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This article is dedicated to the estimation of the parameters of a linear-circular regression model. For this model, the response is circular and defined between -π and π, the predictor is linear and several sensors provide noisy observations of the response. In our approach, the noise is assumed to be distributed according to a von Mises distribution with a concentration parameter that models the accuracy of the sensors. We propose a maximum likelihood circular fusion operator for the estimation of the intercept, the slope of the regression line and the concentration parameter associated with each sensor. The proposed estimate is not direct as in the linear case and requires an iterative algorithm to maximize a periodic contrast function. In order to characterize the accuracy of our fusion operator, the theoretical expression of the variance of the proposed estimator slope is first derived. For this derivation, we approximate the von Mises distribution by a Wrapped normal distribution and we consider unwrapped observations. Then, we derive an iterative procedure to maximize the contrast function. We show, using synthetic data, that the variance of the slope of the regression line derived using the proposed estimate is in good agreement with that obtained using the theoretical expression of the variance. The proposed estimator is also used to process the carrier-phase difference between GNSS signals provided by two antennas. The objective in terms of signal processing is to estimate the linear parameters of this difference in order to derive the height between the two antennas. We show that fusing the observations provided by several satellite signals improves the accuracy of the estimated height. We also show, using real data, that the theoretical study of the proposed estimator can be used to predict the length of integration of the signal necessary for obtaining an estimate of the height with a given accuracy.

Introduction

Circular or directional data are defined on a bounded set. In this article, these data are observed as a function of time, and the interval of definition of the variables is between -π and π. Circular data is defined in [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF] as angles or points on the circumference of a unit circle with periodic measurements. In fact, the circular domain, which is indeed different from the linear domain, is of interest in the signal processing field, because several sensors can provide circular data as a function of time.

In [START_REF] Stienne | A multi-temporal multi sensor circular fusion filter[END_REF], observations of the direction of a moving platform (a car) are provided by a digital magnetic compass. In [START_REF] Reboul | Joint segmentation of the wind speed and direction[END_REF], observations of the direction of the wind are obtained with a wind vane, and in [START_REF] Hussin | Hypothesis testing of parameters for ordinary linear circular regression[END_REF], with an HF radar and an anchored wave buoy. Communication systems are another domain of applications where a circular data provided by a Phase-Locked Loop (PLL) or a Phase-Open Loop (POL) is processed [START_REF] Stienne | GNSS dataless signal tracking with a delay semi-open loop and a phase open loop[END_REF]. In robotics, directional data are processed to constitute the Direction of Arrival (DOA) obtained with acoustic sensors [START_REF] Marković | Speaker localization and tracking with a microphone array on a mobile robot using von mises distribution and particle filtering[END_REF]. In imaging applications, colorimetric hue data are directional observations processed in the spatial domain [START_REF] Trahanias | Directional processing of color images: theory and experimental results[END_REF].

Directional or circular data have been studied for a long time and the evolution of the statistical inference in this field can be observed in the following three books [START_REF] Fisher | Statistical Analysis of Circular Data[END_REF][START_REF] Mardia | Directional statistics[END_REF][START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF]. It is more recently that the signal processing community got interested in the processing of circular or directional data in the circular domain. The difference between the linear and the circular domains, such as the absence of order on the circle, indeed requires the development of new signal processing techniques. Such techniques, developed in a probabilistic framework with circular distributions, have been proposed recently. In [START_REF] Stienne | A multi-temporal multi sensor circular fusion filter[END_REF][START_REF] Kurz | Recursive bayesian filtering in circular state spaces[END_REF][START_REF] Kurz | Unscented von mises-fisher filtering[END_REF], a recursive state filter and a fusion operator were proposed to estimate the state of a constant velocity model with circular observations of the direction. In [START_REF] Stienne | Cycle slip detection and repair with a circular on-line change-point detector[END_REF], an adaptive version of the filter was proposed to process the phase provided by a POL. It also detects and corrects any abrupt changes in the signal (cycle slip). A particle filter was proposed in [START_REF] Mokhtari | Circular particle fusion filter applied to map matching[END_REF] to fuse observations of the position, defined in the linear domain, and observations of the direction, defined in the linear-circular domain, to estimate a vehicle position. In [START_REF] Marković | Speaker localization and tracking with a microphone array on a mobile robot using von mises distribution and particle filtering[END_REF], a particle filter was proposed to estimate the speaker location with DOA measurements. An Interacting Multiple Model (IMM) filter defined in the linear-circular domain was proposed in [START_REF] Mokhtari | An imm filter defined in the linear-circular domain, application to maneuver detection with heading only[END_REF] to detect maneuver with heading only observations. In [START_REF] Marković | Von mises mixture phd filter[END_REF], a von Mises Mixture Probability Hypothesis Density (PHD) filter for multi-target tracking with directional observations was proposed. The subject of this article concerns the maximum likelihood estimation of the parameters of a linear-circular regression model in the case of multi-sensors fusion.

Multiple linear regression models fitting on a set of circular data have already been addressed in various published works. In this model, the response is an angle defined as a weighted sum of several linear predictor variables multiplied by regression coefficients. We consider the simple linear-circular model with one linear predictor variable and two regression coefficients. The response is realized with noisy angular observations defined between -π and π. Both the response and the observations are obtained as a function of a predictor defined between -∞ and +∞. This model, called the "barber's pole" model, can be represented as a curve winding in an infinite number of spirals up the surface of an infinite cylinder [START_REF] Gould | A regression technique for angular variates[END_REF]. In the linear domain, only one line can pass through two points and there is a direct estimate of the intercept and slope of the regression line. However, in the circular domain, several lines can pass through two points and there is no direct estimate of the regression line coefficients. The first iterative estimate of the linear-circular regression parameters was proposed in [START_REF] Gould | A regression technique for angular variates[END_REF]. The proposed maximum likelihood estimate relies on the minimization of a periodic contrast function. In this case, the estimate is biased because the contrast function has several global maxima. [START_REF] Johnson | Some angular-linear distributions and related regression models[END_REF] proposed to map the real line to an angular interval of length 2π with a non-linear transformation, where the predictor is between -∞ and +∞ and the angular observations are in a single interval of length 2π. In this model, the response completes just one spiral around the cylinder as the predictor varies through its range. In this case, only one line can pass through two points of the interval. Indeed, several iterative estimates were proposed based on this approach [START_REF] Fisher | Regression models for an angular response[END_REF][START_REF] Presnell | Projected multivariate linear models for directional data[END_REF][START_REF] Nuñez-Antonio | A bayesian regression model for circular data based on the projected normal distribution[END_REF][START_REF] Wang | Directional data analysis under the general projected normal distribution[END_REF]. However, even if the contrast functions of these estimates have only one global maximum, its periodic evolution has several local maxima. The model parameter estimation requires computationally extensive optimization like Metropolis-Hastings samplings, which makes the parameter estimation extremely slow for a large data size. In practice, it is the non-linear transformation of the regression model that is fit to the observations. Therefore, this approach does not provide an estimate of the regression parameters.

Johnson and Wehrly

A method has been proposed recently [START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF], to fit the observations with a mixture of linear-linear regression models. This angular Gaussian mixture model associates each spiral around the cylinder with a linear-linear model. In this approach, the number of spirals must be estimated as well as the Processing 00 (2021) 1-29 regression parameters. The estimation of this number is sensitive to noise and the Gaussian noise model that is used is not adapted to the processing of the transitions between -π and π at the beginning and at the end of each interval. However, it is shown in [START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF] that the proposed estimator outperforms the estimates of the literature for data that follow a "barber pool" model evolution.

In this article, we propose an estimate of the linear-circular regression parameters that fuses the observations provided by several sensors. We use the classical "barber's pole" model to derive a maximum likelihood estimate for data fusion. This iterative estimate maximizes a periodic contrast function. We show, by application, that the contrast function has only one global maximum. Furthermore, we show that fusing the data provided by several sensors decreases the amplitude of the local maximum in the contrast function and improves the convergence of our estimate. Finally, we derive the variance of the estimated slope to assess, after convergence, the accuracy of the proposed estimate.

The proposed estimate is used to process a GNSS carrier-phase signal. We use an experimental setup composed of two antennas sensing two GPS signals for each satellite in view. These two signals have different trajectories and their path difference is linked to the height between the two antennas. It has been shown that the path difference can be observed through the phase delay between these two signals [START_REF] Ribot | Normalized GNSS Interference Pattern Technique for Altimetry[END_REF]. This phase delay, which is a function of the sine of the time varying satellite elevation, is indeed linear with a slope proportional to the height between the two antennas. In our approach, we fuse the phase delay observations obtained for several satellites in view. Furthermore, the noise power on the observed phase delay is different for each satellite due to the difference in elevation and signal propagation conditions. The estimate proposed in this article is used to fuse these observations. The theoretical accuracy of the estimate is assessed through out this experimentation. Finally, we show by experimentation, the interest of fusing the observations provided by different satellites in terms of accuracy and convergence on our iterative estimate. The performance of the proposed estimator is compared with that of the state of the art estimator described above [START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF]. We show that our estimator is more accurate for the estimation of the parameters of the regression in terms of standard deviation and roots mean square error. This article is organized as follows: We introduce in the second section, the proposed fusion estimate based on the maximum likelihood. Then, the statistical properties of our estimate are derived in the third section. In the fourth section, we assess the use of the proposed estimate for the fusion of different satellites observations in a reflectometry application using both synthetic and real data. Finally, a conclusion is provided in the fifth section.

Circular regression fusion

In this section, we propose a multi-sensors approach for the estimation of the parameters of a linear-circular regression model. The aim is to improve the accuracy of the estimations by using multiple sensors. In this context, it is interesting to merge the measurements provided by different sensors according to the same model into a single estimation with a lower variance. We assume the noisy measurements to be independent and distributed according to the circular normal von Mises distribution.

Let us define the following linear-circular model for one observation of the sensor s:

y s n = (α + β x s n + ξ s n ) mod 2π (1) 
where n ∈ {1, . . . , N } is the sampling instant and s ∈ {1, . . . , S} is the sensor identity. In our linear model, α + β x s n , we assume that the intercept α and the slope β are the same for all the sensors. x s n are the deterministic, time varying predictors corresponding to the sensor s. ξ s n is a noise distributed according to a centered von Mises distribution. The von Mises distribution, also called Circular Normal distribution, is used for circular data in most applied problems because this distribution acts on circular data as the Normal distribution on the real line [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF]. We consider the following likelihood for one observation and one sensor:

f (y s n ; α, β, κ s ) = 1 2πI 0 (κ s ) exp(κ s cos(y s n -(α + β x s n ))) (2) 
where κ s is the concentration parameter of the Von Mises distribution. I 0 is the modified Bessel function of the first kind and order zero. Let us define the vector Y of N measurements coming from S sensors:

Y = y 1 1 , . . . , y 1 N , . . . , y S 1 , . . . , y S N ( 3 
)
In this article, we assume that the measurements are independent. This point will be discussed again in section 4.2.4. for our application on GNSS carrier-phase signal processing.

The likelihood of these N × S measurements is given by:

L(Y ) = f (y 1 1 ; α, β, κ 1 ) . . . f (y S N ; α, β, κ S ) (4) 
Then:

L(Y ) = S s=1 N n=1 1 2πI 0 (κ s ) exp(κ s cos(y s n -(α + β x s n ))) (5) 
We derive the log of the likelihood function as:

ln(L(Y )) = S s=1 N n=1 κ s cos(y s n -(α + β x s n )) -N S s=1 ln(2πI 0 (κ s )) (6) 
In order to define the estimate β of the slope β (in the whole article, the notation . corresponds to the estimate of a parameter), we maximize the log of the likelihood using the following contrast function:

W (Y ) = S s=1 N n=1 κs cos(y s n -(α + β x s n )) (7) 
In the following, we first present the direct maximum likelihood estimate of κ s (resp. α), assuming that α and β (resp. κ s and β) are known. α and κs are thus defined as functions of β. We then propose in a second step an iterative estimate of β.

It is shown in [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF] that, for a von Mises distribution of the noise, the maximum likelihood estimate of κ s is obtained with the following expressions when α and β are known:

∂ln(L(Y )) ∂κ s = N n=1 cos(y s n -(α + β x s n )) -N I 1 (κ s ) I 0 (κ s ) = 0 ( 8 
)
with I 1 (κ s ) = ∂(I 0 (κ s ))/∂κ s the modified Bessel function of the first kind and order one.

Then, we can define A(κ s ) as:

A(κ s ) I 1 (κ s ) I 0 (κ s ) = 1 N N n=1 cos(y s n -(α + β x s n )) (9) 
The maximum likelihood estimate of κ s is thus obtained by:

κs = A -1 N n=1 cos(y s n -(α + β x s n )) N ( 10 
)
According to [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF], A(κ s ) is a strictly monotone increasing function of κ s so κs is the unique solution to equation [START_REF] Kurz | Recursive bayesian filtering in circular state spaces[END_REF]. There are different methods defined in [START_REF] Stienne | Traitement des signaux circulaires appliqués à l'altimétrie par la phase des signaux GNSS[END_REF] for the processing of the non linear function A -1 which includes the Runge-Kutta method, the Newton method and the Taylor expansion method. In this article, we use the Runge-Kutta method for the estimation of A -1 .

The maximum likelihood estimate α is obtained with the nil value of the first derivative of W (Y ), assuming that κ s and β are known. Thus, we have:

∂W (Y ) ∂α = 0 then S s=1 N n=1 -κ s sin(y s n -(α + β x s n )) = 0 (11) 
With:

cos(α) S s=1 N n=1 κ s sin(y s n -β x s n ) -sin( α) S s=1 N n=1 κ s cos(y s n -β x s n ) = 0 (12) 
Therefore, we derive α as:

α = arctan * S s=1 N n=1 κ s sin(y s n -β x s n ) S s=1 N n=1 κ s cos(y s n -β x s n ) ( 13 
)
Where arctan * is the "quadrant specific" inverse of the tangent. It is shown in [START_REF] Stienne | A multi-temporal multi sensor circular fusion filter[END_REF] that this expression of α provides a negative value for the second derivative of W (Y ) (and thus a maximum of W (Y )).

In expression (13) β and κ s are assumed to be known. For this expression, a change in the value of β affects both the variance and the mean value of α. A change in the value of κ s only affects the variance of the estimate of α, because ( 13) is the weighted sum of (y s n -βx s n ) with weights κ s [START_REF] Stienne | A multi-temporal multi sensor circular fusion filter[END_REF].

In this context, the mean value of the estimate of α only depends on β. Consequently, the mean value of the estimate of κ s only depends on β.

There is no direct estimate of β associated with the contrast function W (Y ). In order to find the value β that maximize the likelihood, we use the iterative Newton-Raphson [START_REF] Gustafsson | Adaptive filtering and change detection[END_REF] algorithm to maximize the contrast function W (Y ). Then we have the following:

βi+1 = βi + ∂ 2 W (Y ) ∂β 2 -1 ∂W (Y ) ∂β | β= βi (14) 
and:

∂W (Y ) ∂β = S s=1 N n=1 x s n κ s sin(y s n -(α + β x s n )) ( 15 
)
∂ 2 W (Y ) ∂β 2 = S s=1 N n=1 (x s n ) 2 κ s cos(y s n -(α + β x s n )) ( 16 
)
Set an initial value for with algorithm 1

End

Yes No

Fig. 1: Flowchart of the iterative estimation of the parameters

The pseudo-code of the proposed iterative estimate method is given in the flowchart described in Figure 1. We present in Algorithm 1 the initialization of β1 .

In Figure 1, is the stopping criterion of the algorithm. Its value defines the accuracy of our estimate and will be fixed in section 4 in the context of our application. In order to characterize the proposed iterative estimate, we derive in section 3.1 the theoretical performance of the Maximum Likelihood Estimate and we discuss in section 3.2 the convergence of the proposed iterative estimate.

Data: Noisy observations: y s n ∀s ∈ {1, . . . , S} ∀n ∈ {1, . . . , N }.

Model parameters: N, S, x s n ∀s ∈ {1, . . . , S} ∀n ∈ {1, . . . , N }.

Algorithm parameters: research step p, β max maximum value for β1 .

Result: initial value β1

Initialization :

Set 

Theoretical performance and convergence conditions

Estimator accuracy and Cramer-Rao Lower Bound

The objective of this section is to derive the variance of the Maximum Likelihood Estimate (MLE) of β and the Cramer-Rao Lower Bound (CRLB) on the variance of the unbiased estimation of β. In our development, we first derive the variance and the CRLB of β in the presence of a single sensor, then we extend the result to the multi-sensors scenario.

Processing 00 (2021) For this aim, we apply two approximations in order to obtain the derivative of the likelihood function. In this regard, we consider unwrapped circular data in our model. Furthermore, the highly non-linear von Mises distribution is approximated with a Wrapped normal distribution. These two approximations are validated in the next section using synthetic data. Let us define the following model expression:

y s n = α + β x s n + ξ s n ( 17 
)
We approximate the von Mises distribution by a Wrapped Normal distribution. According to the unwrapped data model, the Wrapped Normal distribution of an observation is defined as:

f (y s n ; α, β, σ s ) = 1 σ s √ 2π ∞ k=-∞ exp - (y s n -α -2kπ -β x s n ) 2 2(σ s ) 2 (18) 
It is shown in [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF] that the Von Mises distribution of concentration parameter κ s can be approximated by a Wrapped normal distribution with a variance (σ s ) 2 . The link between these two distributions is given by the following expression:

(σ s ) 2 ≈ -2ln(A(κ s )) (19) 
with lower precision losses for large (σ s ) 2 values.

Considering N measurements of sensor s, and thus Y s = {y s 1 , ..., y s N }, the likelihood of the observations is given by :

L(Y s ) = f (y s 1 ; α, β; σ s ), ..., f (y s N ; α, β; σ s ) = 1 σ s √ 2π N ∞ k=-∞ exp - 1 2(σ s ) 2 N n=1 (y s n -α -2kπ -β x s n ) 2 (20) 
We derive in Appendix A the MLE of β in the mono-sensor and multi-sensors cases.

Let Y s n be a random variable distributed according to a Wrapped normal distribution, and y s n be a realization of Y s n . Then, we can derive the variance of the estimate of β as a function of var(Y s n ) = (σ s ) 2 in the mono-sensor case as:

var( β) = var N n=1 (N y s n x s n ) - N n=1 y s n N n=1 x s n 1 N n=1 N (x s n ) 2 - N n=1 x s n 2 2
Then, we have:

var( β) = (σ s ) 2 N n=1 (N x s n ) 2 -N N n=1 x s n 2 N n=1 N (x s n ) 2 - N n=1 x s n 2 2
Finally:

var( β) = -2ln(A(κ s )) N n=1 (x s n -x s ) 2 (21) 
where

x s = 1 N N n=1 x s n .
The expression of the MLE β (equation (A.4)) and its variance are the same as in the linear domain for data following a Normal distribution. Consequently, like for such data, the expression of the obtained variance of the MLE (equation ( 21)) is also the CRLB for the unbiased estimation of β.

With a similar demonstration, when the value of α is known and not to be estimated, expression [START_REF] Wang | Directional data analysis under the general projected normal distribution[END_REF] becomes :

var( β) = -2ln(A(κ s )) N n=1 (x s n ) 2 (22) 
where ( 22) is also the CRLB for the unbiased estimation of β. In the multi-sensors case, the MLE of β (equation (A.5)) is, as in the linear case, the weighted sum fusion operator that minimizes the variance of β. According to [START_REF] Oruç | Weighted linear cue combination with possibly correlated error[END_REF], we thus have:

var( β) = 1 S s=1 N n=1 (x s n -x) 2 -2ln(A(κ s )) (23) where x = 1 N S S s=1 N n=1 x s n .
When α is known:

var( β) = 1 S s=1 N n=1 (x s n ) 2 -2ln(A(κ s )) ( 24 
)
Processing 00 (2021) Equations (23) (resp. ( 24)) expresses the CRLB for the unbiased estimation of β in the multisensors case when α is unknown (resp. known). In the experimentation section, we assess the proposed variance estimates with angular observations generated with a linear-circular regression model.

Convergence conditions for the proposed iterative estimate

The proposed iterative estimate described in Figure 1 relies on a Newton-Raphson algorithm that maximizes expression [START_REF] Trahanias | Directional processing of color images: theory and experimental results[END_REF]. W (Y ), the contrast function defined in expression [START_REF] Trahanias | Directional processing of color images: theory and experimental results[END_REF], is a periodic function of β with several global maxima. We show in this section that when x n ∈ [0, 1] it can be assumed that there is only one single global maximum. However, expression [START_REF] Trahanias | Directional processing of color images: theory and experimental results[END_REF] has several local maxima. We discuss in this section the conditions of convergence of the proposed estimate in such case. We have:

β = argmax β W (Y ) (25) 
In this expression and in the remainder of the paper, the notation . corresponds to the values obtained when exploring the possible values of β that maximizes W (Y ).

W (Y ) = S s=1 N n=1 cos(y s n -(α + βx s n )) (26) = S s=1 N n=1 cos(α -α + βx s n -βx s n + ξ s n ) (27) 
In the preceding expression of W (Y ), the global maxima are immersed in noise. In order to characterize these global maxima, we consider the unnoisy expression W (Y ). In this expression, α is a function of β according to expression (13). Then we have:

W (Y ) = S s=1 N n=1 cos(α -α( β) + x s n (β -β)) (28) 
where x s n are increasing numbers with n, s. In expression (28) if β = β then α = α and W (Y ) is maximum and equal to N × S. We define:

x 1 1 x s n = k 1 1 k s n ∀n, s
where k 1 1 /k s n is the fraction of the rational number x 1 1 /x s n and the set of values k 1 1 , . . . , k S N are integers simplified by their greatest common divisor.

For :

β = β + 2π k 1 1 x 1 1 ( 29 
)
We have, according to expression (13):

α( β) = arctan *   S s=1 N n=1 κ s sin(α + β x s n -(β + 2π k 1 1 x 1 1 ) x s n ) S s=1 N n=1 κ s cos(α + β x s n -(β + 2π k 1 1 x 1 1 ) x s n )   = α ( 30 
)
and expression (28) becomes:

W (Y ) = S s=1 N n=1 cos(-2πx s n k 1 1 x 1 1 ) (31) = S s=1 N n=1 cos(-2πk s n ) (32) 
In this case W (Y ) is maximum and equal to N × S.

Let us consider the case of our application where x s n ∈ [0, 1]. The value of x s n is obtained with a floating-point data type which has a mantissa of 15 elements. The value k 1 1 is thus equal to

f ix(x 1 1 × e15)
, where the function f ix() rounds the elements toward zero, resulting in an integer.

The difference between two estimates of β associated with two global maxima of W (Y ) is obtained with expression (29). This difference is equal to

2πk 1 1 x 1 1 = 6.28e15 (for example k 1 1 x 1 1 = 76024... 0,76024... = 1e15
). This high value guarantees a second global maximum outside the search window of our application.

However, expression [START_REF] Trahanias | Directional processing of color images: theory and experimental results[END_REF] has several local maxima in the search window that may influence the convergence of the proposed iterative estimate. The algorithm converges if the initial value β1 is positioned on the peak of the global maximum. In practice, due to the presence of noise, the initial value β1 can be positioned on a local maximum peak. In this case the estimate of beta can be far Processing 00 (2021) 1-29 from its true value. In order to ensure the convergence of the estimate, the number N of samples from each sensor and/or the number S of sensors can be increased.

In section 4.2, we simulate a real application context and define the minimum value of N according to different multi-sensors configurations. We show that the number of samples N necessary for the variance of the proposed estimate to reach the CRLB bound gets lower when the number of sensors S is higher.

Experimentation

Model assessment on synthetic data

In this section, we study the properties of the proposed estimate in the unbiased case as defined in section 3.1. The aim is to assess the theoretical expressions of var( β) using synthetic data. For this purpose, we compare the theoretical values of var( β) obtained with the expressions derived in section 3.1 with the results obtained by simulation. Two signals following the linear-circular regression model defined in equation ( 1) are processed in the simulation. The two signals are sampled with a sampling frequency of 1000Hz over a period of 1s. In order to evaluate the fusion operator, each signal is generated with different realizations of the von Mises noise process defined by κ s . We consider two sensors providing the two signals with a noise power defined as κ 1 and κ 2 . To process the variance of the estimate of β, 1000 realizations of both signals are used. In this simulation, the values of α and β are arbitrarily fixed to π 4 and 15 respectively. The stopping criterion of the iterative algorithm described in Figure 1 is fixed to 1e -5 in order to estimate the parameters with the millimeter accuracy. The research step p defined in Algorithm 1 for setting an initial value of β is fixed to 10 -2 . Both signals share the same predictor x s n corresponding to the sampled time values varying from 0 to 1s with a step of 1ms. In this context the convergence of the proposed iterative estimate is guaranteed.

We report in Table 1, the values of var( β) as a function of the noise power (different values of κ) for each signal when α is unknown and to be estimated. In this table, we process the theoretical values (Theo) of var( β), proved in section 3.1 to also be the CRLB for the unbiased estimation of β, obtained with expressions ( 21) and ( 23), and the simulated values (Sim) obtained using the algorithm defined in Figure 1. We report var( β) for each signal separately (mono-sensor regression)

and when the two signals are fused together (multi-sensors regression).

Table 1: Assessment of var( β) when α is unknown. We report the theoretical values (Theo) obtained with expressions ( 21) and ( 23), and the practical values obtained by simulation using the algorithm from Figure 1 We notice in Table 1 that the results obtained with the theoretical model are close to those obtained by simulation when κ 1 ≥ 2 and κ 2 ≥ 2. This is due to the fact that the approximation of a von Mises distribution by a Wrapped normal distribution performs poorly when κ < 2 [START_REF] Jammalamadaka | Series on Multivariate Analysis[END_REF]. In addition, by comparing the theoretical (Column 5) and simulation (Column 6) results in the case of multi-sensors regression (fusion of both signals), we notice that the values are indeed very close.

Therefore, we can conclude that the proposed fusion operator in the circular domain, is the weighted sum of the observations, as in the linear domain. The theoretical expression of var( β) is indeed derived for a weighted sum of the observations. Finally, Table 1 shows that the proposed estimate in the circular domain, has the same properties as that in the linear domain. We can indeed observe an improvement in the estimate's accuracy when κ increases and when the data are fused.

We report in Table 2, the values of var( β) when α is known. In this context, only β and κ s are estimated with the algorithm defined in Figure 1. The estimation of β is assessed for different noise powers (different values of κ) on each signal. We process the theoretical values of var( β) (equal to the CRLB for the unbiased estimation of β according to section 3.1) obtained with expressions [START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF] and ( 24) and the var( β) values obtained by simulation using the iterative algorithm. We report
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Table 2: Assessment of the expression var( β) when α is known. We report the theoretical values (Theo) obtained with expressions ( 22) and ( 24), and the practical values obtained by simulation using the algorithm from Figure 1 1, the results reported in Table 2 show that the theoretical model is close to the simulation when κ 1 ≥ 2 and κ 2 ≥ 2. The difference obtained for κ < 2 can be explained using the same reasoning as above. The large difference between the results obtained in Table 1 and Table 2 are explained by the fact that the knowledge of α increases the accuracy in the estimation of β (see equations ( 21),( 22) and ( 23),( 24)).

According to the results of Table 1 and Table 2, we observe that the estimation of κs in the algorithm defined in Figure 1 doesn't significantly affect the estimation of var( β). The theoretical value of var( β), that uses the true value of κ s , is indeed close to the simulation which uses an estimate of κs . Thus, the theoretical value isn't affected by errors in the estimation of κ s .

Application to GNSS carrier-phase signal processing

In this section, we use the theoretical results derived in section 3.1 to assess the proposed regression model to process a GNSS carrier-phase signal. We evaluate the accuracy of the estimator for calculating the height between two GNSS antennas.

Problem statement

Figure 2 presents the experimental setup. The setup is composed of two antennas linked to a two channel GNSS receiver. It can be shown that the height h between the two antennas is linked to δ s , the path difference between the two signals. In the digital case, the model expression corresponding to the phase difference is given by [START_REF] Ribot | Normalized GNSS Interference Pattern Technique for Altimetry[END_REF]:

y s n = 4π λ h sin θ s n + ξ s n mod(2π) ( 33 
)
where λ = 19.04 cm is the wave length corresponding to the GPS-L1 frequency.

Compared to the linear-circular model defined in equation 1, the intercept α = 0 is known, the slope β is equal to 4π λ h with h unknown, x s n = sin θ s n are the predictors for each satellite and ξ s n are additional noises following a von Mises distribution [START_REF] Cai | The statistical property of the gnss carrier phase observations and its effects on the hypothesis testing of the related estimators[END_REF]. The von Mises distribution is centered and its concentration parameter κ s models the noise power on the observations of carrier-phase for each GNSS satellite s. h, the height to estimate, is derived from the estimate of β. As before, we use p = 10 -2 for the initialization of β. The elevation θ s n is derived from the GNSS satellite ephemeris and from the antenna position. According to the model of [START_REF] Ribot | Normalized GNSS Interference Pattern Technique for Altimetry[END_REF], we assume that we accurately know the relative positions of the antennas in the horizontal (x, y) plane. This assumption fits only for a rigid experimental setup.

In this evaluation, we use a satellite constellation obtained in the 5th of June 2018 at 8h33'18"

UTC. The visible satellites are obtained from a GNSS antenna (50.953228 In the next section, we assess the estimation of h in terms of accuracy for a given satellite constellation. We report in Table 3, the concentration parameter κ of the von Mises noise distribution on the observations of carrier-phase corresponding to different carrier-to-noise ratio (C/N 0 ) values of a GPS signal. We show in Figure 4, a simulation of noisy phases corresponding to two satellites. We can observe on this figure that the satellites provide different elevations and noise powers. The proposed estimate fuses the phase observations provided by several satellites with different elevations. The aim is to show that the fusion improves the accuracy of the estimation.

Assessment of the estimator accuracy

We report different satellite constellation configurations in Table 4. We propose to evaluate our estimator for the East, West, South-West, and the North-East sides of the satellites skyplot as well as the whole constellation (the four quadrants). We study in Table 4 the influence of the considered satellite constellation, which defines the multi-sensors configuration of the proposed estimate. We sort the visible satellites as a function of the increasing elevation to fit the theoretical model. In this table, we report the difference of height ∆h between two successive global maxima in W (Y ).

This height is processed with one observation per satellite (N = 1). We also report the height of the highest local maximum in the search window, as a percentage of the global maximum height.

For this application, the search window for the height to be retrieved is set between 0 m and 100 m.

The height used in this simulation is set to 15 m. We show in Column 3 of Table 4, that the height of the local maximum decreases with the increase in the number of satellites S. We can conclude that multi-sensors (multi-satellites) fusion improves the proposed iterative estimate by increasing the difference between the global maxima of W (Y )

and the local maxima.

Unfortunately, the proposed estimate accuracy never reaches the CRLB if the SNR of W (Y )

does not allow to differentiate the global maximum from the local maxima. For a given multi-sensors (multi-satellites) configuration, the only way to improve the SNR is to increase the period of integration N . In this context, we report in Table 5, the minimum period of integration N necessary for the proposed MLE of h to reach the CRLB as a function of the satellite constellation and the carrier-to-noise ratio C/N 0 . We also report the CRLB of the MLE of h, noted CRLB( ĥ) and the simulated standard deviations ST D( ĥ) of the unbiased estimation of h.

In Table 5, the estimate is supposed to have converged towards the global maximum when the value of ST D( ĥ) obtained by 1000 successive simulations is close to the value of CRLB( ĥ).

Column 2 of Table 5 represents the minimum period of integration N . Thus, N can be seen as the convergence rate of our estimate. In each quadrant of the satellite constellation, we observe that the period of integration increases when C/N 0 decreases (the SNR of W (Y ) decreases). Furthermore, by comparing Table 5 and Table 4, we deduce that the period of integration of the signal N in ms increases with the increase in the normalized local maximum of W (Y ).

In Columns 4 and 5 of Table 5, one can observe that best performance of the estimator in terms of integration time is reported for the four quadrants (whole constellation) followed by the West and East sides of the constellation. The decrease in the integration period is due to the increase in the number of visible satellites. On the other hand, we can observe that the best performances of the estimator in terms of standard deviation are reported for the North-East and the South-West sides.

This is due to the fact that the integration time and overall number of observations considered for the estimation of the parameters is higher. For similar integration times, the two quadrants and four quadrants constellations would provide lower standard deviations than the North-East and South-West ones. Therefore, we conclude that the proposed estimate converges when we fuse observations from several satellites for a sufficient integration period. This period of integration decreases with the increase in the number of satellites. 

Comparison with a state-of-art method

We report in Table 6 the standard deviation and the root mean square error of the estimation of h obtained using a state of the art estimator [START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF] and the estimator proposed in this article. In Table 6, columns 5 and 7 show the standard deviation and the root means square values obtained using the state of the art estimator, for 1000 successive simulations. These results are obtained using an Expectation-Maximization (EM) algorithm with the same initialization of β as defined in the proposed algorithm (Figure 1). We use, for both algorithms, the same integration time that has been defined in Table 5. By comparing columns 5 and 7, we notice that the state of the art estimator is biased. This estimator indeed overestimates the height between the two antennas by an average of 1 cm to 6 cm depending on the considered satellite constellation and noise level.

Furthermore, columns 4 and 6 show that the estimator proposed in this article is unbiased for the considered integration times and that it is also more accurate than the state of the art estimator in terms of standard deviation by factors of 1 to 3 approximately. 

Assessment on real data

In this section, we assess the proposed estimate on real data. We use the experimental setup of Figure 2 to assess the proposed estimate, because the geometry parameters are accurately known (we accurately know the relative positions of the antennas in the horizontal (x, y) plane) and the whole satellite constellation can be used.

With this setup, we observe the carrier-phases of all the satellites in view. We report in Table 7, the elevations of the visible satellites. The raw data concerning the GNSS signals are recorded using an L1-L5 Syntony bit grabber. A GNSS software receiver developed by the LISIC is used to estimate the parameters of the signals using a Delay-Locked Loop (DLL), a Phase-Locked Loop (PLL) and a Frequency-Locked Loop (FLL). The satellites elevations and signal timing are obtained from this software receiver by processing the received GNSS data messages.

The height h between the two antennas is processed with the proposed multi-sensors regression estimate. The value of h in the experimental setup is approximately 53 cm. For the satellites elevations presented in Table 7, the normalized height of the local maximum of W (Y ) is 0.603. Applying the same approach as that presented in Table 5, we expect the estimate to be unbiased after 9 ms of signal integration. For this length of integration and this satellite configuration, the theoretical standard deviation of the estimate of h is 2 mm.

We report in Table 8, the estimate of h processed using GPS-L1 C/A signals acquired on several days of the same month (September 2020). The signals were recorded at approximately the same hour of each day in order to always observe the same satellite constellation, with elevations close to those presented in Table 7. Two integration periods are considered: 9 ms, corresponding to the minimum theoretical period defined in Table 5, and 20 ms, which is an integration period commonly used in GPS-L1 receivers corresponding to the duration of a data bit. We notice from Table 8 that for a length of integration of 9 ms, the standard deviation of ĥ is 5.42 mm and the mean value of ĥ is 53.33 cm. For a length of integration of 20 ms the standard deviation of ĥ is 3.88 mm and the mean value of ĥ is 53.28 cm. We conclude that the minimum length of integration defined by simulation is in agreement with the real case. The millimeter accuracy obtained in simulation is also achieved using real data, but with a degraded performance by a factor of an order of ∼ 5. Several reasons can explain this difference. First, the horizontal geometry of the experimental setup is considered to be known, but with a limited accuracy. In addition, we do not take into consideration the external physical parameters such as the wind which can distort the experimental setup. Finally, the inaccuracies in the estimation of the GNSS signal parameters (code, phase and frequency) in the linear-circular model are not taken into consideration. We also do not take into account, in the derivation of our estimate, the correlation (the independence of the observations is assumed in expressions ( 4) and ( 20)) due to, for example, the limited band-pass of the GNSS receiver front-end.

Conclusion

In this article, a linear-circular estimate is proposed for data fusion. We estimate the intercept, the slope of the regression line and the noise power for each sensor. We assume that the noise on the angular measurements is distributed according to a von Mises distribution (Circular Normal distribution). The estimate is derived by maximizing the likelihood of the measurements provided by the sensors according to the linear-circular model. We show that the estimate is a weighted sum fusion operator of the observations in the circular domain. The proposed estimate is an iterative procedure that maximizes a periodic contrast function. We first derive the variance of the estimated slope in the multi-sensors case. Then, we show, in the context of an application where the predictors

Algorithm 1 :

 1 κs = 1 ∀s ∈ {1, . . . , S} Algorithm : for β r ranging from 0 to β max by steps of p α ← arctan * s n -βr x s n ) W (β r ) ← S s=1 N n=1 κ s cos(y s n -(α + β r x s n )) endfor β1 =argmax βr (W (β r )) return β1 Setting of an initial value of β

Fig. 2 :

 2 Fig. 2: Geometry of the experimental setup

Fig. 3 :

 3 Fig. 3: Constellation of the visible GPS satellites obtained with the NovAtel receiver

Table 3 :

 3 Carrier-to-noise ratio (C/N 0 ) of a GPS signal and the corresponding concentration parameter (κ) of the von Mises noise distribution on the observations of carrier-phase.

Fig. 4 :

 4 Fig. 4: Simulation of noisy carrier-phase measurements for two satellites

  (Sim). The values in this table are factors of 10 -4 .

			var( β)	var( β)	var( β)
			signal 1	signal 2	Fusion
	κ 1 κ 2 Theo Sim Theo Sim Sim
	1	1	48.3 69.1	48.3 62.1	24.1 35.9
	1	2	48.34 69.5	21.5 21.8	14.9 15.8
	3	4	12.6 12.4	8.7	8.7	5.2	5.1
	5	5	6.8	6.9	6.8	6.8	3.3	3.5
	5 15	6.7	7.1	2.1	2.1	1.6	1.7
	Similar to Table							

Table 4 :

 4 Assessment of the proposed estimate as a function of the satellite constellation. We report the difference of height ∆h and the highest local maximum other than the global one in the search window which is normalized with respect to the global maximum.

	Satellite constellation ∆h (m)	Local maximum	Satellite PRNs
			height	and elevations
	West side	9.52e13	0.789	14 (10 • ),10 (12 • ),32 (33 • ),
				25 (34 • ), 12 (80 • )
	East side	9.52e13	0.834	6 (9 • ), 15 (17 • ), 17 (22 • ),
				19 (37 • ), 24 (69 • )
	North-East side	4.76e13	0.973	6 (9 • ), 17 (22 • ),19 (37 • )
	South-West side	9.52e13	0.977	10 (12 • ), 25 (34 • ), 12 (80 • )
	Four quadrants	9.52e13	0.628	All visible satellites
	The values of the second column of Table 4 show that the second maximum of W (Y ) is very
	far from the search window. Thus, we can conclude that the contrast function W (Y ) of the
	proposed estimate has a single global maximum in the search window. When considering only the
	North-Eastern satellites, the value of ∆h is smaller because 2 is a common divisor for k 1 1 , k 2 1 and k 3 1 .

Table 5 :

 5 Assessment of the integration time necessary for the proposed MLE of h to reach the CRLB, as a function of the satellite constellation and C/N 0 . In this table, we also report the CRLB and the simulated standard deviation ST D( ĥ) of the proposed MLE of h.

	Satellite	C/N 0	Integration CRLB( ĥ) ST D( ĥ)	Satellites PRN
	constellation	(dB.Hz)	(ms)	(cm)	(cm)	and elevation
		40	17	0.10	0.10	
	West side	35	25	0.15	0.17	14 (10 • ),10 (12 • ),32 (33 • ),
		30	60	0.16	0.17	25 (34 • ), 12 (80 • )
		40	19	0.10	0.10	
	East side	35	30	0.15	0.13	6 (9 • ), 15 (17 • ), 17 (22 • ),
		30	72	0.16	0.16	19 (37 • ), 24 (69 • )
		40	100	0.07	0.06	
	North-East side	35	160	0.11	0.10	6 (9 • ), 17 (22 • ),19 (37 • )
		30	500	0.10	0.12	
		40	140	0.03	0.04	
	South-West side	35	500	0.03	0.04	10 (12 • ), 25 (34 • ), 12 (80 • )
		30	950	0.04	0.05	
		40	9	0.10	0.10	
	Four quadrants	35	11	0.17	0.18	All visible satellites
		30	15	0.24	0.27	

Table 6 :

 6 Standard deviation ST D( ĥ) and root mean square error RM SE( ĥ) of the estimation of h for the estimator presented in this article (Prop) and for a state of the art estimator (SotA)[START_REF] Sikaroudi | A mixture of linear-linear regression models for a linear-circular regression[END_REF].

	Satellite	C/N 0	Integration CRLB( ĥ)	ST D( ĥ)	RM SE( ĥ) RM SE( ĥ)
	constellation	(dB.Hz)	(ms)	Prop(cm) SotA(cm) Prop(cm)	SotA(cm)
		40	17	0.10	0.20	0.10	3.74
	West side	35	25	0.17	0.28	0.17	3.14
		30	60	0.17	0.24	0.17	2.46
		40	19	0.10	0.34	0.10	3.78
	East side	35	30	0.13	0.41	0.13	3.04
		30	72	0.16	0.27	0.16	2.55
		40	100	0.06	0.15	0.06	1.01
	North-East side	35	160	0.10	0.20	0.10	2.09
		30	500	0.12	0.12	0.12	2.83
		40	140	0.04	0.09	0.04	5.96
	South-West side	35	500	0.04	0.08	0.04	5.25
		30	950	0.05	0.07	0.05	4.33
		40	9	0.10	0.27	0.10	3.75
	Four quadrants	35	11	0.18	0.39	0.18	3.09
		30	15	0.27	0.38	0.27	2.51

Table 7 :

 7 Satellites elevations. (Sept. 3 2020, 13h12 UTC). • ) 34.55 12.50 9.75 37.55 80.00 10.73 17.50 69.24 22.20 33.39 

	PRN	25	10	6	19	12	14	15	24	17	32
	θ s n (										

Table 8 :

 8 Day of month (September 2020), time (UTC), and the estimates of h over 9 days. The estimates of h are given for two periods of integration, 9 ms and 20 ms.

	Day of month	03	04	07	08	10	11	12	14	17
	Time (UTC) 13h12 13h15 13h14 13h12 13h11 13h12 13h10 13h13 13h15
	ĥ(cm) (9 ms)	53.22 53.05 53.00 53.06 53.15 53.04 53.09 53.71 54.66
	ĥ(cm) (20 ms)	53.27 53.02 53.01 53.06 53.32 53.04 53.21 53.31 54.26
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Processing 00 (2021) are obtained as sufficiently precise floating-point data and the search window is well defined, that the contrast function has a single global maximum. The proposed estimate is first assessed using synthetic data. In the synthetic case, we show that the proposed estimator is a fusion operator performing similarly to the weighted sum fusion operator in the linear domain. The estimator is also assessed by processing the phase difference between GNSS signals provided by two antennas.

The objective is to estimate the linear parameters of the phase difference in order to derive the height between two antennas. We show that the robustness of the height estimates and accuracy are improved when the observations obtained from several satellite signals are fused. Finally, the proposed estimator is assessed on real data. We show in this experimentation, that the theoretical study of the proposed estimator can be used to predict the length of integration of the signal necessary for obtaining an unbiased estimation and reach the millimeter accuracy for integration times of an order of tens of milliseconds. An extension of this article would be the joint estimation of the horizontal geometry of the setup as well as the height.

Appendix A. Derivation of the MLE estimate of β for unwrapped data

Let us define the expressions of α + 2kπ and β that maximize the likelihood function. α is the solution of:

and β is the solution of :

The expression of β is, as in the linear domain, given by:

In the multi-sensors case, each sensor is characterized by its noise power -2ln(A(κ s )). The