown

in Fig. 6, where the parameter Rint during a charge is
plotted in function of its SoC - each line represents a SoH
point. We can see that the internal resistance tends to
increase with ageing and low values of SoC.

Figure 6: Evolution of the Rc
int parameter as a function of its SoC

and SoH. Dashed lines represent extrapolated values. Cell #3 of
FL25◦C

As we only have two points of current (C for a charge
and -2C for a discharge), we will denote the parameters
with a c or d superscript in the next sections, standing for
charge and discharge, respectively. Therefore, Rd

int means
Rint as a function of the SoC and SoH for a discharging
current.

3.4. Extrapolation of Missing Points

As previously mentioned, the absence of current steps
at certain SoC points - due to safety or voltage saturation
of the battery cycler - makes it so that some parameters
cannot be found at certain values of SoC.

Moreover, classic extrapolation strategies does not yield
the best results, sometimes producing negative values for
parameters with a downward tendency. An example can
be seen in Fig. 6: the most complete curves have an up-
ward tendency at high values of SoC, and it is known that

Li-ion cells have an increase in internal resistance close to
SoC = 100 %.

However, if we use a classic extrapolation algorithm,
the two curves with the lowest SoH of Fig. 6 (colored light
blue and green) would not show this upward tendency.

In order to circumvent this, we extrapolate based on
the knowledge of the most complete curves. The procedure
is explained on the paragraphs below.

For each parameter, we fit the most complete curve
(usually the highest SoH one) with a polynomial func-
tion. The degree of this function is the one that yields
the highest correlation and captures the physical effect of
the curve.

We then fixate the dependent variables of said polyno-
mial function and fit the other curves only by finding the
independent term. By doing so, we are effectively repli-
cating the same curve shape, shifting it on the y-axis.

4. Results

In this section, the obtained results for our open data
model parameters will be detailed. In a first moment, we
present the capacity fade of the cells over the second life
cycles. Then, in Subsec. 4.2, the steps used to obtain a
single range of values for each parameter are explained.
The results are then presented and discussed in Subsec.
4.3.

4.1. Second-life capacity fade

The capacity fade results of the cycled cells over their
second life are presented in Fig. 7. Each marker represents
a check-up test, carried out every 50 cycles, as explained in
Subsec. 3.2. The cells that had a first life at 25 °C and 0 °C
are colored red and blue, respectively, and their first-life
capacity fade is shown in [47].

Figure 7: Second-life capacity fade of the investigated cells

One interesting outcome from this result is the uncer-
tainty related to the capacity fade: identical cells, having
the same first and second life utilization, can lead to a
difference of hundreds of cycles over their lifespan.
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4.2. Data Treatment

A parametric evolution, as shown in Fig. 6, can be
represented by a surface along two axis - the SoC and SoH
values. This can be repeated for all parameters of each
model, both for charging and discharging currents. These
surfaces, their data treatment and the final parameters
obtained will be explained in this section.

In Fig. 8, the obtained surfaces for the parameter C1

during a discharge are shown for the 3 cells that had a first
life at a temperature of 25 °C.

Figure 8: Surfaces of parameter Cd
1 for each cell of the FL25◦C Model

It is visible that the surfaces are very close, often su-
perposed. This proximity is indeed observed for all pa-
rameters, both for charging and discharging, both for cells
having a first life at 25 °C and 0 °C.

An interesting observation can be made when examin-
ing Figures 7 and 8. Even though the cells age at different
rates, the parameter surfaces of each cell are still very close
to each other.

For example, one cell can reach a SoH of 70 % after
100 second-life cycles, whereas another cell only after 200
cycles. However, both cells will have very similar parame-
ters at the SoH = 70 % point. This implies that the rate
of ageing can substantially vary between cells, while the
parameters seem to stay consistent with the SoH.

This indicates that, for any given parameter in our
model, a single surface can be obtained by averaging the
surfaces coming from each cell. In order to be able to
average these surfaces, a virtual re-sampling on the SoH
axis is made, as each cell has a different set of SoH val-
ues in which the current steps were applied. This is im-
plemented through the function griddata on Matlab and
allows us to fixate our second life range, which is chosen
to be SoHvalues = [80 75 70 65 60 55 50] %.

By following the methodology explained in the above
paragraphs, we are able to find a surface of parametric
evolution in terms of SoC and SoH for each parameter, for
both charging and discharging currents. Figure 9 shows

the surface of parameter C1 during a discharge, obtained
by averaging the three surfaces shown in Fig. 8.

Figure 9: Average surface of parameter Cd
1 for the FL25◦C Model

In order to validate the assumption that the average
surface is a good representation of the behaviour of the
tested cells, we perform an analysis based on the Relative
Error (RE). This is performed by calculating the abso-
lute value of the REs of each parameter surface. We do
this point-by-point, comparing each point of each cell pa-
rameter surface with the equivalent point of the averaged
surface.

We are, in effect, comparing the surfaces of each cell
(as shown in Fig. 8) with their average (as shown in Fig.
9). This can be represented by the Eq. 12 below:

RE =

∣∣∣∣∣Pi,j,k − P avg
i,j

P avg
i,j

∣∣∣∣∣ (12)

Where P is any of the parameters of our model (Voc,
Rint,...), for charge and discharge modes and for the FL25◦C
and FL0◦C models; i represents the SoC values, j repre-
sents the SoH values, k is the cell identifier (e.g. cell #1,)
and the subscript avg represents the average surface val-
ues, as shown in Fig. 9.

This gives us, then, a multitude of RE values. If their
distribution tends to be around a small RE, we can safely
assume that the average surface is satisfactory. Figure 10
below shows the boxplots of the RE distribution for all
parameters of the FL25◦C model.

We can see that for the majority of the parameters, the
interquartile representing the 25th and 75th percentiles of
data (represented by the blue box) is below 10 %, and
the whisker representing 99.3 % of the data (black dashed
lines) is below 20 %. The only exception is for parame-
ter Cc

1, where the box is around 20 % and the whisker is
around 30 %.

Similar results are obtained for the FL0◦C model and
are shown in Fig. 11, with a slightly higher dispersion of
the R1, C1 parameters.
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Figure 10: Boxplot of the Relative Error between experimental data
and their average - FL25◦C model.

Figure 11: Boxplot of the Relative Error between experimental data
and their average - FL0◦C model.

The variability observed on the RE distributions is con-
sidered to be acceptable, as per the experimental nature
of our data and the usage of curve fitting techniques to
obtain precise fits, as shown in Subsec. 3.3.

The results shown in the boxplots can also be useful
for parametric uncertainty estimation. For instance, when
using our model, one can assume that the values of Rint

with a 10 % uncertainty range are a good representation
of the real-life observation.

4.3. Model Parameters Results

By following the discussed methodology, we are finally
able to obtain the evolution of each parameter of our model
in terms of the cell’s SoC and SoH for both charge and dis-
charge currents and for both FL25◦C and FL0◦C models.
The results are shown in the Figs. 12-13 below. The data
is also presented in table format at the Appendix, as per
the open data nature of this article.

As the results are presented in the form of data tables,
a user can utilize these data and curve fitting tools to
obtain explicit functions for each parameter of the model

(e.g. Rd
int = f(SoC, SoH)) in case such an implementation

is desired.
A first detail that can be noticed when examining the

results is the difference between the FL25◦C and FL0◦C
models. The 0 °C model targeted a Lithium Plating age-
ing phenomena on its first life, whereas the 25 °C one ex-
plored the Loss of Active Material. The results of the
post-mortem analysis of these cells are published in [47].

When comparing the two models, we can see the effect
of this on the parameters. The 0 °C model tends to have
smaller resistive values for Rint, R1 and R2, specially on
the beginning of the second life and in lower values of SoC.
This can be seen in the evolution of the R1 parameter,
where a significant difference can be observed throughout
the entire second life.

We can also see that the 0 °C model has a stronger
capacitive tendency, for both C1 and C2 parameters. The
open-circuit voltage Voc, however, is almost identical for
the two models.

Another interesting observation is the difference of be-
haviour of the parameters for a charge and discharge cur-
rent. For some parameters, such as the internal resistance
Rint and R1, we can observe a similar behaviour and order
of magnitude of the obtained values.

Parameters R2 and C1, on the other hand, show clear
differences in both shape and value as a function of the
current. Finally, parameter C2 has a similar behaviour for
medium values of SoC (around 50 %), but differs towards
high and low SoC values.

A final interesting analysis of the results is regarding
the impact of ageing on the parameters. Resistive param-
eters Rint and R2 tend to increase as the SoH declines,
whereas R1 does not seem to be heavily impacted. Capac-
itive parameters C1 and C2, on the other, tend to decrease
in value as the cell ages. The FL0◦C model seems to be
specially impacted by this behaviour.

One can also remark that even though the FL0◦C model
suffered from Lithium Plating on its first life, both FL25◦C
and FL0◦C models have their second life at a temperature
of 25 °C, which privileges the Loss of Active Material. This
is a possible explanation to the fact that the capacitive
parameters C1 and C2 of the two models are significantly
different in the beginning of the second life, but tend to
smooth out at the end.

4.4. Comparison of experimental and simulated data

When the parameter surfaces of each cell were calcu-
lated, we compared the experimental and simulated data
at every step, as illustrated in Fig. 5. However, our final
model data consists of averaged parametric surfaces from
several cells, as explained in Subsec. 4.2.

In order to validate the performance of our model, we
compared the experimental and simulated data again. As
we have hundreds of experimental voltage response curves,
we choose to illustrate 6 cases, in which several values of
our data set are tested. The details of these cases are
presented in Table 3 below:
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(a) Parameter Rint for a charging current (b) Parameter Rint for a discharging current

(c) Parameter R1 for a charging current (d) Parameter R1 for a discharging current

(e) Parameter R2 for a charging current (f) Parameter R2 for a discharging current

Figure 12: Surfaces of the resistive parameters for both charge and discharge currents and for both FL25◦C and FL0◦C models.
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(a) Parameter C1 for a charging current (b) Parameter C1 for a discharging current

(c) Parameter C2 for a charging current (d) Parameter C2 for a discharging current

(e) Parameter Voc

Figure 13: Surfaces of the capacitive parameters for both charge and discharge currents and open-circuit voltage for both FL25◦C and FL0◦C
models.
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Table 3: Six cases for experimental and simulation comparison
Case Cell Id Model SoC [%] SoH [%] Current mode

1 #1 FL25◦C 0 75.1 charge
2 #2 FL25◦C 20 70.4 charge
3 #3 FL25◦C 90 54.8 discharge
4 #7 FL0◦C 80 66.1 charge
5 #8 FL0◦C 70 76.1 discharge
6 #9 FL0◦C 50 63.4 discharge

The comparison results are shown in Fig. 14 below.
For the majority of cases, the curves are very close to one
another. Sometimes it is possible to observe slight differ-
ences in the capacitive behaviour, as in Case 1, and/or
resistive behaviour, as in Case 6. This is explained by the
usage of simulation parameters issuing from the average
of several cells, as well as by the interpolation required to
simulate precise values of SoH, for example.

Figure 14: Comparison of experimental and simulated data for 6
cases

When analyzing these and other comparisons we ob-
serve that, for the worst cases, the voltage error is in the
order of magnitude of tenths of millivolts. We consider this
an acceptable result, all the more so because the objective
of this work is not to achieve perfect simulation results,
but to observe the evolution of the parameters during the
second life.

Finally, it is worth noting that the parameters iden-
tified in this work represent the short-term dynamic re-
sponse of a SLB. However, a user can couple our data
tables with SoC and SoH estimators in order to obtain
a model with variable parameters, which allows the sim-
ulation of long-term dynamics, such as charge-discharge
cycles.

5. Conclusion

In this work, we present a complete, open data model
parameterization for the second life of a NMC + LMO
technology Li-ion battery.

The parameters of this model are extracted from ex-
tensive testing of Li-ion cells that went through cycling
ageing in well known conditions. Even though the model
presented on this article is valid for a specific LIB technol-
ogy, both the electrical equivalent model and the parame-
terization techniques are well known. This is made so that
the methodology can easily be replicated in order to find
simulation models for other battery technologies.

As several cells have been cycled, we are able to ex-
tract an average of each of the model’s parameters. The
variation of the parameters of each cell with regard to the
average is also studied, giving an idea of the parametric
uncertainty of the model.

Two different first life temperature conditions have been
studied and presented, focusing on two different ageing
mechanisms: Loss of Active Material and Lithium Plating.
The impact of these first life conditions and of the electri-
cal current (charge and discharge modes) can be clearly
seen in the presented results.

This work bridges a gap in the literature, as it presents
the complete evolution of all parameters of an electric
equivalent circuit model as a function of the second life
SoH, SoC, current and first life ageing mechanism.

Furthermore, all the results are publicly available - as
they are presented in an open data fashion, we believe this
model can be useful for simulation, academic and educa-
tional purposes.
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APPENDIX A - Parameters for Model FL25◦C:

Table .4: Parameter Rint [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0639 0.0627 0.0621 0.0600 0.0612 0.0577 0.0488 0.0474 0.0468 0.0489 0.0529
75 0.0658 0.0656 0.0644 0.0635 0.0632 0.0569 0.0494 0.0483 0.0478 0.0493 0.0544
70 0.0665 0.0634 0.0652 0.0649 0.0641 0.0570 0.0503 0.0497 0.0493 0.0504 0.0550
65 0.0690 0.0676 0.0684 0.0667 0.0660 0.0581 0.0522 0.0520 0.0518 0.0538 0.0575
60 0.0719 0.0708 0.0708 0.0687 0.0672 0.0591 0.0545 0.0540 0.0542 0.0559 0.0597
55 0.0742 0.0730 0.0726 0.0705 0.0678 0.0598 0.0565 0.0559 0.0565 0.0575 0.0614
50 0.0765 0.0746 0.0740 0.0711 0.0674 0.0608 0.0585 0.0580 0.0575 0.0588 0.0627

Table .5: Parameter Rint [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0633 0.0623 0.0613 0.0619 0.0603 0.0581 0.0506 0.0487 0.0473 0.0481 0.0505
75 0.0637 0.0631 0.0626 0.0628 0.0625 0.0588 0.0513 0.0494 0.0481 0.0490 0.0523
70 0.0650 0.0645 0.0637 0.0639 0.0631 0.0598 0.0519 0.0507 0.0496 0.0499 0.0525
65 0.0681 0.0680 0.0669 0.0667 0.0666 0.0624 0.0542 0.0529 0.0521 0.0524 0.0544
60 0.0704 0.0709 0.0700 0.0699 0.0700 0.0643 0.0565 0.0552 0.0545 0.0548 0.0568
55 0.0725 0.0736 0.0728 0.0727 0.0729 0.0657 0.0587 0.0572 0.0566 0.0570 0.0591
50 0.0752 0.0763 0.0752 0.0750 0.0745 0.0665 0.0606 0.0589 0.0585 0.0588 0.0613

Table .6: Parameter R1 [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0517 0.0449 0.0418 0.0371 0.0314 0.0147 0.0051 0.0054 0.0051 0.0055 0.0055
75 0.0611 0.0526 0.0491 0.0401 0.0345 0.0146 0.0072 0.0067 0.0067 0.0067 0.0067
70 0.0606 0.0562 0.0488 0.0401 0.0334 0.0125 0.0064 0.0070 0.0070 0.0070 0.0070
65 0.0576 0.0523 0.0462 0.0385 0.0304 0.0103 0.0069 0.0074 0.0074 0.0074 0.0074
60 0.0541 0.0479 0.0424 0.0350 0.0259 0.0098 0.0071 0.0076 0.0076 0.0076 0.0076
55 0.0505 0.0437 0.0384 0.0306 0.0213 0.0098 0.0073 0.0077 0.0077 0.0077 0.0077
50 0.0453 0.0381 0.0324 0.0242 0.0164 0.0089 0.0076 0.0079 0.0079 0.0079 0.0079

Table .7: Parameter R1 [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0663 0.0589 0.0545 0.0453 0.0417 0.0410 0.0072 0.0067 0.0056 0.0082 0.0121
75 0.0728 0.0721 0.0668 0.0578 0.0521 0.0521 0.0071 0.0072 0.0063 0.0090 0.0136
70 0.0748 0.0749 0.0704 0.0620 0.0563 0.0557 0.0076 0.0074 0.0070 0.0090 0.0136
65 0.0759 0.0761 0.0725 0.0645 0.0599 0.0567 0.0082 0.0077 0.0074 0.0091 0.0133
60 0.0753 0.0745 0.0718 0.0653 0.0620 0.0483 0.0084 0.0083 0.0078 0.0095 0.0134
55 0.0744 0.0725 0.0706 0.0659 0.0639 0.0380 0.0086 0.0087 0.0083 0.0099 0.0136
50 0.0735 0.0701 0.0697 0.0660 0.0616 0.0338 0.0087 0.0088 0.0085 0.0102 0.0137
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Table .8: Parameter R2 [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0549 0.0300 0.0313 0.0294 0.0310 0.0406 0.0348 0.0395 0.0466 0.0514 0.0553
75 0.0573 0.0394 0.0397 0.0367 0.0406 0.0468 0.0440 0.0461 0.0531 0.0586 0.0625
70 0.0488 0.0441 0.0434 0.0421 0.0456 0.0485 0.0474 0.0482 0.0577 0.0611 0.0648
65 0.0474 0.0478 0.0468 0.0473 0.0508 0.0508 0.0497 0.0482 0.0608 0.0638 0.0671
60 0.0483 0.0500 0.0498 0.0518 0.0546 0.0496 0.0481 0.0549 0.0640 0.0676 0.0715
55 0.0489 0.0515 0.0525 0.0558 0.0578 0.0484 0.0493 0.0655 0.0677 0.0718 0.0764
50 0.0492 0.0524 0.0547 0.0583 0.0591 0.0562 0.0601 0.0719 0.0749 0.0791 0.0837

Table .9: Parameter R2 [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0983 0.0752 0.0572 0.0397 0.0359 0.0359 0.0662 0.0415 0.0456 0.0432 0.0362
75 0.1071 0.0852 0.0635 0.0492 0.0449 0.0441 0.0694 0.0489 0.0536 0.0472 0.0422
70 0.1157 0.0891 0.0688 0.0539 0.0494 0.0489 0.0903 0.0541 0.0603 0.0535 0.0450
65 0.1201 0.0930 0.0752 0.0598 0.0588 0.0633 0.1133 0.0623 0.0695 0.0639 0.0478
60 0.1123 0.0896 0.0774 0.0655 0.0674 0.0780 0.1224 0.0711 0.0784 0.0731 0.0503
55 0.1034 0.0851 0.0787 0.0708 0.0747 0.0895 0.1306 0.0780 0.0853 0.0794 0.0525
50 0.0924 0.0816 0.0799 0.0741 0.0809 0.0928 0.1219 0.0797 0.0868 0.0792 0.0533

Table .10: Parameter C1 [F] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 10.07 10.74 11.07 11.40 13.78 33.70 134.05 141.45 170.80 195.39 217.53
75 9.69 10.40 10.82 12.67 14.53 35.92 132.27 134.62 193.19 211.46 235.98
70 9.45 9.17 10.72 12.50 14.83 44.84 105.78 121.45 178.98 201.77 225.96
65 9.83 10.18 11.40 12.97 16.82 61.54 115.35 132.13 181.91 204.25 227.96
60 10.26 11.25 12.54 15.27 21.12 84.23 125.60 136.97 191.29 213.95 237.97
55 10.68 12.28 13.96 18.67 26.29 103.18 130.03 135.53 198.84 221.88 246.30
50 12.02 14.40 17.78 27.70 43.68 107.04 132.80 146.87 200.49 221.50 243.69

Table .11: Parameter C1 [F] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 12.14 12.00 11.80 12.58 12.63 15.82 98.65 120.39 141.77 100.30 59.05
75 10.57 10.57 10.72 11.39 11.8 14.82 109.19 120.69 126.93 94.68 61.48
70 10.14 10.14 10.03 10.59 10.98 15.04 89.22 110.91 122.03 89.90 54.26
65 10.04 10.04 9.95 10.32 10.98 19.75 84.16 103.62 122.20 93.21 55.75
60 10.15 10.15 10.08 10.41 11.43 35.53 87.33 100.11 119.03 91.08 56.61
55 10.28 10.28 10.22 10.61 12.03 55.95 91.21 97.77 112.61 86.75 58.15
50 10.73 10.73 10.66 11.70 15.27 79.90 98.26 98.32 106.64 83.25 60.75
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Table .12: Parameter C2 [F] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 214.66 313.96 315.29 292.80 261.27 208.54 328.22 270.37 196.87 179.01 164.14
75 199.94 242.35 249.18 233.58 207.05 185.28 295.85 261.73 153.10 138.36 123.62
70 201.00 211.61 222.25 204.02 181.83 190.51 256.26 239.29 132.07 117.33 102.59
65 209.21 199.51 201.15 181.89 167.67 199.23 243.72 226.22 122.67 107.91 93.15
60 203.11 191.60 186.49 171.66 163.08 196.99 222.46 215.36 123.05 107.77 92.49
55 196.63 182.77 174.67 164.40 161.32 193.62 198.47 208.36 124.35 108.54 92.74
50 194.67 177.47 170.96 167.64 168.73 198.43 203.86 199.56 124.10 110.38 96.66

Table .13: Parameter C2 [F] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 56.09 120.30 166.59 236.77 283.19 306.07 270.36 263.36 256.00 299.24 268.11
75 57.94 128.56 161.82 215.67 254.01 262.67 259.20 250.40 249.32 274.75 242.50
70 51.16 129.64 155.23 197.90 232.10 226.06 242.50 236.01 237.66 259.22 215.69
65 73.83 142.51 163.88 191.67 225.09 211.06 240.61 227.02 230.23 251.70 206.66
60 115.34 162.80 176.46 192.68 219.04 197.41 238.21 224.60 230.59 249.34 202.06
55 154.03 181.31 187.58 194.51 209.39 183.39 237.55 221.04 230.63 244.46 199.87
50 185.4 190.61 194.42 189.54 195.22 195.15 237.48 216.37 231.80 240.04 202.77

Table .14: Parameter Voc [V]

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 3.33 3.48 3.50 3.57 3.62 3.72 3.90 3.98 4.06 4.10 4.16
75 3.40 3.49 3.52 3.58 3.63 3.74 3.90 3.98 4.06 4.10 4.16
70 3.44 3.50 3.53 3.59 3.63 3.75 3.91 3.98 4.06 4.09 4.15
65 3.47 3.52 3.55 3.60 3.65 3.77 3.91 3.98 4.06 4.09 4.15
60 3.50 3.54 3.57 3.62 3.67 3.79 3.93 3.99 4.06 4.10 4.14
55 3.53 3.57 3.60 3.64 3.69 3.81 3.94 4.00 4.06 4.10 4.14
50 3.56 3.60 3.62 3.67 3.72 3.84 3.96 4.01 4.07 4.10 4.14
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APPENDIX B - Parameters for Model FL0◦C:

Table .15: Parameter Rint [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0498 0.0481 0.0467 0.0454 0.0445 0.0432 0.0413 0.0409 0.0417 0.0434 0.0456
75 0.0614 0.0583 0.0582 0.056 0.0558 0.0525 0.0483 0.0475 0.048 0.0504 0.0536
70 0.0641 0.0626 0.0608 0.0589 0.0593 0.0547 0.0502 0.0496 0.0502 0.0531 0.0564
65 0.0664 0.0659 0.0632 0.0627 0.0615 0.0561 0.0518 0.0519 0.0524 0.0546 0.0572
60 0.07 0.0685 0.0663 0.0657 0.0639 0.0586 0.055 0.0551 0.056 0.0582 0.0609
55 0.0744 0.0718 0.07 0.0689 0.0665 0.0615 0.0588 0.0587 0.0599 0.0621 0.065
50 0.0794 0.0764 0.0742 0.0719 0.0692 0.0649 0.0629 0.0627 0.0641 0.0662 0.069

Table .16: Parameter Rint [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0517 0.0496 0.0476 0.0458 0.0445 0.0438 0.0427 0.0426 0.0427 0.0432 0.044
75 0.06 0.0587 0.0583 0.056 0.0555 0.0524 0.0495 0.0488 0.0492 0.0501 0.051
70 0.0627 0.0619 0.0612 0.0594 0.059 0.0558 0.0517 0.0511 0.0512 0.0521 0.0532
65 0.0655 0.0652 0.0638 0.0637 0.0619 0.0584 0.0545 0.0538 0.0537 0.0543 0.0551
60 0.0694 0.0691 0.0686 0.0682 0.0669 0.0624 0.058 0.0575 0.057 0.0572 0.0582
55 0.0739 0.0735 0.0739 0.0733 0.0728 0.0668 0.0621 0.0617 0.0608 0.0607 0.0618
50 0.0791 0.0788 0.079 0.0787 0.0785 0.0715 0.0667 0.066 0.0651 0.0648 0.0659

Table .17: Parameter R1 [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0049 0.0026 0.002 0.002 0.0029 0.0039 0.0039 0.004 0.0049 0.0055 0.0061
75 0.0183 0.0141 0.0112 0.0102 0.0092 0.0076 0.006 0.0065 0.0089 0.0098 0.0108
70 0.0183 0.0147 0.0143 0.0129 0.0115 0.008 0.0066 0.0071 0.0102 0.0111 0.0121
65 0.0178 0.0147 0.0158 0.0136 0.013 0.008 0.0074 0.0074 0.0107 0.0116 0.0126
60 0.0167 0.0153 0.0157 0.0134 0.0127 0.0082 0.0081 0.0082 0.011 0.0119 0.0129
55 0.0159 0.0158 0.0153 0.013 0.0121 0.0084 0.0087 0.009 0.0114 0.0123 0.0133
50 0.0155 0.0155 0.0147 0.0124 0.0114 0.0091 0.0095 0.0099 0.012 0.0128 0.0138

Table .18: Parameter R1 [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0127 0.0091 0.0062 0.004 0.0035 0.0041 0.0047 0.0054 0.0057 0.006 0.0056
75 0.0227 0.0206 0.0158 0.0135 0.0106 0.0103 0.0065 0.0078 0.008 0.0095 0.0101
70 0.0249 0.0219 0.0182 0.0158 0.0137 0.0122 0.0073 0.0087 0.0087 0.0106 0.0111
65 0.0249 0.0212 0.0191 0.016 0.0157 0.0129 0.008 0.0093 0.009 0.011 0.0117
60 0.0244 0.0209 0.0191 0.0167 0.0165 0.0128 0.0088 0.0098 0.0093 0.0115 0.0119
55 0.0239 0.0208 0.0191 0.0174 0.0169 0.0124 0.0095 0.0103 0.0096 0.0118 0.012
50 0.0243 0.0208 0.0198 0.0182 0.0177 0.0121 0.0101 0.0107 0.0101 0.0121 0.0122
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Table .19: Parameter R2 [Ω] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0276 0.0187 0.0179 0.017 0.0183 0.0208 0.0238 0.0288 0.0359 0.041 0.0457
75 0.0557 0.0291 0.0303 0.0268 0.0279 0.0343 0.0313 0.0354 0.0463 0.0504 0.055
70 0.0489 0.032 0.0325 0.0294 0.0318 0.0377 0.037 0.0406 0.0494 0.0532 0.0573
65 0.0374 0.0347 0.0345 0.0326 0.0357 0.0396 0.0418 0.0467 0.0525 0.0558 0.0593
60 0.0351 0.0363 0.0362 0.0359 0.0396 0.0428 0.0457 0.0542 0.0579 0.0609 0.0641
55 0.036 0.0377 0.0382 0.0396 0.0435 0.047 0.0495 0.0605 0.0631 0.066 0.0691
50 0.0389 0.0389 0.0408 0.0435 0.0465 0.0531 0.0538 0.0631 0.0665 0.0694 0.0725

Table .20: Parameter R2 [Ω] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 0.0748 0.0554 0.0376 0.0251 0.0225 0.0222 0.0216 0.0211 0.0205 0.0195 0.0206
75 0.0858 0.0685 0.0493 0.0315 0.031 0.0327 0.0309 0.0315 0.0313 0.0292 0.0301
70 0.0895 0.0687 0.0505 0.0349 0.0351 0.0392 0.0363 0.0355 0.0363 0.0332 0.0341
65 0.0922 0.0672 0.0514 0.039 0.039 0.0448 0.0421 0.0392 0.0411 0.0364 0.0375
60 0.0882 0.0662 0.0551 0.0449 0.0472 0.0539 0.0478 0.0441 0.0451 0.0397 0.0406
55 0.0828 0.066 0.0594 0.0518 0.0573 0.0645 0.0536 0.0495 0.0491 0.0433 0.0438
50 0.0799 0.0677 0.0641 0.0596 0.0688 0.0777 0.0602 0.0546 0.0534 0.047 0.0471

Table .21: Parameter C1 [F] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 85.62 110.78 132.61 162.73 163.39 160.63 172.82 177.72 250.43 291.67 322.8
75 26.31 30.93 38.83 39.08 52.23 89.09 139.29 140.15 176.71 190.41 204.66
70 25.84 30.51 29.76 31.31 43.84 94.87 130.85 124.7 165.82 178.69 192.08
65 24.83 29.99 24.38 30.79 38.97 98.62 104.28 120.69 155.46 167.49 179.99
60 27.18 30.32 25.23 34.38 42.82 98.45 102.05 122.93 155.06 166.82 179.03
55 30.63 31.56 29.11 40.47 49.84 96.61 107.38 128.36 159.24 171.06 183.33
50 33.81 34.02 34.59 48.75 59.59 92.3 117.32 138.77 167.9 180.21 193.01

Table .22: Parameter C1 [F] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 32.1 51.04 70.99 97.38 117.49 138.18 157.65 148.7 131.61 113.33 110.97
75 28.37 24.91 32.3 35.6 45.2 73.34 137.17 113.98 106.8 86.9 66.83
70 26.97 23.23 27.2 29.79 35.75 64.99 112.12 96.23 97.42 76.5 65.82
65 26.61 23.61 23.85 28.25 29.78 59.08 111.17 90.37 96.61 73.86 62.78
60 25.99 23.35 23.94 27.31 28.48 58.47 97.81 87.35 90.8 68.53 61.28
55 25.49 23.19 24.7 27.36 29.54 59.73 86.86 85.73 86.51 64.24 60.46
50 26.23 23.67 24.32 27.73 30.81 59.8 81.61 81.71 82.31 61.65 59.28
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Table .23: Parameter C2 [F] for a charging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 382.94 459.6 465.31 468.77 440.41 415.2 478.47 439.64 384.64 346.65 318.22
75 187.11 295.19 317.81 326.26 320.95 248.02 360.46 345.01 249.86 221.21 200.38
70 209.6 283.49 284.53 285.51 273.82 240.26 321.96 314.88 226.51 197.87 177.03
65 238.41 265.94 263.32 262.76 241.59 235.05 280.07 302.67 210.98 182.33 161.5
60 263.61 256.12 246 242.01 223.17 229.37 267.63 297.31 202.91 174.26 153.43
55 279.2 246.93 231.99 225.16 210.84 224.29 265.12 291.79 196.67 168.02 147.19
50 273.32 236.54 219.24 213.9 204.68 218.46 271.51 281.86 189.7 161.05 140.22

Table .24: Parameter C2 [F] for a discharging current

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 181.71 270.42 363.11 440.21 473.35 488.07 506.97 487.53 459.75 437.16 440.39
75 91.8 184.45 254.8 317.3 330.93 277.49 336.42 303.73 308.76 290.33 286.55
70 113.91 190.7 248 289.22 297.21 236.57 301.92 273.41 287.61 272.7 264.69
65 138.46 201.33 248.54 274.33 271.45 204.69 296.12 263.77 280.93 264.5 250.97
60 152.43 205.61 245.07 255.36 248.95 189.96 278.16 258.01 268.23 254.01 238.98
55 158 207 238.04 236.78 229.72 179.9 260.07 253.32 256.17 243.93 227.38
50 155.5 203.24 222.99 218.72 212.39 174.56 245.7 243.73 245.84 234.04 215.3

Table .25: Parameter Voc [V]

SoH [%]
SoC [%]

0 5 10 20 30 50 70 80 90 95 100

80 3.48 3.51 3.54 3.58 3.64 3.76 3.91 4.01 4.08 4.13 4.17
75 3.38 3.49 3.53 3.59 3.64 3.77 3.93 4 4.08 4.12 4.18
70 3.42 3.51 3.54 3.6 3.65 3.78 3.93 4.01 4.08 4.12 4.17
65 3.47 3.52 3.56 3.61 3.66 3.8 3.94 4.01 4.08 4.12 4.17
60 3.5 3.55 3.58 3.63 3.68 3.82 3.95 4.02 4.08 4.12 4.16
55 3.53 3.57 3.6 3.66 3.71 3.84 3.96 4.03 4.09 4.12 4.16
50 3.56 3.6 3.63 3.68 3.73 3.86 3.98 4.03 4.09 4.12 4.16
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