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Abstract
Microfluidics tools have been developing rapidly over the past decade, as they offer unparalleled ability for 
controlling nucleation and tracking crystallisation events inside very large numbers of individual nanolitre-size 
droplets. They have demonstrated a significant potential for screening protein crystallization conditions and for 
the direct determination of inorganic products solubility curves. The accepted basis for analysing microfluidics 
data is the probabilistic nucleation model originally proposed by Pound and La Mer (1952). Given the significance 
of this model for the purpose of analysing microfluidics data, the paper conducts a review of its hypotheses, usage 
and applicability. A step-by-step derivation of the model equations confirms that the time variation of the 
proportion of empty droplets which microfluidics experiments can provide with high accuracy is indeed the 
recommended method for estimation of nucleation kinetic parameters from microfluidics experiments. The paper 
shows that, depending on its implementation, the model predicts different rates of appearance of crystals 
inside individual droplets. The paper focuses on two distinct implementation modes, referred to as constant 
supersaturation and single nucleation event modes. By confronting model prediction with microfluidics 
measurements for eflucimibe in octanol, the paper finds that both modes yield different model predictions, 
shedding light on the potential and limits of the probabilistic nucleation model for the analysis of microfluidics 
data.
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1. Introduction

Microfluidics devices have become key research tools 
in recent years for the screening of the crystallization 
conditions of proteins (Selimović et al., 2009), the deter-
mination of crystallization kinetics (Laval et al., 2009; 
Teychené and Biscans, 2012) and precipitation kinetics 
(Vitry et al., 2015). The principle of this method is to di-
vide the volume of the studied solution into a large number 
of small, independent droplets in an inert oil. These drop-
lets can be produced in specific microfluidics geometries 
and their volume and chemical composition can be fixed 
in a controlled way. In addition, microfluidics devices al-
low a rapid mixing of the different compounds, help pre-
vent hydrodynamic dispersion and cross-contamination, 
and the droplets can be stored in microchannels.

For nucleation studies, this experimental technique 
generates a great deal of data that permit reliable access 

to the kinetics of nucleation. Typically, the frequency of 
nucleation events is obtained by counting over time the 
number of drops without crystals (Laval et al., 2009). 
When the number of droplets is larger than the number of 
impurities initially present in the solution, one can ob-
serve homogeneous nucleation in some droplets. More-
over, when all the droplets have the same volume V and 
for a small enough V, it is in principle possible to relate 
the probability that a droplet contains a crystal to the 
nucleation rate (Kashchiev et al., 1994). Measurements of 
the temporal evolution of the fraction of droplets that con-
tain crystals thus permit an estimation of the nucleation 
kinetics.

The processing of the data generated by such tech-
niques remains limited, however. Indeed, because of the 
presence of a surfactant, an interface as well as some dust 
or impurities, the majority of published experimental 
studies show that the appearance of crystal nucleation in 
these systems is due to two concomitant mechanisms, 
namely heterogeneous and homogeneous nucleation. In 
general, nucleation data that originate from such experi-
ments are treated either by neglecting the first instance of 
nucleation (Dombrowski et al., 2010), by treating the 
nucleation process in a comprehensive manner without 
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differentiating between possible nucleation mechanisms 
(Goh et al., 2010) or by averaging the influence of impu-
rities on the crystallization process (Laval et al., 2009; 
Teychené and Biscans, 2011). In addition to the models 
developed by Goh et al. (2010) in the case of protein crys-
tallization by evaporation, we propose a probabilistic 
model of the nucleation process that allows us to have ac-
cess to the different nucleation kinetics that are observed 
experimentally, to deduce the temporal evolution of the 
number of crystals within the droplets, and also to trace 
the influence of “active sites” on nucleation.

2. Probabilistic nucleation model for analysis 
of microfluidics experiments

2.1 Nucleation model derivation

The nucleation process inside individual droplets can 
be analysed using a probabilistic nucleation model. Such 
an approach appears in a number of published studies in 
the context of microfluidics systems, albeit through differ-
ent forms and uses. It is revisited here in some detail with 
the objective of establishing a sound basis for its applica-
bility and usage in the context of microfluidics nucleation 
analysis.

The model first considers two distinct types of droplets, 
namely droplets with active nucleation sites and droplets 
without any nucleation site. Only homogeneous nucleation 
events can occur inside droplets devoid of nucleation 
sites, whereas both homogeneous and heterogeneous nu-
cleation events can possibly take place inside droplets that 
bear active nucleation sites.

The nucleation model that results, whereby the first ac-
count of the probabilistic nucleation model is credited to 
Pound and La Mer (1952), uses only 3 macroscopic pa-
rameters, all of which have solid theoretical bases.

The first model parameter m is the mean number of 
active nucleation sites inside the system’s droplets. Con-
sidering that active nucleation sites are identical in all re-
spects and that they nucleate independently of each other 
inside a droplet, the probabilistic model considers that ac-
tive nucleation sites have the same nucleation kinetic rate 
k (time–1), the model’s second parameter. The third model 
parameter is the homogeneous nucleation kinetic rate k0 
(time–1), which applies to all droplets devoid of nucleation 
sites, and also to droplets with active nucleation sites if 
they undergo homogeneous nucleation.

To avoid any ambiguity, the term “homogeneous nucle-
ation” that is used throughout this paper was chosen to 
keep consistent with the original definition by Pound and 
La Mer (1952). It refers to nucleation that occurs in the 
volume of the droplet, as opposed to “heterogeneous nu-
cleation” which is understood to take place on the surface 

of nucleation sites. The nucleation mechanism associated 
with the term k0 is therefore not to be mistaken for the ho-
mogeneous nucleation rate defined in Classic Nucleation 
Theory (CNT). This point, which has already been 
pointed out by several authors (Laval et al., 2009; Akella 
et al., 2014) in relation to probabilistic nucleation model-
ling, will be further discussed in section 3 of the paper.

Since we have no reason to expect interdependence of 
the droplets inside our microfluidics system – the system 
is designed so that two droplets have no interaction with 
each other – then a Poisson process is a suitable candidate 
for describing the statistics of nucleation events that occur 
within individual droplets. This simple statement justifies 
application of the Poisson statistics, as initially proposed 
by Pound and La Mer (1952) to model the nucleation pro-
cess in microfluidics systems.

Considering a system with NT droplets in total, the 
number Np of droplets with p active nucleation sites is 
predicted by the Poisson distribution with mean m such 
that:

 T ( , ) where 0,pN N dpois p m p    	 (1)

where dpois() denotes the probability density function of 

the Poisson distribution. Since ( , ) e
!

p
mmdpois p m

p
 , the 

expected fraction of droplets without active nucleation 
sites is therefore e–m and the number of droplets with ac-
tive sites is 1 – e–m. Sear (2014) indicates that m should lie 
in the range 0.1 to 1. This means that the maximum num-
ber of active nucleation sites per droplet that can be ex-
pected, with a confidence level of 99 %, is in the range 1 
to 4. These values correspond to the 99 % quantiles of the 
Poisson distribution with mean m = 0.1 and m = 1, respec-
tively. Given that k0t is the mean number of nucleation 
events to occur inside a droplet without active nucleation 
sites during time period t, the probability that r nucleation 
events take place inside such a droplet during time period 
t is:

 0( , ) where 0,dpois r k t r  	 (2)

Such a droplet may produce any number r of nuclei. 
Thus, the number of droplets without nucleation sites that 
contain r crystals at time t is:

 
0 T 0( , ) (0, ) ( , )
where 0,

N r t N dpois m dpois r k t
r
  

  	 (3)

The nucleation event that takes place inside a droplet that 
carries p active nucleation sites is a Bernoulli random 

variable with probability 0

0

kq
k pk

    
 for homogeneous 

nucleation and 
0

1 pkq
k pk

     
 for heterogeneous nucle-

ation.
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The probability of homogeneous nucleation is expected 
to be significantly lower than that of heterogeneous nucle-
ation, typically one or two orders of magnitude lower. 
This explains why Pound and La Mer (1952) neglected the 
possibility that a droplet with active nucleation sites may 
nucleate homogeneously. Akella et al. (2014) corrected 
this assumption and justly accounted for this possibility 
in their work. Finally, the probability that r nucleation 
events take place inside such a droplet during time period 
t is:

 

0
0

0 0
( , ) ( , )

where 0,

k pkdpois r k t dpois r pkt
k pk k pk

r

          
 

	 (4)

The second Poisson density distribution dpois(r, pkt) 
could be upper truncated at p, if one assumes that one ac-
tive nucleation site can produce one nucleus only. The au-
thors chose not to truncate this distribution, assuming that 
a nucleation site can produce any number of nuclei. The 
number of droplets with p nucleation sites that contain r 
crystals at time t is therefore:

 

T

0
0

0

0

( , ) ( , )

( , )

( , )

where 0,

pN r t N dpois p m
k dpois r k t

k pk
pk dpois r pkt

k pk
r

 

  
    
       

 

	 (5)

Finally, the total number of droplets with r crystals at 
time t is given by:

 

T 0

0
0

0
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0

( , ) (0, ) ( , )

( , )
( , )
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k pk
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 	 (6)

and the number fraction fr(t) of droplets that bear r crys-
tals at time t is:

 
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          

 

 	 (7)

This equation is the main equation for predicting the 
state of the microfluidics system at any time t. For all 
practical uses, there is no need to use the analytical ex-
pression of the probability density function (PDF) of the 
Poisson distribution since it is easily computed by numer-

ical software programs.
However, in order to relate this expression to the ana-

lytical expressions that can be found in the literature, 
some of which are referred to in the following section, 
equation (8) gives the analytical equivalent for the number 
fraction fr(t) of droplets that bear r crystals at time t.
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	 (8)

2.2 The case of empty droplets

The time variation of the fraction of empty droplets is 
well accepted as a means of estimating nucleation param-
eters m, k0 and k from microfluidics experimental data. 
This section reviews this important practical issue.

From equation (7), the number fraction f0(t) of empty 
droplets (r = 0) at time t is:

 0 0

0
0

0

1

0

(0, ) (0, )

(0, )
( , )

(0, )p

f t dpois m dpois k t
k dpois k t
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k pk





 
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          

 	 (9)

Or, from equation (8): 
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       
          


	 (10)

This expression appears different from those published 
by Pound and La Mer (1952), and later by Akella et al. 
(2014). The differences are clarified in the following text.

First of all, let us suppose that the droplets are either 
without or with active nucleation sites, as was assumed by 
Pound and La Mer (1952). Equation (10) becomes:

 

 

0

0

0

0
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e e

e 0 e 1 e
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e e e e
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p
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m
p

 


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


   



 

       

      





	 (11)

Besides the case where k >> k0, which hails back to 
Pound and La Mer’s assumption, there is no simplification 
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to equations (9) and (10), recalling that they apply to the 
situation where droplets with nucleation sites can nucleate 
homogeneously or heterogeneously. Akella and Fraden 
(2014), however, published the following equation under 
these assumptions:

   00 e e exp em k t ktf t m     	 (12)

It can be shown that this expression is the analytical 
expression for f0(t) that corresponds to the following nu-
cleation model:

 

  

 

0

0
1

(0, ) ( , )

( , ) ( , )

where 0,

r

p

f t dpois m dpois r k t

dpois p m dpois r k pk t

r





 

  

 

 	 (13)

This equation assigns a nucleation rate (k0 + pk) to the 
probability of nucleation of droplets with active sites, 
when in actual fact, the probabilities of nucleation are 
different depending on whether these droplets nucleate 
homogeneously or heterogeneously. This oversight is of 
no consequence when predicting the time variation of 
fr(t) in the case k >> k0. However, it becomes increasingly 
significant when the difference between homogeneous 
and heterogeneous nucleation rates decreases, leading to 
incorrect estimates of nucleation parameters from the 
measured variation f0(t).

While providing the reader with a step-by-step deriva-
tion of the probabilistic nucleation model, this section has 
highlighted that one must be careful and use the model 
that precisely matches the assumptions.

This simplifies to the expression derived by Pound and 
La Mer (1952):

    00 e e exp e 1m k t ktf t m      	 (14)

whose equivalent in terms of Poisson distribution is:

 

 

0 0

1

(0, ) (0, )

( , ) (0, )
p

f t dpois m dpois k t

dpois p m dpois pkt




 

  	 (15)

This is particularly critical when using the model to esti-
mate nucleation model parameters from which phenomeno-
logical analysis of the nucleation process can be inferred.

2.3 Analysis of probabilistic nucleation model 
usage

In addition to differences that may arise from model 
assumptions on the final form of the probabilistic nucle-
ation model, differences will also occur depending on 
how it is implemented.

Assuming that droplets with active sites can nucleate 
homogeneously or heterogeneously, and that nucleation 

events can yield any number of nuclei, equations (7) and 
(8) give the time variation of droplets with r crystals 
given nucleation parameters m, k0 and k.

For the sake of clarity, the behaviour and possible uses 
of this model are discussed below through numerical ex-
amples. The mean number of active nucleation sites per 
droplet is set to m = –ln(0.5), which corresponds to an 
equal proportion of droplets with and droplets without ac-
tive nucleation sites. The values of the nucleation rates for 
homogeneous and heterogeneous nucleation, noted k0 and 
k, respectively, will be varied in the examples that follow.

For the sake of readability, only predictions of f0(t) 
through f4(t) are plotted, that is the fractions of droplets 
that bear up to 4 crystals. This is deemed sufficient to re-
veal the pattern of the models. Fig. 1 shows the nucleation 
model behaviour for a decreasing ratio between homoge-
neous and nucleation kinetic constants k0/k.

What these curves all have in common is that the pro-
portion of droplets with a given number of crystals in-
creases, goes through a maximum (or two), and then drops 
back to zero. When the ratio between homogeneous and 
heterogeneous kinetic constants k0/k is low, the curves ex-
hibit 2 modes. Theses modes relate to the occurrence of 
homogeneous and heterogeneous nucleation events, and 
the more different their nucleation rates the more separate 
and distinct the 2 modes. These curves evolve gradually 
towards single mode curves as the ratio k0/k increases; 
this is the behaviour that is most often portrayed in the 
literature (Dombrowski et al., 2010; Goh et al., 2010). The 
limiting case for this ratio corresponds to k = 0, which is 
that of purely homogeneous nucleation. Fig. 2 shows the 
result of the model for k = 0.

The underlying assumption behind all the model pre-
dictions presented above is that droplets which have un-
dergone a nucleation event at time t can sustain other 
nucleation events at a later time, with the same nucleation 
kinetics. This is equivalent to saying that the state of 
supersaturation inside individual droplets remains con-
stant as time advances (i.e. the crystal growth rate is 
zero). We shall refer to this use of the nucleation model as 
constant supersaturation mode.

Another way of using the nucleation model consists of 
allowing droplets to undergo only one nucleation event, 
with the outcome in terms of number of crystals deter-
mined by the Poisson statistics of the model. This mode 
may offer a better representation of reality in microfluid-
ics experiments where the constant supersaturation mode 
does not apply. We shall refer to this mode as the single 
nucleation event mode. In this case, model predictions 
can no longer be made analytically as they require using a 
Monte Carlo (MC) simulation scheme that predicts the 
nucleation of every single droplet in the system. Fig. 3 
explains implementation of the nucleation model by 
Monte Carlo.
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Fig. 4 shows the output of the probabilistic nucleation 
model, used in single nucleation event mode, for Fig. 1, 
Case a (mixed homogeneous/heterogeneous nucleation), 
and Fig. 2 (homogeneous nucleation only), recalling that 
they were obtained using the model in constant supersat-
uration mode.

Predictions using the single nucleation event mode or 

the constant supersaturation mode are totally different, as 
one would expect. Where the model with constant super-
saturation predicts any number of crystals inside the 
droplets, the single nucleation event mode rarely predicts 
more than 1 crystal per droplet with the nucleation pa-
rameters used.

It is important to recognise that f0(t) is the same regard-
less of the model used, i.e. whether it is used in single nu-
cleation event mode or in constant supersaturation mode. 
This can be demonstrated analytically, and comes from 
the fact that the nucleation rate of droplets is independent 
of the path followed by the nucleation events that follow. 
This is confirmed in the previous figures, which show that 
the prediction for f0(t) using analytical equation (9) is in-
distinguishable from that calculated by the MC simulation 
scheme. This result fully endorses using the variation of 
empty droplets to estimate the nucleation parameters 
from microfluidics experiments.

3. Application of the probabilistic nucleation 
model to the analysis of microfluidics 
nucleation data

As discussed in section 2, the probabilistic nucleation 
model can be used to estimate nucleation parameters m, 
k0 and k, directly from the measured variation of f0(t). 
Once the nucleation parameters have been estimated, the 
model can then be applied to predict the variation of fr(t) 
for any value of the number r of crystals. This section re-
views application of the model to both endeavours, and 
discusses the behaviour and validity of the probabilistic 
nucleation model through the prism of actual microfluid-
ics experimental data sets.

3.1 Experimental data

The applicability of the probabilistic nucleation model, 
which includes estimation of nucleation parameters and 

Fig. 1  Illustration of the probabilistic nucleation model be-
haviour. Cases a, b and c show the effect of a decreas-
ing ratio between homogeneous and heterogeneous 
nucleation kinetic constants k0/k. Inserts are used to 
zoom on the heterogeneous nucleation period.

	 Case a: Mixed homogeneous/heterogeneous nucleation 
with k0/k = 0.01 (m = –ln(0.5), k0 = 10–6 s–1, k = 10–4 s–1)

	 Case b: Mixed homogeneous/heterogeneous nucleation 
with k0/k = 0.1 (m = –ln(0.5), k0 = 10–5 s–1, k = 10–4 s–1)

	 Case c: Mixed homogeneous/heterogeneous nucleation 
with k0/k = 1 (m = –ln(0.5), k0 = k = 10–4 s–1)

Fig. 2  Model prediction with homogeneous nucleation only 
(m = –ln(0.5), k0 = 10–6 s–1, k = 0).
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prediction of nucleation events inside individual droplets, 
was tested using 4 data sets from the authors (see Teychené 
and Biscans, 2011), and two additional data sets from 
Akella et al., Figs. 25 and 29 (Akella et al., 2014). The lat-
ter are used in section 5. Table 1 summarises the experi-
mental conditions used to generate the microfluidics data. 
The experimental protocol is summarised below, how-
ever, the reader is invited to refer to Teychené et al. (2011) 
for details. The data were generated using a glass micro-
fluidics platform in the context of a study about the nucle-
ation of eflucimibe crystals in octanol. Undersaturated 
droplets of eflucimibe dissolved in octanol were generated 
with water as the carrier fluid. These droplets were gener-
ated using a flow-focusing geometry that generates highly 
monodispersed droplets. In these experiments, the varia-
tion of volume between droplets is less than 0.1 nL.

Glass syringes, equipped with patterned filters (Milli-
pores, pore diameter < 0.2 μm), are used to inject the flu-
ids into the devices. The temperature of the syringe and 
the tubing that contain the organic solution are controlled 
to avoid crystallization by means of a small flexible 
heater. Flow rates are controlled by syringe pumps (PhD 

2000, Harvard apparatus). The temperature of the micro-
fluidic platform is precisely controlled using Peltier ele-
ments. Platinum temperature sensors, which are embedded 
in the microfluidics chip, provide precise temperature 
monitoring. Owing to this temperature control, the drop-
lets are generated at a temperature 5 °C above the satura-
tion temperature (denoted as T* in Table 1) for all the 
experiments. As soon as the desired amount of droplets is 
obtained on the microfluidics chip, typically 600 to 800, 
the flow is stopped and the system is rapidly cooled (i.e. 
in less than 1 minute) down to the desired temperature in 
order to induce supersaturation (denoted as Tnucleation in 
Table 1).

Digital images of the whole microfluidics chip were ac-
quired using an inverted light microscope (Zeiss AXIO 
observer) equipped with a CCD colour camera (PCO Sen-
sicam QE) at a frame rate ranging from 5 to 30 minutes. 
The optical resolution of the system is 1 μm/pixel with the 
10´ objective, and the particle detection threshold is 
around 5 μm.

As unfrozen droplets can be identified without ambigu-
ity, their number was determined automatically by image 

Fig. 3  Principle of the MC simulation scheme implementing equation (7), for one set of nucleation parameters (m, k0, k).
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analysis. The number of crystals in frozen droplets, how-
ever, was counted by visual inspection. With each experi-
ment, the time at which the first visible crystallization 
event occurred was recorded. It varied between 25 and 70 
minutes. This value was ultimately used to rescale the ex-
perimental time.

3.2 Estimation of nucleation kinetic parameters

Under the assumption of normality of experimental er-
rors, the model parameters m, k0 and k are estimated by 
non-linear least squares minimization. Given the large 
amount of data points obtained at the end of a microfluid-
ics experiment, the more so for empty droplets, the exper-
imental data can confidently be bootstrapped in order to 
provide an estimate of the confidence intervals of nucle-

ation model parameters, as well as the model confidence 
and prediction intervals. Fig. 5 illustrates one bootstrap 
iteration of the parameter estimation scheme applied to 
data set D. Typically, 1000 bootstrap iterations are carried 
out for a data set that comprises over one hundred data 
points.

Each bootstrap iteration gives a set of model parame-
ters (m, k0, k), and the combined bootstrap estimations 
yield the model confidence and prediction intervals. Fig. 6 
gives the estimated 95 % prediction intervals for data sets 
A through D, using 1000 bootstrap estimates in each case.

The bootstrap estimations yield the distribution of indi-
vidual model parameters from which their confidence in-
tervals can also be obtained. Table 2 gives the results that 
were obtained from the 4 selected data sets.

For all data sets, the relative standard deviation (RSD) 
of the estimated parameter k0, defined by Pound and La 
Mer (1954) as the rate of volume nucleation (i.e. k0 = JvV, 
cf. Eqn. 15), is small. This means that the experimental 
sampling frequency was high enough to capture the es-
sential features of the homogeneous nucleation kinetic 
component of the nucleation model.

Parameters m and k relate to the heterogeneous nucle-
ation kinetic component of the nucleation model. Table 2 
shows that parameter k is not estimated with the same 

Fig. 4  Model prediction using single nucleation event mode. 
The dotted lines represent the analytical prediction of 
f0(t) from model equations (9) or (10).

	 Case a: Simulation run output for the mixed homo-
geneous/heterogeneous nucleation case. m = –ln(0.5), 
k0 = 10–6 s–1, k = 10–4 s–1, NT = 10000 droplets, 
∆t = 100 s. At t = 106 seconds, the model predicts 
18.29 % empty droplets, 81.67 % droplets with 1 crys-
tal, 0.15 % droplets with 2 crystals, 0 % with 3 crystals.

	 Case b: Simulation run output for the pure homoge-
neous case. m = –ln(0.5), k0 = 10–6 s–1, k = 0 s–1, 
NT = 10000 droplets, ∆t = 100 s. At t = 106 seconds, the 
model predicts 36.1 % empty droplets, 63.9 % droplets 
with 1 crystal, 0 % droplets with 2 crystals.

Table 1  Experimental conditions used to produce the micro-
fluidics experimental data. The average droplet vol-
ume is 11.5 ± 0.1 nL.

Data 
sets

T* 
(°C)

Tnucleation 
(°C) 103 × x° 103 × x* Sx

A 47 20 4.202 1.870 2.25

B 40 5 2.847 1.411 2.02

C 50 5 5.536 1.411 3.92

D 60 5 8.088 1.411 5.73

Fig. 5  Example of a bootstrap estimation of the nucleation 
model parameters. The blue symbols are the experi-
mental data points, the red symbols the bootstrap sam-
ple, and the solid line is the model regression for the 
bootstrap sample.
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precision as parameter k0. Heterogeneous nucleation is a 
process that proceeds very fast at the beginning of the 
experiment because the energy barrier to form a critical 
nucleus is lower with surface nucleation than it is with 
volume nucleation. Moreover, the lower the number of 
impurities per drop, the rarer the occurrence of nucleation 
events. Sampling frequency at the start of an experiment 
is therefore critical for capturing the salient features of 
heterogeneous nucleation. The frame rate used to conduct 
the microfluidics experiments was not always sufficient 
and sometimes yielded only a handful of experimental 
points inside the heterogeneous nucleation period. This 
observation, which can be readily observed in Fig. 6, ex-
plains that the lower the mean number of impurities per 
droplet, the broader the confidence interval associated 
with estimation of parameter k. The worst case occurred 

with data sets A and B. This result is exacerbated by sam-
pling statistics. Indeed, the fact that data set B contains 
Nact. = 0.8 % of droplets with active nucleation sites means 
that in a microfluidics experiment that uses 600 to 800 
droplets, the number of droplets with active nucleation 
sites is on average no more than 7. Such a number is 
clearly too low to expect precise estimates of heteroge-
neous nucleation rate parameters k and m. When the 
amount of impurities is high enough, as with data sets C 
and D, the sampling frame rate is sufficient and nucleation 
rate parameter k and m are estimated with good precision.

Notwithstanding the difficulty with estimation of k at 
low levels of impurities, Fig. 7 shows that the heteroge-
neous nucleation parameters m and k are negatively cor-
related. The interpretation of the correlation between the 
estimated values of k and m, where the latter increases 
with supersaturation as one would expect, is unclear. It is 
emphasised that the variation of k between experiments 
does not contradict the model assumption that k is the 
same for all active nucleation sites; it just indicates that 
the nature of active nucleation sites differs between ex-
periments.

Although the purpose of this paper was not to venture 
into nucleation theory, it seemed justified to give some in-
terpretation of the values of the estimated nucleation 
model parameters that were obtained.

In the framework of CNT, the homogeneous nucleation 
rate is related to the parameter of the nucleation model by 
the following equation (Kashchiev, 2000):
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According to equation (16), k0 is the product of the vol-
ume of the solution V where nucleation occurs and the 
rate of nucleation J (number of particles per unit time and 
unit volume). So, CNT for homogeneous nucleation im-
plies that nucleation kinetics parameters are related to 
the volume of the droplets, and therefore the size, or size 
distribution of the droplets. In the context of this study, 

Fig. 6  Nucleation model 95 % prediction interval estimated 
for data sets A through D.

Fig. 7  Illustration of the strong correlation between heteroge-
neous nucleation rate parameters m and k. The correla-
tion plotted is: log10k = –3.82 – 0.48log10m.

Table 2  Estimated nucleation model parameters (m, k0, k) for 
data sets A through D, and number fraction Nact. = 1–
e–m of droplets with active nucleation sites. The table 
indicates the estimated mean and relative standard 
deviation (RSD).

Data sets A B C D

k0 × 106 
(s–1)

mean 1.26 0.26 7.05 8.78

RSD 0.9 % 5.5 % 1.6 % 3.0 %

k × 104 
(s–1)

mean 4.55 9.61 2.24 1.71

RSD 17.9 % 91.5 % 16.5 % 14.7 %

m
mean 0.16 0.01 0.28 0.85

RSD 1.0 % 70.7 % 3.5 % 4.0 %

Nact.

mean 0.147 0.008 0.248 0.573

RSD 0.9 % 66.7 % 3.1 % 2.5 %
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droplets are monodisperse and their volume is invariant 
during any given microfluidics experiment.

A0 is the nucleation rate prefactor which can be written 
as (Kashchiev, 2000):
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is the probability of effective collision between a cluster 
and a monomer, and ρN is the number density of nucleation 
sites. As with homogeneous nucleation, every monomer 
can be a nucleation site ρ = ρN.

Similarly, the heterogeneous surface nucleation rate is 
written as (Kashchiev, 2000):
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As the main assumption of CNT is that the properties 
(shape, surface tension, etc.) of the pre-critical nuclei are 
the same as those of the post-critical nuclei and of the 
crystal, the pre-exponential factor has the same expres-
sion. However, in that case, the number density of nucle-
ation site is directly related to the number density of 
impurities and is much smaller than the number density 
of monomers.

The evolution of the nucleation rate (k0) as a function of 
temperature and supersaturation is given in Fig. 8. As 
predicted by CNT, it is found that ln(k0) varies linearly 
with the term T –3ln–2S. The crystal solution interfacial 
tension is calculated from the slope of the line, giving a 
value of 3 mJ·m–2 that is consistent with the data already 
published (Teychené and Biscans, 2008). From the inter-
cept, the pre-exponential factor of the nucleation rate was 
found to be in the range of 107, which is very low for a 
purely homogeneous nucleation rate. Estimation of this 
factor from CNT in the case of a purely homogeneous nu-
cleation yields values in the range 1010 to 1013 s–1. Because 
the number of nucleation sites is smaller than the number 
of monomers in solution, the discrepancy can be attributed 
either to heterogeneous nucleation (with static heteroge-
neities present in the solution from the start of the experi-
ment, but with a lower activity than the impurities 
responsible for the fast nucleation rate), or to the inability 
of CNT to capture the complexity of crystal nucleation 
from solution (i.e. nucleation is catalysed by dynamic het-
erogeneities, which are formed during the nucleation pro-
cess, for instance). The limits of CNT have already been 
pointed out by a number of authors, including Vekilov 
(2010) for protein nucleation, Jawor-Baczynska et al. (2015) 

for organic molecules and Gebauer et al. (2014) for salts.
Fig. 8 also displays the variation of the heterogeneous 

surface nucleation rate k as a function of T–3ln–2S. Be-
cause m and k are strongly correlated, and because of the 
large uncertainty associated with data set B in particular, 
it is difficult to interpret the measured trend of the hetero-
geneous nucleation rate k. Nevertheless, the upward trend 
of ln(k) vs T–3ln–2S (which is directly related to the energy 
barrier of the nucleation process) is lower than the one ob-
tained in the case of volume nucleation. As the nucleation 
process is fast, it can be inferred that the energy barrier 
for heterogeneous nucleation is very low.

For the same reasons, it is difficult to interpret the evo-
lution of the mean number of impurities m. Based on 
Pound and La Mer’s original paper (1954), this number 
depends both on temperature and concentration. For data 
sets A through D, it appears that m is proportional to the 
concentration of solute, which implies that the impurities 
come with the solute molecules. They are probably asso-
ciated with molecules with a molecular structure that re-
semble the solute molecules and cannot be purified.

This section has confirmed that provided the sampling 
frame rate is commensurate with the heterogeneous nu-
cleation rate and that the number of observed droplets is 
high enough to eliminate sampling statistics issues, the 
measured variation of unfrozen droplets can yield good 
estimates of nucleation parameters. Discussion about the 
parameter estimates led to the assertion that nucleation 
microfluidics experiments should be performed at the 
same initial concentration but with a different final tem-
perature in order to decorrelate the heterogeneous nucle-
ation parameters m and k, and to study conclusively the 
influence of supersaturation and temperature on nucle-
ation kinetics.

Fig. 8  Evolution of the nucleation rates k and k0 as a function 
of supersaturation S and temperature T.
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4. Prediction of the appearance of crystals

Model predictions of fr(t) were obtained using the prob-
abilistic model employed in single event nucleation mode 
and using the MC simulation scheme presented earlier for 
the selected experimental data sets. The output of the MC 
scheme is dependent on the time step ∆t used as well as 
the total number NT of droplets. The MC simulation re-
quires using as small a time step ∆t as possible, which 
impacts computation time. The choice of time step ∆t used 
in the simulations is such that it is no greater than 1/k, the 
heterogeneous nucleation giving the fastest kinetics.

Fig. 9 shows the prediction of the fraction of empty 
droplets output by the MC simulation against the experi-
mental microfluidics data. The prediction is good, as one 
would expect since the nucleation model parameters were 
estimated from the measured fraction of empty droplets. 
However, the point here is to recognise that the predic-
tions are obtained by the MC simulation scheme, not from 
the analytical expressions for f0(t), which confirms the 
correctness of the Monte-Carlo simulation code devel-
oped by the authors to simulate the probabilistic nucle-
ation model.

Fig. 9 also shows the predicted prediction intervals for 
data set D for two different total numbers NT of droplets. 
The prediction intervals obtained for the simulation per-
formed using 700 droplets (which correspond to the num-
ber of the droplets analysed during the experiment) 
captures nicely the spread of the experimental data. As 
expected, the model predicts that had a lower number of 
droplets been observed, the spread of the experimental 
data would have been higher. This expected trend shows 
that the model can also be used to guide the experimenta-

tion in terms of setting the number of droplets to be ob-
served. This is an important issue as the spread of the 
data controls the precision of the estimates of the nucle-
ation model parameters.

The point was made in section 2.3 that the prediction of 
the number of crystals inside a droplet depends on the 
mode chosen to implement the nucleation model. The fol-
lowing text analyses the capacity of the nucleation model 
to predict the appearance of crystals. It is worthy of note 
that, to the best of the authors’ knowledge, application of 
the probabilistic nucleation model to predict the appear-
ance of crystals in microfluidics experiments has not yet 
been reported.

Experimentally, it was observed that for experiments 
performed at relatively low supersaturation, most of the 
droplets contained 1 crystal and very few droplets con-
tained two crystals. This is the case for data set A, which 
produced 33 % of droplets with 1 crystal, 2 % with 2 
crystals and 65 % without crystals. With experiment B, 
droplets that had nucleated contained only 1 crystal. Sim-
ulation results of the probabilistic nucleation model used 
in single nucleation event mode are given in Fig. 10 for 
data sets A and B. It is emphasised here that the predic-
tions use the parameters (k0, k, m) that were estimated in 
section 3 from the time variation of empty droplets. The 
agreement between simulations and measurements is 
good, confirming that the single nucleation event mode 
gives a good account of the nucleation events that took 
place in experiments A and B. One explanation is that as 
supersaturation is low, when one crystal appears, it starts 
growing and consumes all the supersaturation. The deple-
tion of solute induces a decrease in nucleation probability 
such that no new nucleation event can occur inside the 
droplet. Such a situation will prevail when crystal growth 
kinetics are very fast, or when the ratio between the crys-
tal nucleation rate and the crystal growth rate is small.

It can be noticed in Fig. 10 that the measured fraction 
of droplets which bear one crystal is mainly inside the up-
per portion of the model’s prediction interval, and that it 
is the opposite for the droplets with 2 crystals. One may 
recall that crystal number counting was done by visual 
inspection, and it is believed that the visual counting bi-
ased the data by overestimating the number of droplets 
with 1 crystal at the expense of those with 2 crystals. Vi-
sual counting of the number of crystals inside a droplet is 
difficult, and this nucleation-model-based analysis 
stressed the importance of this issue for analysis of mi-
crofluidics experiments.

When the crystal nucleation rate to crystal growth rate 
ratio is high (with the limiting case of no crystal growth), 
not all the supersaturation is consumed by a single crys-
tal, and successive nucleation events may occur over time. 
Let us consider data set D for which the initial supersatu-
ration was twice that of data sets A and B. Fig. 11 shows 

Fig. 9  Prediction of the fraction of empty droplets as a func-
tion of time using MC simulation for two representa-
tive experiments and two total numbers of droplets.
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the predictions of the probabilistic nucleation model used 
in both single nucleation event mode and constant super-
saturation mode.

The variation of the number fraction of droplets that 
contain one crystal bears no resemblance with data sets A 
and B. Indeed, it shows a rapid increase at the beginning 
of the experiment to a maximum value, then a slow de-
crease. The measured number fraction of droplets with 2 
crystals or more shows a continuous increase over time. 
The upper plot in Fig. 11 shows the nucleation model pre-
diction in single nucleation event mode. It is clear that this 
implementation mode of the nucleation model does not 
capture at all the nucleation events of data set D. The 
lower plot in Fig. 11 gives the prediction of the nucleation 
model in constant supersaturation mode. Notwithstanding 
the counting bias between droplets with one or more crys-

tals, it is clearly apparent that the constant supersaturation 
mode gives a much closer match to the measured data. 
With data set D, given its higher state of supersaturation 
and its higher k0/k ratio, which is more than 1 order of 
magnitude higher than that of data sets A and B as seen 
in Table 3, it is not surprising to find that the hypotheses 
of the constant supersaturation mode give a better account 
of the measured microfluidics data.

Even though the single nucleation event mode can be a 

Fig. 10  Predicted and measured temporal evolution of the 
fraction droplets containing one or two crystals in the 
droplets for data set A (upper) and data set B (lower).

Fig. 11  Predicted and measured temporal evolution of the 
number fractions of droplets containing one or more 
crystals for data set D. Upper figure: single nucleation 
event mode. Lower figure: constant supersaturation 
mode.

Table 3  Values of the k0/k ratio for data sets A through D.

Data sets A B C D

k0/k 0.0028 0.0003 0.0314 0.0515
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close match to microfluidics data, as found with data sets 
A and B, both the single nucleation event and the constant 
supersaturation modes are limited in their ability to pre-
dict nucleation in that they do not account for the crystal 
growth that follows nucleation. To further improve our 
ability to model microfluidics systems and gain even more 
value out of the valuable data produced by such systems, 
it is necessary to couple the probabilistic nucleation model 
with a crystal growth model that accounts for the con-
sumption of supersaturation inside individual droplets. 
The Monte-Carlo simulation scheme, in which droplets 
are individualised, provides just the right environment for 
such a development. This requires both accurate measure-
ments of crystal growth inside droplets, and a valid ther-
modynamic model of the liquid phase.

5. Application to microfluidics data from 
literature

For the sake of rounding off the paper, it was deemed 
relevant to apply the probabilistic nucleation model to 
high-quality data published by researchers other than the 
present authors. The data selected was that of Figs. 25 and 
29 from Akella et al. (2014). The estimated nucleation 
parameters, using the non-linear parameter estimation 
scheme presented earlier, are given in Table 4. The values 
are close to those published by Akella et al., however, 
they differ due to the difference between equation (10), 
proposed by the authors and equation (14) used by Akella 
et al.

Figs. 12 and 13 show the corresponding 95 % predic-
tion intervals for the number fraction f0 of empty droplets. 
The prediction intervals are narrower compared to those 
of data sets A through D. This is due to Akella et al. using 
a high number of droplets, typically 1200 to 4000 in each 
of their experiments, so that their raw measurements of f0 
are extremely smooth.

Figs. 14 and 15 show the predictions made using both 
single nucleation event mode (NT = 1000 drops) and con-
stant supersaturation mode for the production of crystals.

The results show that the single nucleation event mode 
predicts that after 15 hours, most droplets contain 1 crys-
tal, with no more than 0.24 % and 0.62 % of droplets con-
taining 2 crystals for the data from Figs. 25 and 29, 
respectively. The constant supersaturation mode predicts 
a significant proportion of droplets that bear 2 or more 
crystals.

It is anyone’s guess as to the actual number of crystals 
observed by Akella and co-workers (2014), as they did not 
report this information. The predictions are so distinct 
that it should be rather simple for them to decide whether 
their system behaves more like one mode or the other. By 
examining the images and movie frames provided in their 

paper, and considering that their experiment is carried out 
at a low level of supersaturation, it is probable that their 
system follows the single nucleation event mode and pro-
duced no more than 1 crystal per droplet.

Fig. 12  Nucleation model 95 % prediction interval for the 
number fraction of empty drops using Akella et al.’s 
data (Akella et al., 2014, Fig. 25, p. 4500).

Fig. 13  Nucleation model 95 % prediction interval for the 
number fraction of empty drops using Akella et al.’s 
data (Akella et al., 2014, Fig. 29, p. 4502).

Table 4  Estimated nucleation model parameters (m, k0, k) for 
Akella et al’s data sets (Akella et al., 2014, Figs. 25 
and 29), and number fraction of droplets with active 
nucleation sites.

Data sets Fig. 25 Fig. 29

k0 × 106 (s–1)
mean 6.93 10.2

RSD 1.7 % 1.1 %

k × 104 (s–1)
mean 0.66 3.55

RSD 5.7 % 38.4 %

m
mean 0.48 0.20

RSD 3.4 % 2.4 %

Nact.

mean 0.383 0.181

RSD 2.7 % 2.2 %



Florent Bourgeois et al. / KONA Powder and Particle Journal No. 35 (2018) 258–272

270

6. Conclusions

The probabilistic nucleation model originally proposed 
by Pound and La Mer (1952) was revisited with the objec-
tive of clarifying its underlying hypotheses and associated 
behaviour. The nucleation model considers two types of 
droplets, i.e. droplets without nucleation sites which can 
only undergo homogeneous nucleation events, and drop-

lets with active nucleation sites which can undergo homo-
geneous and heterogeneous nucleation events. Analytical 
expressions were derived for predicting the variation of 
the fraction of droplets that contain a given number of 
crystals, both in terms of Poisson distribution functions 
and exponential functions.

The paper emphasises that the same model can be im-
plemented in different ways which yield different out-
comes. The model was applied in constant supersaturation 
and single nucleation event modes. The first mode, which 
is often portrayed in the literature, corresponds to the 
droplets with no crystal growth, whereas the second one 
corresponds to droplets having a supersaturation that is just 
sufficient for one nucleation event and associated crystal 
growth.

Regardless of the implementation mode, the model pre-
diction for the time variation of the fraction of empty or 
unfrozen droplets is the same, confirming that nucleation 
kinetic parameters m, k0 and k should indeed be estimated 
using the experimental measurements of the fraction of 
empty droplets. This is a particularly favourable situation 
given that this is the fraction that is most accurately mea-
sured in practice. Indeed, identifying droplets that contain 
1 or more crystals is obviously more prone to measurement 
errors than identifying empty droplets. The estimation of 
nucleation model parameters showed the importance of 
frame rate and number of droplets as they impact the pre-
cision of the parameter estimates.

In the context of microfluidics studies, it was confirmed 
that both modes of implementation of the nucleation 
model are applicable. The probabilistic nucleation model 
was used, possibly for the first time, to predict the rate of 
appearance of crystals for microfluidics systems. Experi-
mental results with low supersaturation levels were well 
predicted by the single nucleation event mode. The single 
nucleation event mode was shown to yield droplets with 
no more than one or two crystals, a desirable situation from 
an industrial perspective. The constant supersaturation 
mode accounted better for the nucleation events observed 
for data sets with excess supersaturation. Comparison be-
tween predicted and measured number fractions of drop-
lets with one or more crystals indicated the possibility of 
bias in the number counting of crystals inside individual 
droplets, emphasising the need to develop reliable crystal 
counting methods for harvesting the full benefit of micro-
fluidics systems.

The analysis confirmed the value and applicability of the 
probabilistic nucleation model for analysis of microfluid-
ics data, particularly for estimation of nucleation parame-
ters. The model showed limitations in its applicability for 
predicting the appearance of crystals inside droplets, al-
though it gave reasonable predictions at low supersatura-
tion levels. As the probabilistic nucleation model alone 
cannot account for the consumption of the supersaturation 

Fig. 14  Prediction of crystal formation for Akella et al.’s data 
from Fig. 25. (top: single nucleation event mode; bot-
tom: constant supersaturation mode)

Fig. 15  Prediction of crystal formation for Akella et al.’s data 
from Fig. 29. (top: single nucleation event mode; bot-
tom: constant supersaturation mode)
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inside droplets, the nucleation model cannot predict the 
number of crystals inside droplets. As the real situation is 
somewhere between the single nucleation event and the 
constant supersaturation modes, it is necessary for predic-
tion of the rate of appearance of crystals inside individual 
droplets to merge the probabilistic nucleation model with 
a crystal growth model.

Nomenclature

dpois(k,λ) Probability density function of the Poisson distribu-
tion with mean λ

D Diffusion coefficient (m2·s–1)

fr(t) Number fraction of droplets containing r crystals at 
time t

k Nucleation rate constant of an active nucleation site 
(s–1)

kB Boltzmann constant kB = 1.38064852 × 10–23 m2 

kg·s–2·K–1

k0 Homogeneous nucleation rate constant (s–1)

j Droplet index used in Monte-Carlo simulation (s)

Js Heterogeneous surface nucleation rate (s–1)

Jv Homogeneous nucleation rate (s–1·m–3)

m Mean number of active nucleation sites per droplet

Nact. Number fraction of droplets that contain active 
nucleation sites at the start of a microfluidics 
experiment

Np Number of droplets with p active nucleation sites

NT Total number of droplets counted in a microfluidics 
experiment

p Number of active nucleation sites in a droplet

r Number of nucleation events inside a droplet

r* Radius of the critical nuclei (m)

Sx Supersaturation defined as Sx = x°/x*

t Time (s)

T Temperature (K)

T* Saturation temperature (°C)

Tnucleation Final quench temperature (°C)

V Droplet volume (m3)

x° Initial molar fraction of eflucimibe in octanol or 
solubility molar fraction at T*

x* Solubility molar fraction at Tnucleation

Z Zeldovich factor

Δt Time increment used in the Monte-Carlo simulation 
(s)

ΔG* Free energy barrier of nucleation (J)

ρ Number density of monomers per unit of volume 
(m–3)

ρN Number density of nucleation sites (m–3)

σ Crystal solution interfacial tension (mJ·m–2)
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