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Abstract
This article is dedicated to the estimation of the parameters of a linear-circular regression model. For

this model, the response is circular and defined between −π and π, the predictor is linear and several sensors
provide noisy observations of the response. In our approach, the noise is assumed to be distributed according
to a von Mises distribution with a concentration parameter that models the accuracy of the sensors. We
propose a maximum likelihood circular fusion operator for the estimation of the intercept, the slope of the
regression line and the concentration parameter associated with each sensor. The proposed estimate is not
direct as in the linear case and requires an iterative algorithm to maximize a periodic contrast function. In
order to characterize the accuracy of our fusion operator, the theoretical expression of the variance of the
proposed estimator slope is first derived. For this derivation, we approximate the von Mises distribution
by a Wrapped normal distribution and we consider unwrapped observations. Then, we derive an iterative
procedure to maximize the contrast function. We show, using synthetic data, that the variance of the slope
of the regression line derived using the proposed estimate is in good agreement with that obtained using
the theoretical expression of the variance. The proposed estimator is also used to process the carrier-phase
difference between GNSS signals provided by two antennas. The objective in terms of signal processing is to
estimate the linear parameters of this difference in order to derive the height between the two antennas.
We show that fusing the observations provided by several satellite signals improves the accuracy of the
estimated height. We also show, using real data, that the theoretical study of the proposed estimator can
be used to predict the length of integration of the signal necessary for obtaining an estimate of the height
with a given accuracy.

© 2020 Published by Elsevier Ltd.

Keywords: Circular data processing, Information Fusion, Angular regression, GNSS carrier-phase
processing

∗Corresponding author.
Email addresses: hkouassi@univ-littoral.fr ( Hatchouelou Kant Williams Kouassi),

hamza.issa@univ-littoral.fr (Hamza Issa), georges.stienne@univ-littoral.fr (Georges Stienne),
serge.reboul@univ-littoral.fr (Serge Reboul)

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1051200421002116
Manuscript_10fe63ac090a00c12c748496acb12c85

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1051200421002116
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1051200421002116


2 Hatchouelou Kant Williams Kouassi, Hamza Issa, Georges Stienne, Serge Reboul / Digital Signal

Processing 00 (2021) 1–29
1. Introduction

Circular or directional data are defined on a bounded set. In this article, these data are observed

as a function of time, and the interval of definition of the variables is between −π and π. Circular

data is defined in [1] as angles or points on the circumference of a unit circle with periodic measure-

ments. In fact, the circular domain, which is indeed different from the linear domain, is of interest

in the signal processing field, because several sensors can provide circular data as a function of time.

In [2], observations of the direction of a moving platform (a car) are provided by a digital magnetic

compass. In [3], observations of the direction of the wind are obtained with a wind vane, and in

[4], with an HF radar and an anchored wave buoy. Communication systems are another domain of

applications where a circular data provided by a Phase-Locked Loop (PLL) or a Phase-Open Loop

(POL) is processed [5]. In robotics, directional data are processed to constitute the Direction of

Arrival (DOA) obtained with acoustic sensors [6]. In imaging applications, colorimetric hue data

are directional observations processed in the spatial domain [7].

Directional or circular data have been studied for a long time and the evolution of the statistical

inference in this field can be observed in the following three books [8, 9, 1]. It is more recently that

the signal processing community got interested in the processing of circular or directional data in

the circular domain. The difference between the linear and the circular domains, such as the absence

of order on the circle, indeed requires the development of new signal processing techniques. Such

techniques, developed in a probabilistic framework with circular distributions, have been proposed

recently. In [2, 10, 11], a recursive state filter and a fusion operator were proposed to estimate the

state of a constant velocity model with circular observations of the direction. In [12], an adaptive

version of the filter was proposed to process the phase provided by a POL. It also detects and

corrects any abrupt changes in the signal (cycle slip). A particle filter was proposed in [13] to fuse

observations of the position, defined in the linear domain, and observations of the direction, defined

in the linear-circular domain, to estimate a vehicle position. In [6], a particle filter was proposed

to estimate the speaker location with DOA measurements. An Interacting Multiple Model

(IMM) filter defined in the linear-circular domain was proposed in [14] to detect maneuver with

heading only observations. In [15], a von Mises Mixture Probability Hypothesis Density (PHD) filter

for multi-target tracking with directional observations was proposed. The subject of this article

concerns the maximum likelihood estimation of the parameters of a linear-circular regression model
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in the case of multi-sensors fusion.

Multiple linear regression models fitting on a set of circular data have already been addressed in

various published works. In this model, the response is an angle defined as a weighted sum of several

linear predictor variables multiplied by regression coefficients. We consider the simple linear-circular

model with one linear predictor variable and two regression coefficients. The response is realized with

noisy angular observations defined between −π and π. Both the response and the observations are

obtained as a function of a predictor defined between −∞ and +∞. This model, called the “barber’s

pole” model, can be represented as a curve winding in an infinite number of spirals up the surface of

an infinite cylinder [16]. In the linear domain, only one line can pass through two points and there

is a direct estimate of the intercept and slope of the regression line. However, in the circular domain,

several lines can pass through two points and there is no direct estimate of the regression line

coefficients. The first iterative estimate of the linear-circular regression parameters was proposed in

[16]. The proposed maximum likelihood estimate relies on the minimization of a periodic contrast

function. In this case, the estimate is biased because the contrast function has several global maxima.

Johnson and Wehrly [17] proposed to map the real line to an angular interval of length 2π

with a non-linear transformation, where the predictor is between −∞ and +∞ and the angular

observations are in a single interval of length 2π. In this model, the response completes just one

spiral around the cylinder as the predictor varies through its range. In this case, only one line can

pass through two points of the interval. Indeed, several iterative estimates were proposed based

on this approach [18, 19, 20, 21]. However, even if the contrast functions of these estimates have

only one global maximum, its periodic evolution has several local maxima. The model parameter

estimation requires computationally extensive optimization like Metropolis-Hastings samplings,

which makes the parameter estimation extremely slow for a large data size. In practice, it is the

non-linear transformation of the regression model that is fit to the observations. Therefore, this

approach does not provide an estimate of the regression parameters.

A method has been proposed recently [22], to fit the observations with a mixture of linear-linear

regression models. This angular Gaussian mixture model associates each spiral around the cylinder

with a linear-linear model. In this approach, the number of spirals must be estimated as well as the



4 Hatchouelou Kant Williams Kouassi, Hamza Issa, Georges Stienne, Serge Reboul / Digital Signal

Processing 00 (2021) 1–29
regression parameters. The estimation of this number is sensitive to noise and the Gaussian noise

model that is used is not adapted to the processing of the transitions between −π and π at the

beginning and at the end of each interval. However, it is shown in [22] that the proposed estimator

outperforms the estimates of the literature for data that follow a “barber pool” model evolution.

In this article, we propose an estimate of the linear-circular regression parameters that fuses the

observations provided by several sensors. We use the classical “barber’s pole” model to derive a

maximum likelihood estimate for data fusion. This iterative estimate maximizes a periodic contrast

function. We show, by application, that the contrast function has only one global maximum. Further-

more, we show that fusing the data provided by several sensors decreases the amplitude of the local

maximum in the contrast function and improves the convergence of our estimate. Finally, we derive

the variance of the estimated slope to assess, after convergence, the accuracy of the proposed estimate.

The proposed estimate is used to process a GNSS carrier-phase signal. We use an experimental

setup composed of two antennas sensing two GPS signals for each satellite in view. These two

signals have different trajectories and their path difference is linked to the height between the

two antennas. It has been shown that the path difference can be observed through the phase

delay between these two signals [23]. This phase delay, which is a function of the sine of the time

varying satellite elevation, is indeed linear with a slope proportional to the height between the two

antennas. In our approach, we fuse the phase delay observations obtained for several satellites

in view. Furthermore, the noise power on the observed phase delay is different for each satellite

due to the difference in elevation and signal propagation conditions. The estimate proposed in

this article is used to fuse these observations. The theoretical accuracy of the estimate is assessed

through out this experimentation. Finally, we show by experimentation, the interest of fusing the

observations provided by different satellites in terms of accuracy and convergence on our iterative

estimate. The performance of the proposed estimator is compared with that of the state of the art

estimator described above [22]. We show that our estimator is more accurate for the estimation of

the parameters of the regression in terms of standard deviation and roots mean square error.

This article is organized as follows: We introduce in the second section, the proposed fusion

estimate based on the maximum likelihood. Then, the statistical properties of our estimate are
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derived in the third section. In the fourth section, we assess the use of the proposed estimate for

the fusion of different satellites observations in a reflectometry application using both synthetic and

real data. Finally, a conclusion is provided in the fifth section.

2. Circular regression fusion

In this section, we propose a multi-sensors approach for the estimation of the parameters of a

linear-circular regression model. The aim is to improve the accuracy of the estimations by using

multiple sensors. In this context, it is interesting to merge the measurements provided by different

sensors according to the same model into a single estimation with a lower variance. We assume the

noisy measurements to be independent and distributed according to the circular normal von Mises

distribution.

Let us define the following linear-circular model for one observation of the sensor s:

ysn = (α+ β xsn + ξsn) mod 2π (1)

where n ∈ {1, . . . , N} is the sampling instant and s ∈ {1, . . . , S} is the sensor identity. In our

linear model, α + β xsn, we assume that the intercept α and the slope β are the same for all the

sensors. xsn are the deterministic, time varying predictors corresponding to the sensor s. ξsn is a

noise distributed according to a centered von Mises distribution. The von Mises distribution, also

called Circular Normal distribution, is used for circular data in most applied problems because this

distribution acts on circular data as the Normal distribution on the real line [1]. We consider the

following likelihood for one observation and one sensor:

f(ysn;α, β, κs) = 1
2πI0(κs)

exp(κs cos(ysn − (α+ β xsn))) (2)

where κs is the concentration parameter of the Von Mises distribution. I0 is the modified Bessel

function of the first kind and order zero. Let us define the vector Y of N measurements coming

from S sensors:

Y =
{
y1

1 , . . . , y
1
N , . . . , y

S
1 , . . . , y

S
N

}
(3)
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In this article, we assume that the measurements are independent. This point will

be discussed again in section 4.2.4. for our application on GNSS carrier-phase signal

processing.

The likelihood of these N × S measurements is given by:

L(Y ) = f(y1
1 ;α, β, κ1) . . . f(ySN ;α, β, κS) (4)

Then:

L(Y ) =
S∏
s=1

N∏
n=1

1
2πI0(κs)

exp(κscos(ysn − (α+ β xsn))) (5)

We derive the log of the likelihood function as:

ln(L(Y )) =
S∑
s=1

N∑
n=1

κs cos(ysn − (α+ β xsn))−N
S∑
s=1

ln(2πI0(κs)) (6)

In order to define the estimate β̂ of the slope β (in the whole article, the notation .̂ corresponds to

the estimate of a parameter), we maximize the log of the likelihood using the following contrast

function:

W (Y ) =
S∑
s=1

N∑
n=1

κ̂s cos(ysn − (α̂+ β̂ xsn)) (7)

In the following, we first present the direct maximum likelihood estimate of κs (resp. α), assuming

that α and β (resp. κs and β) are known. α̂ and κ̂s are thus defined as functions of β̂. We then

propose in a second step an iterative estimate of β.

It is shown in [1] that, for a von Mises distribution of the noise, the maximum

likelihood estimate of κs is obtained with the following expressions when α and β are

known:

∂ln(L(Y ))
∂κs

=
N∑
n=1

cos(ysn − (α+ β xsn))−N I1(κs)
I0(κs) = 0 (8)
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with I1(κs) = ∂(I0(κs))/∂κs the modified Bessel function of the first kind and order one.

Then, we can define A(κs) as:

A(κs) , I1(κs)
I0(κs) = 1

N

N∑
n=1

cos(ysn − (α+ β xsn)) (9)

The maximum likelihood estimate of κs is thus obtained by:

κ̂s = A−1

(∑N
n=1 cos(ysn − (α+ β xsn))

N

)
(10)

According to [1], A(κs) is a strictly monotone increasing function of κs so κ̂s is the unique

solution to equation (10). There are different methods defined in [24] for the processing of the non

linear function A−1 which includes the Runge-Kutta method, the Newton method and the Taylor

expansion method. In this article, we use the Runge-Kutta method for the estimation of A−1.

The maximum likelihood estimate α̂ is obtained with the nil value of the first derivative of

W (Y ), assuming that κs and β are known. Thus, we have:

∂W (Y )
∂α

= 0 then
S∑
s=1

N∑
n=1
−κs sin(ysn − (α̂+ β xsn)) = 0 (11)

With:

cos(α̂)
S∑
s=1

N∑
n=1

κs sin(ysn − β xsn)− sin(α̂)
S∑
s=1

N∑
n=1

κs cos(ysn − β xsn) = 0 (12)

Therefore, we derive α̂ as:

α̂ = arctan∗

(∑S
s=1

∑N
n=1 κ

s sin(ysn − β xsn)∑S
s=1

∑N
n=1 κ

s cos(ysn − β xsn)

)
(13)

Where arctan∗ is the “quadrant specific” inverse of the tangent. It is shown in [2] that this expres-

sion of α̂ provides a negative value for the second derivative of W (Y ) (and thus a maximum of W (Y )).

In expression (13) β and κs are assumed to be known. For this expression, a change in the value

of β affects both the variance and the mean value of α̂. A change in the value of κs only affects the

variance of the estimate of α, because (13) is the weighted sum of (ysn − βxsn) with weights κs [2].
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In this context, the mean value of the estimate of α only depends on β. Consequently, the mean

value of the estimate of κs only depends on β.

There is no direct estimate of β associated with the contrast function W (Y ). In order to find

the value β̂ that maximize the likelihood, we use the iterative Newton-Raphson [25] algorithm to

maximize the contrast function W (Y ). Then we have the following:

β̂i+1 = β̂i +
(
∂2W (Y )
∂β2

)−1 (
∂W (Y )
∂β

)
|β=β̂i (14)

and:

(
∂W (Y )
∂β

)
=

S∑
s=1

N∑
n=1

xsnκ
s sin(ysn − (α+ β xsn)) (15)

(
∂2W (Y )
∂β2

)
=

S∑
s=1

N∑
n=1

(xsn)2κs cos(ysn − (α+ β xsn)) (16)

Set an initial value for       with algorithm 1

End

Yes

No

Fig. 1: Flowchart of the iterative estimation of the parameters
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The pseudo-code of the proposed iterative estimate method is given in the flowchart described

in Figure 1. We present in Algorithm 1 the initialization of β̂1.

In Figure 1, ε is the stopping criterion of the algorithm. Its value defines the accuracy of our

estimate and will be fixed in section 4 in the context of our application. In order to characterize the

proposed iterative estimate, we derive in section 3.1 the theoretical performance of the Maximum

Likelihood Estimate and we discuss in section 3.2 the convergence of the proposed iterative estimate.

Data: Noisy observations: ysn ∀s ∈ {1, . . . , S} ∀n ∈ {1, . . . , N}.

Model parameters: N, S, xsn ∀s ∈ {1, . . . , S} ∀n ∈ {1, . . . , N}.

Algorithm parameters: research step p, βmax maximum value for β̂1.

Result: initial value β̂1

Initialization :

Set κ̂s = 1 ∀s ∈ {1, . . . , S}

Algorithm :

for βr ranging from 0 to βmax by steps of p

α̂← arctan∗
(∑S

s=1

∑N

n=1
sin(ys

n−βr xs
n)∑S

s=1

∑N

n=1
cos(ys

n−βr xs
n)

)
W (βr)←

∑S
s=1

∑N
n=1 κ

s cos(ysn − (α̂+ βr x
s
n))

endfor

β̂1=argmax︸      ︷︷      ︸
βr

(W (βr))

return β̂1

Algorithm 1: Setting of an initial value of β̂

3. Theoretical performance and convergence conditions

3.1. Estimator accuracy and Cramer-Rao Lower Bound

The objective of this section is to derive the variance of the Maximum Likelihood Estimate

(MLE) of β and the Cramer-Rao Lower Bound (CRLB) on the variance of the unbiased estimation

of β. In our development, we first derive the variance and the CRLB of β in the presence of a single

sensor, then we extend the result to the multi-sensors scenario.
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For this aim, we apply two approximations in order to obtain the derivative of the likelihood

function. In this regard, we consider unwrapped circular data in our model. Furthermore, the highly

non-linear von Mises distribution is approximated with a Wrapped normal distribution. These two

approximations are validated in the next section using synthetic data. Let us define the following

model expression:

ysn = α+ β xsn + ξsn (17)

We approximate the von Mises distribution by a Wrapped Normal distribution. According to the

unwrapped data model, the Wrapped Normal distribution of an observation is defined as:

f(ysn;α, β, σs) = 1
σs
√

2π

∞∑
k=−∞

exp
(
− (ysn − α− 2kπ − β xsn)2

2(σs)2

)
(18)

It is shown in [1] that the Von Mises distribution of concentration parameter κs can be approximated

by a Wrapped normal distribution with a variance (σs)2. The link between these two distributions

is given by the following expression:

(σs)2 ≈ −2ln(A(κs)) (19)

with lower precision losses for large (σs)2 values.

Considering N measurements of sensor s, and thus Y s = {ys1, ..., ysN}, the likelihood of the

observations is given by :

L(Y s) = f(ys1;α, β;σs), ..., f(ysN ;α, β;σs)

=
(

1
σs
√

2π

)N ∞∑
k=−∞

exp
(
− 1

2(σs)2

N∑
n=1

(ysn − α− 2kπ − β xsn)2

)

(20)

We derive in Appendix A the MLE of β in the mono-sensor and multi-sensors cases.

Let Y sn be a random variable distributed according to a Wrapped normal distribution, and ysn

be a realization of Y sn . Then, we can derive the variance of the estimate of β as a function of
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var(Y sn ) = (σs)2 in the mono-sensor case as:

var(β̂) = var

(
N∑
n=1

(N ysn x
s
n)−

N∑
n=1

ysn

N∑
n=1

xsn

)
1(∑N

n=1 N (xsn)2 −
(∑N

n=1 x
s
n

)2
)2

Then, we have:

var(β̂) = (σs)2

∑N
n=1(N xsn)2 −N

(∑N
n=1 x

s
n

)2

(∑N
n=1 N (xsn)2 −

(∑N
n=1 x

s
n

)2
)2

Finally:

var(β̂) = −2ln(A(κs))∑N
n=1 (xsn − xs)

2 (21)

where xs = 1
N

∑N
n=1 x

s
n.

The expression of the MLE β̂ (equation (A.4)) and its variance are the same as in the linear domain

for data following a Normal distribution. Consequently, like for such data, the expression of the

obtained variance of the MLE (equation (21)) is also the CRLB for the unbiased estimation of β.

With a similar demonstration, when the value of α is known and not to be estimated, expression

(21) becomes :

var(β̂) = −2ln(A(κs))∑N
n=1(xsn)2

(22)

where (22) is also the CRLB for the unbiased estimation of β. In the multi-sensors case, the MLE

of β (equation (A.5)) is, as in the linear case, the weighted sum fusion operator that minimizes the

variance of β̂. According to [26], we thus have:

var(β̂) = 1∑S
s=1

∑N
n=1

(xs
n−x)2

−2ln(A(κs))

(23)

where x = 1
NS

∑S
s=1

∑N
n=1 x

s
n.

When α is known:

var(β̂) = 1∑S
s=1

∑N
n=1

(xs
n)2

−2ln(A(κs))

(24)
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Equations (23) (resp. (24)) expresses the CRLB for the unbiased estimation of β in the multi-

sensors case when α is unknown (resp. known). In the experimentation section, we assess the

proposed variance estimates with angular observations generated with a linear-circular regression

model.

3.2. Convergence conditions for the proposed iterative estimate

The proposed iterative estimate described in Figure 1 relies on a Newton-Raphson algorithm

that maximizes expression (7). W (Y ), the contrast function defined in expression (7), is a periodic

function of β with several global maxima. We show in this section that when xn ∈ [0, 1] it can be

assumed that there is only one single global maximum. However, expression (7) has several local

maxima. We discuss in this section the conditions of convergence of the proposed estimate in such

case. We have:

β̂ = argmax︸      ︷︷      ︸
β̃

W (Y ) (25)

In this expression and in the remainder of the paper, the notation .̃ corresponds to the values

obtained when exploring the possible values of β that maximizes W (Y ).

W (Y ) =
S∑
s=1

N∑
n=1

cos(ysn − (α̃+ β̃xsn)) (26)

=
S∑
s=1

N∑
n=1

cos(α− α̃+ βxsn − β̃xsn + ξsn) (27)

In the preceding expression of W (Y ), the global maxima are immersed in noise. In order to

characterize these global maxima, we consider the unnoisy expression W̃ (Y ). In this expression,

α̃ is a function of β̃ according to expression (13). Then we have:

W̃ (Y ) =
S∑
s=1

N∑
n=1

cos(α− α̃(β̃) + xsn(β − β̃)) (28)

where xsn are increasing numbers with n, s. In expression (28) if β̃ = β then α̃ = α and

W̃ (Y ) is maximum and equal to N × S. We define:

x1
1
xsn

= k1
1
ksn
∀n, s



Hatchouelou Kant Williams Kouassi, Hamza Issa, Georges Stienne, Serge Reboul / Digital Signal

Processing 00 (2021) 1–29 13
where k1

1/k
s
n is the fraction of the rational number x1

1/x
s
n and the set of values

{
k1

1, . . . , k
S
N

}
are

integers simplified by their greatest common divisor.

For :

β̃ = β + 2π k
1
1
x1

1
(29)

We have, according to expression (13):

α̃(β̃) = arctan∗

∑S
s=1

∑N
n=1 κ

s sin(α+ β xsn − (β + 2π k
1
1
x1

1
) xsn)∑S

s=1
∑N
n=1 κ

s cos(α+ β xsn − (β + 2π k
1
1
x1

1
) xsn)

 = α (30)

and expression (28) becomes:

W̃ (Y ) =
S∑
s=1

N∑
n=1

cos(−2πxsn
k1

1
x1

1
) (31)

=
S∑
s=1

N∑
n=1

cos(−2πksn) (32)

In this case W̃ (Y ) is maximum and equal to N × S.

Let us consider the case of our application where xsn ∈ [0, 1]. The value of xsn is obtained with

a floating-point data type which has a mantissa of 15 elements. The value k1
1 is thus equal to

fix(x1
1 × e15), where the function fix() rounds the elements toward zero, resulting in an integer.

The difference between two estimates of β associated with two global maxima of W̃ (Y ) is obtained

with expression (29). This difference is equal to 2πk1
1

x1
1

= 6.28e15 (for example k1
1
x1

1
= 76024...

0,76024... = 1e15).

This high value guarantees a second global maximum outside the search window of our application.

However, expression (7) has several local maxima in the search window that may influence the

convergence of the proposed iterative estimate. The algorithm converges if the initial value β̂1 is

positioned on the peak of the global maximum. In practice, due to the presence of noise, the initial

value β̂1 can be positioned on a local maximum peak. In this case the estimate of beta can be far
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from its true value. In order to ensure the convergence of the estimate, the number N of samples

from each sensor and/or the number S of sensors can be increased.

In section 4.2, we simulate a real application context and define the minimum value of N according

to different multi-sensors configurations. We show that the number of samples N necessary for the

variance of the proposed estimate to reach the CRLB bound gets lower when the number of sensors

S is higher.

4. Experimentation

4.1. Model assessment on synthetic data

In this section, we study the properties of the proposed estimate in the unbiased case as defined

in section 3.1. The aim is to assess the theoretical expressions of var(β̂) using synthetic data. For

this purpose, we compare the theoretical values of var(β̂) obtained with the expressions derived

in section 3.1 with the results obtained by simulation. Two signals following the linear-circular

regression model defined in equation (1) are processed in the simulation. The two signals are

sampled with a sampling frequency of 1000Hz over a period of 1s. In order to evaluate the fusion

operator, each signal is generated with different realizations of the von Mises noise process defined

by κs. We consider two sensors providing the two signals with a noise power defined as κ1 and

κ2. To process the variance of the estimate of β, 1000 realizations of both signals are used. In

this simulation, the values of α and β are arbitrarily fixed to π
4 and 15 respectively. The stopping

criterion ε of the iterative algorithm described in Figure 1 is fixed to 1e− 5 in order to estimate the

parameters with the millimeter accuracy. The research step p defined in Algorithm 1 for setting an

initial value of β̂ is fixed to 10−2. Both signals share the same predictor xsn corresponding to the

sampled time values varying from 0 to 1s with a step of 1ms. In this context the convergence of the

proposed iterative estimate is guaranteed.

We report in Table 1, the values of var(β̂) as a function of the noise power (different values of

κ) for each signal when α is unknown and to be estimated. In this table, we process the theoretical

values (Theo) of var(β̂), proved in section 3.1 to also be the CRLB for the unbiased estimation

of β, obtained with expressions (21) and (23), and the simulated values (Sim) obtained using the
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algorithm defined in Figure 1. We report var(β̂) for each signal separately (mono-sensor regression)

and when the two signals are fused together (multi-sensors regression).

Table 1: Assessment of var(β̂) when α is unknown. We report the theoretical values (Theo) obtained

with expressions (21) and (23), and the practical values obtained by simulation using the algorithm

from Figure 1 (Sim). The values in this table are factors of 10−4.

var(β̂) var(β̂) var(β̂)

signal 1 signal 2 Fusion

κ1 κ2 Theo Sim Theo Sim Theo Sim

1 1 192.9 269.1 192.9 270.3 96.4 134.7

1 2 192.9 276.1 86.1 82.3 59.5 59.7

3 4 50.4 49.1 35.1 32.1 20.6 20.4

5 5 26.9 29.5 26.9 28.1 13.4 12.9

5 15 26.9 27.6 8.3 8.4 6.3 6.8

We notice in Table 1 that the results obtained with the theoretical model are close to those

obtained by simulation when κ1 ≥ 2 and κ2 ≥ 2. This is due to the fact that the approximation of

a von Mises distribution by a Wrapped normal distribution performs poorly when κ < 2 [1]. In

addition, by comparing the theoretical (Column 5) and simulation (Column 6) results in the case of

multi-sensors regression (fusion of both signals), we notice that the values are indeed very close.

Therefore, we can conclude that the proposed fusion operator in the circular domain, is the weighted

sum of the observations, as in the linear domain. The theoretical expression of var(β̂) is indeed

derived for a weighted sum of the observations. Finally, Table 1 shows that the proposed estimate

in the circular domain, has the same properties as that in the linear domain. We can indeed observe

an improvement in the estimate’s accuracy when κ increases and when the data are fused.

We report in Table 2, the values of var(β̂) when α is known. In this context, only β and κs are

estimated with the algorithm defined in Figure 1. The estimation of β is assessed for different noise

powers (different values of κ) on each signal. We process the theoretical values of var(β̂) (equal to

the CRLB for the unbiased estimation of β according to section 3.1) obtained with expressions (22)

and (24) and the var(β̂) values obtained by simulation using the iterative algorithm. We report
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var(β̂) for each signal and for the fusion of the two signals.

Table 2: Assessment of the expression var(β̂) when α is known. We report the theoretical values

(Theo) obtained with expressions (22) and (24), and the practical values obtained by simulation

using the algorithm from Figure 1 (Sim). The values in this table are factors of 10−4.

var(β̂) var(β̂) var(β̂)

signal 1 signal 2 Fusion

κ1 κ2 Theo Sim Theo Sim Theo Sim

1 1 48.3 69.1 48.3 62.1 24.1 35.9

1 2 48.34 69.5 21.5 21.8 14.9 15.8

3 4 12.6 12.4 8.7 8.7 5.2 5.1

5 5 6.8 6.9 6.8 6.8 3.3 3.5

5 15 6.7 7.1 2.1 2.1 1.6 1.7

Similar to Table 1, the results reported in Table 2 show that the theoretical model is close to the

simulation when κ1 ≥ 2 and κ2 ≥ 2. The difference obtained for κ < 2 can be explained using the

same reasoning as above. The large difference between the results obtained in Table 1 and Table 2

are explained by the fact that the knowledge of α increases the accuracy in the estimation of β (see

equations (21),(22) and (23),(24)).

According to the results of Table 1 and Table 2, we observe that the estimation of κ̂s in the

algorithm defined in Figure 1 doesn’t significantly affect the estimation of var(β̂). The theoretical

value of var(β̂), that uses the true value of κs, is indeed close to the simulation which uses an

estimate of κ̂s. Thus, the theoretical value isn’t affected by errors in the estimation of κs.

4.2. Application to GNSS carrier-phase signal processing

In this section, we use the theoretical results derived in section 3.1 to assess the proposed

regression model to process a GNSS carrier-phase signal. We evaluate the accuracy of the estimator

for calculating the height between two GNSS antennas.



Hatchouelou Kant Williams Kouassi, Hamza Issa, Georges Stienne, Serge Reboul / Digital Signal

Processing 00 (2021) 1–29 17
4.2.1. Problem statement

Figure 2 presents the experimental setup. The setup is composed of two antennas linked to a

two channel GNSS receiver. It can be shown that the height h between the two antennas is linked

to δs, the path difference between the two signals.

Antenna 1

h

Direct GNSS 
Signals

𝜃𝜃s

𝛿𝛿𝑠𝑠

Antenna 2

Path difference

Satellite 
Elevation

GNSS satellites Direct GNSS 
Signals

Mast

y

z

x

Fig. 2: Geometry of the experimental setup

In the digital case, the model expression corresponding to the phase difference is given by [23]:

ysn =
(

4π
λ
h sin θsn + ξsn

)
mod(2π) (33)

where λ = 19.04 cm is the wave length corresponding to the GPS-L1 frequency.

Compared to the linear-circular model defined in equation 1, the intercept α = 0 is known, the

slope β is equal to 4π
λ h with h unknown, xsn = sin θsn are the predictors for each satellite and ξsn are

additional noises following a von Mises distribution [27]. The von Mises distribution is centered and

its concentration parameter κs models the noise power on the observations of carrier-phase for each

GNSS satellite s. h, the height to estimate, is derived from the estimate of β. As before, we use

p = 10−2 for the initialization of β̂. The elevation θsn is derived from the GNSS satellite ephemeris

and from the antenna position. According to the model of [23], we assume that we accurately know
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the relative positions of the antennas in the horizontal (x, y) plane. This assumption fits only for a

rigid experimental setup.

In this evaluation, we use a satellite constellation obtained in the 5th of June 2018 at 8h33’18”

UTC. The visible satellites are obtained from a GNSS antenna (50.953228◦N ; 1.880285◦E) situated

on the roof of the LISIC (Laboratoire d’Informatique Signal et Image de la Côte d’Opale). The

satellite elevations are processed based on a RINEX file provided by a NovAtel OEM7 receiver. We

show in Figure 3, a sky-plot of the satellite constellation.

SATELLITE SKYPLOT
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Fig. 3: Constellation of the visible GPS satellites obtained with the NovAtel receiver

In the next section, we assess the estimation of h in terms of accuracy for a given satellite con-

stellation. We report in Table 3, the concentration parameter κ of the von Mises noise distribution

on the observations of carrier-phase corresponding to different carrier-to-noise ratio (C/N0) values

of a GPS signal.
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Table 3: Carrier-to-noise ratio (C/N0) of a GPS signal and the corresponding concentration

parameter (κ) of the von Mises noise distribution on the observations of carrier-phase.

C/N0 (dB.Hz) 30 35 40

κ 1.35 2.96 9.34

We show in Figure 4, a simulation of noisy phases corresponding to two satellites. We can

observe on this figure that the satellites provide different elevations and noise powers.
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Fig. 4: Simulation of noisy carrier-phase measurements for two satellites

The proposed estimate fuses the phase observations provided by several satellites with different

elevations. The aim is to show that the fusion improves the accuracy of the estimation.

4.2.2. Assessment of the estimator accuracy

We report different satellite constellation configurations in Table 4. We propose to evaluate our

estimator for the East, West, South-West, and the North-East sides of the satellites skyplot as well

as the whole constellation (the four quadrants). We study in Table 4 the influence of the considered

satellite constellation, which defines the multi-sensors configuration of the proposed estimate. We

sort the visible satellites as a function of the increasing elevation to fit the theoretical model. In

this table, we report the difference of height ∆h between two successive global maxima in W̃ (Y ).

This height is processed with one observation per satellite (N = 1). We also report the height of

the highest local maximum in the search window, as a percentage of the global maximum height.
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For this application, the search window for the height to be retrieved is set between 0 m and 100 m.

The height used in this simulation is set to 15 m.

Table 4: Assessment of the proposed estimate as a function of the satellite constellation. We report

the difference of height ∆h and the highest local maximum other than the global one in the search

window which is normalized with respect to the global maximum.

Satellite constellation ∆h (m) Local maximum Satellite PRNs

height and elevations

West side 9.52e13 0.789 14 (10◦),10 (12◦),32 (33◦),

25 (34◦), 12 (80◦)

East side 9.52e13 0.834 6 (9◦), 15 (17◦), 17 (22◦),

19 (37◦), 24 (69◦)

North-East side 4.76e13 0.973 6 (9◦), 17 (22◦),19 (37◦)

South-West side 9.52e13 0.977 10 (12◦), 25 (34◦), 12 (80◦)

Four quadrants 9.52e13 0.628 All visible satellites

The values of the second column of Table 4 show that the second maximum of W̃ (Y ) is very

far from the search window. Thus, we can conclude that the contrast function W (Y ) of the

proposed estimate has a single global maximum in the search window. When considering only the

North-Eastern satellites, the value of ∆h is smaller because 2 is a common divisor for k1
1, k2

1 and k3
1.

We show in Column 3 of Table 4, that the height of the local maximum decreases with the increase
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in the number of satellites S. We can conclude that multi-sensors (multi-satellites) fusion improves

the proposed iterative estimate by increasing the difference between the global maxima of W̃ (Y )

and the local maxima.

Unfortunately, the proposed estimate accuracy never reaches the CRLB if the SNR of W (Y )

does not allow to differentiate the global maximum from the local maxima. For a given multi-sensors

(multi-satellites) configuration, the only way to improve the SNR is to increase the period of

integration N . In this context, we report in Table 5, the minimum period of integration N necessary

for the proposed MLE of h to reach the CRLB as a function of the satellite constellation and the

carrier-to-noise ratio C/N0. We also report the CRLB of the MLE of h, noted CRLB(ĥ) and the

simulated standard deviations STD(ĥ) of the unbiased estimation of h.

In Table 5, the estimate is supposed to have converged towards the global maximum when

the value of STD(ĥ) obtained by 1000 successive simulations is close to the value of CRLB(ĥ).

Column 2 of Table 5 represents the minimum period of integration N . Thus, N can be seen as the

convergence rate of our estimate. In each quadrant of the satellite constellation, we observe that the

period of integration increases when C/N0 decreases (the SNR of W (Y ) decreases). Furthermore,

by comparing Table 5 and Table 4, we deduce that the period of integration of the signal N in ms

increases with the increase in the normalized local maximum of W̃ (Y ).

In Columns 4 and 5 of Table 5, one can observe that best performance of the estimator in terms

of integration time is reported for the four quadrants (whole constellation) followed by the West and

East sides of the constellation. The decrease in the integration period is due to the increase in the

number of visible satellites. On the other hand, we can observe that the best performances of the

estimator in terms of standard deviation are reported for the North-East and the South-West sides.

This is due to the fact that the integration time and overall number of observations considered

for the estimation of the parameters is higher. For similar integration times, the two quadrants

and four quadrants constellations would provide lower standard deviations than the North-East

and South-West ones. Therefore, we conclude that the proposed estimate converges when we fuse

observations from several satellites for a sufficient integration period. This period of integration

decreases with the increase in the number of satellites.
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Table 5: Assessment of the integration time necessary for the proposed MLE of h to reach the

CRLB, as a function of the satellite constellation and C/N0. In this table, we also report the CRLB

and the simulated standard deviation STD(ĥ) of the proposed MLE of h.

Satellite C/N0 Integration CRLB(ĥ) STD(ĥ) Satellites PRN

constellation (dB.Hz) (ms) (cm) (cm) and elevation

West side

40 17 0.10 0.10

35 25 0.15 0.17 14 (10◦),10 (12◦),32 (33◦),

30 60 0.16 0.17 25 (34◦), 12 (80◦)

East side

40 19 0.10 0.10

35 30 0.15 0.13 6 (9◦), 15 (17◦), 17 (22◦),

30 72 0.16 0.16 19 (37◦), 24 (69◦)

North-East side

40 100 0.07 0.06

35 160 0.11 0.10 6 (9◦), 17 (22◦),19 (37◦)

30 500 0.10 0.12

South-West side

40 140 0.03 0.04

35 500 0.03 0.04 10 (12◦), 25 (34◦), 12 (80◦)

30 950 0.04 0.05

Four quadrants

40 9 0.10 0.10

35 11 0.17 0.18 All visible satellites

30 15 0.24 0.27

4.2.3. Comparison with a state-of-art method

We report in Table 6 the standard deviation and the root mean square error of the estimation

of h obtained using a state of the art estimator [22] and the estimator proposed in this article. In

Table 6, columns 5 and 7 show the standard deviation and the root means square values obtained

using the state of the art estimator, for 1000 successive simulations. These results are obtained

using an Expectation-Maximization (EM) algorithm with the same initialization of β̂ as defined in

the proposed algorithm (Figure 1). We use, for both algorithms, the same integration time that
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has been defined in Table 5. By comparing columns 5 and 7, we notice that the state of the art

estimator is biased. This estimator indeed overestimates the height between the two antennas by

an average of 1 cm to 6 cm depending on the considered satellite constellation and noise level.

Furthermore, columns 4 and 6 show that the estimator proposed in this article is unbiased for the

considered integration times and that it is also more accurate than the state of the art estimator in

terms of standard deviation by factors of 1 to 3 approximately.

Table 6: Standard deviation STD(ĥ) and root mean square error RMSE(ĥ) of the estimation of h

for the estimator presented in this article (Prop) and for a state of the art estimator (SotA) [22].

Satellite C/N0 Integration CRLB(ĥ) STD(ĥ) RMSE(ĥ) RMSE(ĥ)

constellation (dB.Hz) (ms) Prop(cm) SotA(cm) Prop(cm) SotA(cm)

West side

40 17 0.10 0.20 0.10 3.74

35 25 0.17 0.28 0.17 3.14

30 60 0.17 0.24 0.17 2.46

East side

40 19 0.10 0.34 0.10 3.78

35 30 0.13 0.41 0.13 3.04

30 72 0.16 0.27 0.16 2.55

North-East side

40 100 0.06 0.15 0.06 1.01

35 160 0.10 0.20 0.10 2.09

30 500 0.12 0.12 0.12 2.83

South-West side

40 140 0.04 0.09 0.04 5.96

35 500 0.04 0.08 0.04 5.25

30 950 0.05 0.07 0.05 4.33

Four quadrants

40 9 0.10 0.27 0.10 3.75

35 11 0.18 0.39 0.18 3.09

30 15 0.27 0.38 0.27 2.51
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4.2.4. Assessment on real data

In this section, we assess the proposed estimate on real data. We use the experimental setup of

Figure 2 to assess the proposed estimate, because the geometry parameters are accurately known

(we accurately know the relative positions of the antennas in the horizontal (x, y) plane) and the

whole satellite constellation can be used.

With this setup, we observe the carrier-phases of all the satellites in view. We report in Table

7, the elevations of the visible satellites. The raw data concerning the GNSS signals are recorded

using an L1-L5 Syntony bit grabber. A GNSS software receiver developed by the LISIC is used to

estimate the parameters of the signals using a Delay-Locked Loop (DLL), a Phase-Locked Loop

(PLL) and a Frequency-Locked Loop (FLL). The satellites elevations and signal timing are obtained

from this software receiver by processing the received GNSS data messages.

The height h between the two antennas is processed with the proposed multi-sensors regression

estimate. The value of h in the experimental setup is approximately 53 cm.

Table 7: Satellites elevations. (Sept. 3 2020, 13h12 UTC).

PRN 25 10 6 19 12 14 15 24 17 32

θsn (◦) 34.55 12.50 9.75 37.55 80.00 10.73 17.50 69.24 22.20 33.39

For the satellites elevations presented in Table 7, the normalized height of the local maximum of

W̃ (Y ) is 0.603. Applying the same approach as that presented in Table 5, we expect the estimate

to be unbiased after 9 ms of signal integration. For this length of integration and this satellite

configuration, the theoretical standard deviation of the estimate of h is 2 mm.

We report in Table 8, the estimate of h processed using GPS-L1 C/A signals acquired on several

days of the same month (September 2020). The signals were recorded at approximately the same

hour of each day in order to always observe the same satellite constellation, with elevations close to

those presented in Table 7. Two integration periods are considered: 9 ms, corresponding to the

minimum theoretical period defined in Table 5, and 20 ms, which is an integration period commonly

used in GPS-L1 receivers corresponding to the duration of a data bit.
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Table 8: Day of month (September 2020), time (UTC), and the estimates of h over 9 days. The

estimates of h are given for two periods of integration, 9 ms and 20 ms.

Day of month 03 04 07 08 10 11 12 14 17

Time (UTC) 13h12 13h15 13h14 13h12 13h11 13h12 13h10 13h13 13h15

ĥ(cm) (9 ms) 53.22 53.05 53.00 53.06 53.15 53.04 53.09 53.71 54.66

ĥ(cm) (20 ms) 53.27 53.02 53.01 53.06 53.32 53.04 53.21 53.31 54.26

We notice from Table 8 that for a length of integration of 9 ms, the standard deviation of ĥ is

5.42 mm and the mean value of ĥ is 53.33 cm. For a length of integration of 20 ms the standard

deviation of ĥ is 3.88 mm and the mean value of ĥ is 53.28 cm. We conclude that the minimum

length of integration defined by simulation is in agreement with the real case. The millimeter

accuracy obtained in simulation is also achieved using real data, but with a degraded performance by

a factor of an order of ∼ 5. Several reasons can explain this difference. First, the horizontal geometry

of the experimental setup is considered to be known, but with a limited accuracy. In addition, we

do not take into consideration the external physical parameters such as the wind which can distort

the experimental setup. Finally, the inaccuracies in the estimation of the GNSS signal parameters

(code, phase and frequency) in the linear-circular model are not taken into consideration. We also

do not take into account, in the derivation of our estimate, the correlation (the independence of the

observations is assumed in expressions (4) and (20)) due to, for example, the limited band-pass of

the GNSS receiver front-end.

5. Conclusion

In this article, a linear-circular estimate is proposed for data fusion. We estimate the intercept,

the slope of the regression line and the noise power for each sensor. We assume that the noise on

the angular measurements is distributed according to a von Mises distribution (Circular Normal

distribution). The estimate is derived by maximizing the likelihood of the measurements provided

by the sensors according to the linear-circular model. We show that the estimate is a weighted sum

fusion operator of the observations in the circular domain. The proposed estimate is an iterative

procedure that maximizes a periodic contrast function. We first derive the variance of the estimated

slope in the multi-sensors case. Then, we show, in the context of an application where the predictors
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are obtained as sufficiently precise floating-point data and the search window is well defined, that

the contrast function has a single global maximum. The proposed estimate is first assessed using

synthetic data. In the synthetic case, we show that the proposed estimator is a fusion operator

performing similarly to the weighted sum fusion operator in the linear domain. The estimator is

also assessed by processing the phase difference between GNSS signals provided by two antennas.

The objective is to estimate the linear parameters of the phase difference in order to derive the

height between two antennas. We show that the robustness of the height estimates and accuracy

are improved when the observations obtained from several satellite signals are fused. Finally, the

proposed estimator is assessed on real data. We show in this experimentation, that the theoretical

study of the proposed estimator can be used to predict the length of integration of the signal

necessary for obtaining an unbiased estimation and reach the millimeter accuracy for integration

times of an order of tens of milliseconds. An extension of this article would be the joint estimation

of the horizontal geometry of the setup as well as the height.
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Appendix A. Derivation of the MLE estimate of β for unwrapped data

Let us define the expressions of α̂+ 2kπ and β̂ that maximize the likelihood function. α̂ is the

solution of:

∂ L (Y s)
∂α

= 0(
1

σs
√

2π

)N ∞∑
k=−∞

N∑
n=1

1
(σs)2 (ysn − α̂− 2kπ − β xsn) exp

(
− 1

2(σs)2

N∑
n=1

(ysn − α̂− 2kπ − β xsn)2

)
= 0

⇔ ∀k,
N∑
n=1

(ysn − α̂− 2kπ − β xsn) = 0 (A.1)

⇔ α̂+ 2kπ =
∑N
n=1 y

s
n − β

∑N
n=1 x

s
n

N
(A.2)
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and β̂ is the solution of :

∂ L (Y s)
∂β

= 0(
1

σs
√

2π

)N ∞∑
k=−∞

N∑
n=1

1
σ2x

s
n(ysn − α̂− 2kπ − β̂ xsn) exp

(
− 1

2(σs)2

N∑
n=1

(ysn − α̂− 2kπ − β̂ xsn)2

)
= 0

⇔ ∀k,
N∑
n=1

(ysn xsn − xsn(α̂+ 2kπ)− β̂ (xsn)2) = 0 (A.3)

The expression of β̂ is, as in the linear domain, given by:

β̂ =
∑N
n=1(N ysn x

s
n)−

∑N
n=1 y

s
n

∑N
n=1 x

s
n∑N

n=1 N (xsn)2 −
(∑N

n=1 x
s
n

)2 (A.4)

In the multi-sensors case, each sensor is characterized by its noise power −2ln(A(κs)). The

expression of β̂ becomes:

β̂ =
∑S
s=1

∑N
n=1(N ysn x

s
n)−

∑S
s=1

∑N
n=1 y

s
n

∑S
s=1

∑N
n=1 x

s
n∑S

s=1
∑N
n=1 N (xsn)2 −

(∑S
s=1

∑N
n=1 x

s
n

)2 (A.5)
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[6] I. Marković, I. Petrović, Speaker localization and tracking with a microphone array on a mobile robot using

von mises distribution and particle filtering, Robotics and Autonomous Systems 58 (11) (2010) 1185 – 1196.

doi:https://doi.org/10.1016/j.robot.2010.08.001.

URL http://www.sciencedirect.com/science/article/pii/S0921889010001387



28 Hatchouelou Kant Williams Kouassi, Hamza Issa, Georges Stienne, Serge Reboul / Digital Signal

Processing 00 (2021) 1–29
[7] P. E. Trahanias, D. Karakos, A. N. Venetsanopoulos, Directional processing of color images: theory and

experimental results, IEEE Transactions on Image Processing 5 (6) (1996) 868–880. doi:10.1109/83.503905.

[8] N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, 1993.

doi:10.1017/CBO9780511564345.

[9] K. Mardia, P. Jupp, Directional statistics, Wiley Series in Probability and Statistics, John Wiley and Sons Inc.:

Chichester, UK, 1999.

[10] G. Kurz, I. Gilitschenski, U. D. Hanebeck, Recursive bayesian filtering in circular state spaces, IEEE Aerospace

and Electronic Systems Magazine 31 (3) (2016) 70–87. doi:10.1109/MAES.2016.150083.

[11] G. Kurz, I. Gilitschenski, U. D. Hanebeck, Unscented von mises–fisher filtering, IEEE Signal Processing Letters

23 (4) (2016) 463–467.

[12] G. Stienne, S. Reboul, J. Choquel, M. Benjelloun, Cycle slip detection and repair with a circular on-line

change-point detector, Signal Processing 100 (2014) 51 – 63. doi:https://doi.org/10.1016/j.sigpro.2014.01.003.

URL http://www.sciencedirect.com/science/article/pii/S0165168414000061

[13] K. El Mokhtari, S. Reboul, J. Choquel, G. Stienne, B. Amami, M. Benjelloun, Circular particle fusion filter

applied to map matching, IET Intelligent Transport Systems 11 (8) (2017) 491–500.

[14] K. El Mokhtari, S. Reboul, J. Choquel, G. Stienne, B. Amami, M. Benjelloun, An imm filter defined in

the linear-circular domain, application to maneuver detection with heading only, Mathematical Problems in

Engineering 2018 (Article ID 3531075) (2018) 14 pages.
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