
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/28699

https://doi.org/10.1109/ISSE51541.2021.9582549

Gateau, Thibault and Senaneuch, Lucien and Salas Cordero, Sophia Karolina and Vingerhoeds, Rob A. Open-source

Framework for the Concurrent Design of CubeSats. (2021) In: 2021 IEEE International Symposium on Systems

Engineering, 13 September 2021 - 13 October 2021 (Virtual event, Austria).

Open-source Framework for the Concurrent Design

of CubeSats

Thibault Gateau

ISAE-SUPAERO

Université de Toulouse

Toulouse, France

thibault.gateau@isae-supaero.fr

Lucien Senaneuch

ISAE-SUPAERO

Université de Toulouse

Toulouse, France

lucien.senaneuch@isae-supaero.fr

Sophia Salas Cordero

ISAE-SUPAERO

Université de Toulouse

Toulouse, France

sophia.salas@isae-supaero.fr

Rob Vingerhoeds

ISAE-SUPAERO

Université de Toulouse

Toulouse, France

rob.vingerhoeds@isae-supaero.fr

Abstract—In this paper, the open-source Nanospace framework
is presented, dedicated to facilitate concurrent engineering during
the preliminary design phase of CubeSats. It allows for direct
information exchange between third-party expert software, while
allowing transparent data visualization to any team member. It
provides a web based GUI, and relies on a database with ACID
properties and provides a RESTful API. Nanospace ensures
concurrent access to the data, which is relevant when teams
are working remotely. Nanospace also provides an intuitive
way of visualizing other experts’ contributions that can be of
high value when looking for internal project understanding
and transparency. The paper presents the modular software
architecture of Nanospace, as well as design choices and the
different options to connect to third-party specialized software
and the database.

Index Terms—open-source, Software, CubeSat, Software Ar-
chitecture, Preliminary Design, Concurrent Design Engineering

I. INTRODUCTION

The preliminary design of CubeSats requires close coop-

eration between experts from different disciplines for the

analysis and modeling of the concerned subsystems. This

modeling process of each subsystem may be influenced by

design parameters of other subsystems, leading to strong inter-

dependencies between subsystems. These inter-dependencies

are present throughout the whole life cycle of the CubeSat.

This situation explains why often concurrent engineering

approaches are used for the initial stage of satellite design;

CubeSats are no exception to this. Specific software allowing

to structure this concurrent approach may help to support these

preliminary design phases.

Within the current practice of CubeSat preliminary design, it

seems that no suitable open-source software tools are available

to support this design process; many experts use their own soft-

ware tools and rely on manual information transfer. Function-

alities of different software tools are often redundant, or even

re-developed each time they are required, rather than re-used.

Therefore there is a clear need for a framework to facilitate

the management of information, models and data during the

concurrent design process of CubeSats. Such framework may

be able to increase the consistency throughout the information

exchange, important to the preliminary design process of a

CubeSat. Afterwards, it could be applied as well all along

the life cycle of the project thanks to strong interconnections

between domain-specific software.

Ideally, each discipline expert should be able to include

necessary up-to-date inputs in their own software tools for

running the required simulations or calculations in order to

provide the expected outputs to the team. Monitoring this

data flow would enable to be aware of real-time changes in a

transparent way, which is essential for an effective teamwork;

whether it is remotely, on site or a mixture of both.

In this paper, Nanospace (Fig. 1) is presented, a software

framework dedicated to facilitate direct information exchange

between third-party expert software, while allowing transpar-

ent data visualization to any team member. It provides a web

based GUI, and relies on a database with ACID properties1

and provides a RESTful API.

This paper is structured as follows: Section II of this paper

presents an overview of the preliminary design of a CubeSat,

which includes important data exchange models considera-

tions. Then, in section III, the recommended standards are

outlined and current open-source solutions for CubeSats pre-

liminary design reviewed. The modular software architecture

of Nanospace (Source code available at https://gitlab.isae-

supaero.fr/nanostar/nanospace) is explained in the following

section, along with the different options to connect third-party

specialized software and the database, as well as the work

environment. The achievements and future work recommen-

dations are summarized in the conclusion section.

II. PRELIMINARY DESIGN FOR CUBESATS

The preliminary design of CubeSats requires strong exper-

tise across several fields. In this paper, preliminary design

is identified as the 0/A phase according to ESA definition

equivalent to Pre-Phase-A/Phase-A for NASA. Moreover, this

work provides specific focuses on preliminary design for

nanosatellites projects, although its use is wider. The scope

of this paper covers specifically CubeSats [1], [2].

During the preliminary design, engineers usually rely on do-

main specific software for analysis, modeling, simulation, etc.

It would be hard to conceive a complex project development

1Atomicity, Consistency, Isolation, Durability.

• Many experts share common models, inputs and/or out-

puts. They are updating them, but not always tracking

changes;

• Using existing standards is recommended - to the extent

that standards have been defined, are relevant and con-

venient, and are implemented. Using standards greatly

improves teamwork and project management;

• Lack of communication and misunderstanding between

experts of different disciples should not be underesti-

mated;

• Human resource limitation such as large turnover should

be taken into account from the beginning of the project.

The possibility for effective data exchange between experts

is a key requirement in concurrent engineering. The degree

of integration of a software into a process depends on the

way that the software interacts within the process and how the

data is shared. If an expert has to manually re-write data into a

software, it is assumed that there is “no automated interaction”.

Reciprocally, if each affected data is automatically updated

when changes are made, it is assumed that there are “fully

automated interactions”. For example, if the mission analyst

modifies the semi-major axis of the orbit, the link budget

should have to be updated. It can be done manually, by the

telecommunication expert who will re-run a script. However it

is also possible to automatically trigger the same script when

detecting the semi-major axis change. There are two options

to connect specialized software together:

• to re-develop a dedicated specialized software entirely

integrated with the concurrent engineering process, with

high integration of the software but also high develop-

ment costs. Software and experts would share an unified

data model;

• to use specialized software “as it is” with low develop-

ment costs and low level of integration of the software,

and put the effort on the consistency of input/output data.

That options could lead to the conversion of data format.

As often, a mixed solution can answer this problem. Existing

specialized software could be modified, and data models could

be adapted. A dedicated script can ensure the consistency of

the common data.

B. Challenges

Theoretically a legitimate approach would be to rely on

standards. If we suppose that all software are following

standards such as the one proposed by the ECSS (European

Cooperation for Space Standardization) standards [5], [6], the

issue of the data sharing consistency should be solved. How-

ever, standards and models are still subject to interpretation

when dealing with implementation [7], [8].

Even if subsystems experts are not necessarily using soft-

ware with standardized inputs/outputs, system engineers are

used to deal with issues of format consistency. Some reasons

for not modifying the data format already in-use in specialized

software include in-house culture, operational availability at

the moment of implementation, or software version compati-

bility. Furthermore, different standards may exist for the same

type of data.

To summarize, a successful project using concurrent engi-

neering should take into account:

• consistency of shared data format;

• specialized software already in-use;

• transparency of data exchange: data format, data location,

data transformation;

C. Approach

Concurrent Design Engineering (CDE) [9] is a methodology

which inherently takes into account these success factors above

(see section III-B). In this paper, concurrent engineering is

seen in a spatial context [10], based on “work in parallel”

and “co-located work”. A bottom-up approach was chosen

based on the needs of the subsystems engineers. A system

engineer should be in charge of manually ensuring that the

process is following the correct path, and that the data is

consistent between subsystems and that up-to-date information

is correctly shared and understandable between the different

experts. The objective is not to suppress the role of the system

engineer, but to facilitate the interactions and communications

between experts, at a system level. The whole process should

be as smooth as possible, to limit any additional work from

the subsystem experts. Also, it was encountered that grating

access to all the experts is a plus.

Generally, a team conducting a preliminary CubeSat design

for a specific space mission should deal with the following

elements:

• mass budget
• power budget
• link budget
• data budget
• dissipation budget
• radiation budget
• sometimes a propellant

budget

• mechanical architecture
• thermal architecture
• an ADCS sizing
• an activity profile
• launcher restriction choice
• check for compliance with space laws
• check for payloads constraints

Therefore the goal of this paper is to propose a tool that

facilitates the process of getting all these deliverable, for a

team working remotely.

III. STANDARDS AND SOFTWARE FOR PRELIMINARY

DESIGN

In this section, a brief overview of classic data standards

and existing open-source software that allow partly a CubeSat

preliminary design is presented, along with related work on

concurrent design engineering tools.

A. Existing Standards for Data Format

The Consultative Committee for Space Data Systems

(CCSDS) provides recommendations related to data standard-

ization. Many advantages of respecting such recommendations

can be seen, such as interoperability, cross-support, reduction

of risk, development time, and project costs. An exhaustive

list of used standards can be found in [11]. In practice, the

following elements were favored:

• CCSDS Orbit Ephemeris Message (OEM) files;

• CCSDS Attitude Data Messages (AEM) files;

• ECSS-E-TM-10-25A [5];

• STEP file for geometric data, although no real standard

used;

• Electronic Data Sheet (EDS) for equipment.

B. Concurrent Design Engineering

Concurrent Design Engineering (CDE) applied to space

mission preliminary design [9] is a methodology applied to fa-

cilitate the process of subsystem design parameters converging

into preliminary models, and architectures. This methodology

is usually supported by a Concurrent Design Facility (CDF)

[12].

Many CDE implementations are proposed by space agencies

– e.g. NASA Team-X [13], ESA OCDT, CNES IDM-CIC

[14], and DLR Virtual satellite – by academics – e.g. Cedesk

[15] C2ERES DOCKS and FOrPlan [4] – or by private

companies – e.g. Rheagroup CDP4, and Valispace. A review

and comparison table between these tools has been proposed

by Knoll and Golkar [16], also accessible online.

However, for three main reasons make that these software

do not meet the requirements imposed to this project: license

incompatibility, integration issues with third-party software

and/or heavy spreadsheet focus.

In an academic context, there are several reasons to turn

to open-source software, also within the framework of Cube-

Sat projects [17]. Many open-source software, methodologies

and recommendations can be easily found online, include-

ing for example the Libre Space Foundation initiative, full

open-source CubeSat projects such as the UPSAT initiative,

FloripaSat-I [18], and educational projects [19]. The “open-

source Satellite” initiative provides a list of teams and software

of the open-source ecosystem.

Few open-source solutions are providing a full set of

compatible specialized software that are also open-source.

CDF tools do not systematically incorporate discipline-specific

software, which implies the need to use internal software that

may be proprietary. In addition, it might be required to setup a

network dedicated to the deployment of the CDF (e.g. CDP4).

In a nutshell, all these CDE implementations on their own are

not enough to achieve a full preliminary design. Third-party

software are required.

Current usage of CDF tools shows that project managers

pre-dominantly use spreadsheets with their pros and cons.

Even though spreadsheets are powerful tools, they are not

designed to replace databases. Usually spreadsheets neither

support competitive data access, nor support data checking,

data validation, data searching and data retrieval. Databases

improve data integrity and data consistency. “Some things,

which are difficult to do or error prone in spreadsheets, can

be done easily and reliably in database” [20].

IV. NANOSPACE ARCHITECTURE

This section describes the Nanospace software architec-

ture and implementation choices. Nanospace was designed

to facilitate academic CubeSats preliminary design and is

made up of, mainly, a GUI, a database and an API. The

specific requirements established are explained in subsection

section IV-A . The implementation choices that were taken are

presented in section IV-B and in section IV-C it is shown how

third-party external domain specific software can be interfaced

to Nanospace.

A. Nanospace high-level requirements

Nanospace shall:

• support Concurrent Design Engineering

(see section III-B);

• support concurrent access to shared data models;

• allow remote located team-work;

• be modular and flexible to comply with experts needs;

• facilitate third-party software interactions;

• be open-source;

• be adapted to an academic usage (from the final user

point of view):

– easy to deploy or access (on a student laptop);

– user friendly (intuitive and easy to handle for a

student);

– platform independent.

B. Implementation choices

To comply with the high-level requirements, it was con-

cluded that Nanospace should:

• instantiate a centralized database;

• provide a REST API (REpresentational State Transfer

API - Application Programming Interface);

• use Web service oriented software (when provided);

• follow standards (such as ECSS) insofar as possible.

Communications between third-party services and the appli-

cation also needs to be taken into account to facilitate access to

the database for any type of program and language (Python, C,

C++, java, Go, Octave, Julia...). For sake of developers access,

an interface with a high level of abstraction is necessary. For

this purpose, it was chosen to be oriented as web applications,

using HTTP requests and respecting REST convention.

Nanospace is therefore composed of three main components

(Fig. 5):

• A User Interface - Nanospace-UI - in the frontend (see

section IV-B1);

• A database - Nanospace-DB - in the backend (see section

IV-B2);

• A REST API - provided by Nanospace-Service - also in

the backend (see section IV-B3).

It should be noted that Nanospace requires additional com-

ponents to be used. For example, a browser is required to

interact with Nanospace (see section IV-B4).

1) Nanospace-UI:

Nanospace-UI (Fig. 1) is the main visual interface for any

project member to interact, at any point in time, manually,

with the model. Driven by the need for cross-platform access

without any installations from client side (except a “modern”

web browser), web technology was chosen. On Nanospace-UI,

a user can:

• authenticate her/himself for accessing to the application

and the projects he is responsible of;

• add other users as co-responsibles of a project;

• create and modify a project or a model (project compo-

sition of element);

• characterize the model with values;

• create requirements based on model characteristics;

• use classic functionalities such as copy, drag-and-drop,

auto-completion;

• make basic operation between referenced values (“like in

a spreadsheet”);

• create one or several modes for each components;

• access all the requirements;

• export or import the entire model on a system file in

JSON (JavaScript Object Notation) format;

• be notified when a modifications is occurring on the data

displayed by the UI;

• access an history of the past modifications;

• get notified of a required change whether the data are

displayed or not.

The Project Tree of Nanospace is explicitly printed on the

left side. A user can access a context menu to modify the

model. By clicking on a component, the user can display

specific values, and by clicking on a value the user toggle

a menu to modify it.

2) Nanospace-DB:

Following usual approaches, data entities can follow a hierar-

chical tree data structure with variable depth. To increase per-

formance when handling this type of structure, data is stored

in graph form. Data must be write-protected in order to allow

access competition. Neo4j complies with these requirements.

In addition Neo4j has ACID properties. It is a NoSQL database

storing graphs. Neo4j has also a larger community than other

databases such as OrientDB [21];

Data in the database is stored in a graph form, defining the

nodes of the graph as model entities (see Fig. 2). A data model

consists of:

• a project storing elements that will constitute the model;

• components that are composing the project;

• a mode describing the different functional options of a

component ;

• a value specifying modes (and specifying indirectly his

components);

• a user who is responsible for the project.

Whereas in the current implementation only five entities have

been taken, adaptation to a more complex structure so to fully

comply with current standards [12], [22] is straightforward.

(Element)

Components

(Value)

Matrice

(Value)

String
(Value)

Number

(Value)

Formula

(Element)

Value

(Value)

Requirement

(Element)

Project

User

Responsible

(Element)

Mode

have

isModulableWith

isComposed

Create

Create

Create

Create

isComposed

+ string

+ number
+ marginHigh

+ marginLow

+ condition

+ conditionResult

+ formula

+ formulaResult
+ marginHigh

+ marginLow

(Element Entity)

+ idElement

+ name

+ creationDate

+ modificationDate

+ responsibleList

+ description

+ idUser

+ name

+ mail

+ password

+ role

isComposed

+ width

+ height

Fig. 2. Graph of the database model prototype. Only five entities are taken
into account: project, components, mode, value, and user.

3) Nanospace-Service:

The Nanospace-Service allows applications (webpage GUI,

scripts, etc.) to manipulate the model. Nanospace-Service im-

plements a REST API, allowing specific domain applications

and user interfaces to communicate with the database. Third-

party programs can also access to the database and:

• can authenticate themselves;

• can create, can modify, or can delete elements of the

model2;

• cannot create requirements;

• cannot create a project.

4) Additional components: Some additional components

are deployed:

• An HTTP server to serve the main graphical interface;

• A Broker message to deal with asynchronous events

between each application;

• A database to store the data events, that correspond to

dated events having circulated on the platform.

2Each modification of the database should be logged.

C. Three ways to include domain specific modules

Three ways are proposed to interact with Nanospace-DB

through different levels of complexity, depending on the final

user will and skill. The wish is that an engineer with no

specific IT skills should be able to use it, whereas a subsystem

expert with some skills in SW code development or even to a

full stack web developer should be able to use more advanced

features. In this way it is for example possible to directly add a

parameter for a space mission or also to script an optimization

procedure according to a specific database inputs, possibly

publishing the results directly on the database. Finally, one

can also retrieve database elements from a common HTML

requests and taking advantage of the REST API to build an

dedicated web application. Therefore, three main ways are

available to interact with the project database (see Fig. 5):

1) Manually interacting with Nanospace-UI (see Fig. 1);

2) Embedded code to facilitate Nanospace-Service

• through a generic Angular Component (see for ex-

ample Fig. 3, code is available in the npm Registry)

• through a simple generic Python API (see Fig. 4,

code is available in Nanospace deposit).

3) Full compliance with Nanospace REST, API (usually

web applications oriented)

Fig. 3. Visual rendering of the angular nanospace selection menu. Some
features are provided, such as researching an element name or value: in this
example, the user was looking for the semi major axis (SMA) value in the
database and is able to import it into its own web component.

from nanospace import Nanospace

user = (' userLogin ' , ' userPass ')

srvAddr = ' https://SrvUrl/API '

nanospace = Nanospace(srvAddr, user[0], user[1])

id−alt−km = 40

id−SMA−km = 83

alti = nanospace.get−formula−value(id−alt−km)

print("altitude="+str(alti))

nanospace.update−formula−value(\
id−SMA−km,6371+alti)

Fig. 4. Example of code in a Python API call.

V. WORK ENVIRONMENT

This section describes the required environment to fully take

advantage of the proposed solution.

A. Classic Software Support

It should be noted that concurrent engineering does not

replace standard project management approaches and that

Nanospace is therefore not intended to provide to the user with

a ”standard project management tool” with functionalities such

as task management, code versioning, or team communication

channels. As a consequence, the goal is not to have une full

unique framework for preliminary design of CubeSats. Such

functionalities need to be covered by other tools, such as the

following that are commonly used in our design environment

when working on preliminary design (and further):

• a standard project versioning (e.g a Git deposit);

• a chat (e.g RocketChat);

• a video conference service (e.g Jitsi);

• a project scheduler (e.g ProjectLibre);

• a dedicated framework for task management, bugs and

issues tracking, often coupled with previous tools (e.g

GitLab).

B. Nanostar Software Suite

The Nanostar Software Suite - NSS - is an example of

a Nanospace constellation (Fig. 6). This NSS is currently

under development. All modules are provided, developed and

supported by different institutes of the Nanostar Consortium,

and should respect as far as possible the CCSDS standards.

Nanospace remains the backbone of the NSS, allowing a

smooth interaction between each subsystem expert software.

VI. DISCUSSION

Nanospace does not aim to implement a particular Model-

Based Systems Engineering (MBSE) approach nor to replace

a system engineer. It aims to facilitate the exchange of data

between software. The role of the system engineers is to ensure

the project consistency. They should propose an instantiation

of Nanosapace according to their team software and require-

ments. However, the inclusion of the formal MBSE process

before the instantiation of a Nanospace software constellation

should be explored. open-source system engineering tools have

been proposed [23], [24].

The Nanospace version presented in this paper is a proto-

type. The current tools offered by Nanospace are being used in

different CubeSat development projects, and over the course

of these projects, new needs and requirements emerge for

the evolution of the software, some of which are currently

being implemented. Currently designers are able to access and

modify directly parameter values in the database. In spite of

Nanospace-DB ACID property, consistency issue may appear

during third party software computation process. To tackle this

issue the implementation of a message broker, to automatically

manage event messages, is planned.

At the moment, the Nanospace-UI allows the user to ex-

port/load a project to/from a JSON (JavaScript Object No-

tation) file. Compatibility with JSON-LD (JSON for Linked

Data) would be a plus, to follow standardisation initiatives

such as MetaSat [22].

Additional software could be added to a Nanospace con-

stellation. For example, optimization tools may have a direct

interest on relying on the database for their different iterations

processes: integration of OpenMDAO [25] to a Nanospace

instance is currently under study.

VII. CONCLUSION

Nanospace is an open-source software dedicated to facilitate

the preliminary design of CubeSats for remote teamwork. It in-

cludes three main components: a web based GUI - Nanospace-

UI -, a database with ACID properties - Nanospace-DB -, and

a RESTful API through Nanospace-Service.

Nanospace can add value to the preliminary design of a

CubeSat project, when integrated into a consistent software

package, such as the Nanospace Constellation. In such a

constellation, a set of selected third-party software is able

to interact with common centralized models provided by the

database. Therefore, Nanospace should be easy to integrate

to third-party application. Integration can be implemented (or

not) at different levels:

1) manual data value filling in Nanospace-UI (totally inde-

pendent from the application),

2) intermediate interfaces easy to integrate in one’s code

(Python API or Angular Component examples are pro-

vided), and

3) direct HTTP requests based on the provided REST

service.

Nanospace ensures concurrent access to the models, which

is relevant when teams are working remotely. Nanospace

also provides an intuitive way of visualizing other experts’

contributions that can be of high value when looking for

internal project understanding and transparency. Nanospace

is open-source (AGPL v3 license). Source code is available

here. Nanospace is also currently running on a test server. An

example of a Nanospace constellation has been used in the

context of the Nanostar project, the NSS constellation. Which

is available here.
REFERENCES

[1] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs,
“Cubesat: A new generation of picosatellite for education and industry
low-cost space experimentation,” Proceedings of the Small Satellite

Conference, 2000.

[2] C. Cappelletti and D. Robson, “Cubesat missions and applications,” in
Cubesat Handbook. Elsevier, 2021, pp. 53–65.

[3] M. Deshmukh, V. Schaus, P. M. Fischer, D. Quantius, V. Maiwald, and
A. Gerndt, “Decision support tool for concurrent engineering in space
mission design,” in Concurrent Engineering Approaches for Sustainable

Product Development in a Multi-Disciplinary Environment. Springer,
2013, pp. 497–508.

[4] R. A. Chagas, F. L. de Sousa, A. C. Louro, and W. G. dos Santos,
“Modeling and design of a multidisciplinary simulator of the concept
of operations for space mission pre-phase a studies,” Concurrent

Engineering, vol. 27, no. 1, pp. 28–39, 2019. [Online]. Available:
https://doi.org/10.1177/1063293X18804006

[5] European Cooperation for Space Standardization, “Ecss-etm-10-25a,”
https://ecss.nl/, 2019. [Online]. Available: https://ecss.nl/

[6] M. Jones, E. Gomez, A. Mantineo, and U. Mortensen, “Introducing ecss
software-engineering standards within esa,” ESA bulletin, pp. 132–139,
2002.

[7] R. Arias, F. Kucinskis, and J. D. Alonso, “Lessons learned from an
onboard ecss pus object-oriented implementation,” in SpaceOps 2008

Conference, 2008, p. 3524.
[8] N. Humeau, T. Gateau, G. Crooks, and F. Anne, “A lightweight

and efficient control center based on modern technologies,” in 2018

SpaceOps Conference, 2018, p. 2634.
[9] M. Bandecchi, B. Melton, and F. Ongaro, “Concurrent engineering

applied to space mission assessment and design,” ESA bulletin, vol. 99,
no. Journal Article, 1999.

[10] D. Knoll, C. Fortin, and A. Golkar, “Review of concurrent engineering
design practice in the space sector: state of the art and future per-
spectives,” in 2018 IEEE International Systems Engineering Symposium

(ISSE). IEEE, 2018, pp. 1–6.
[11] A. Scholz, “Cubesat standards handbook: A survey of inter-

national space standards with application for cubesat missions,”
https://gitlab.com/artur-scholz/book-cubesat-standards, 2019.

[12] D. Di Domizio and P. Gaudenzi, “A model for preliminary design
procedures of satellite systems,” Concurrent Engineering, vol. 16, no. 2,
pp. 149–159, 2008.

[13] R. E. Oberto, E. Nilsen, R. Cohen, R. Wheeler, P. DeFlono, and
C. Borden, “The nasa exploration design team: Blueprint for a new
design paradigm,” in Aerospace Conference, 2005 IEEE. IEEE, 2005,
pp. 4398–4405.

[14] J.-L. Le Gal and P. R. Lopes, “Idm-cic,”
https://www.clever-age.com/fr/case-studies/cnes-une-application-

de-modelisation-3d/, 01 2016. [Online]. Available:
http://igosat.in2p3.fr/wp-content/uploads/2016/06/13 2016 06-Les%
20outils%20CIC%20du%20CNES-JLLeGal%20-%20PLopes.pdf

[15] Skoltech, “CEDESK,” https://cedesk.github.io/, 2019, [Online] Ac-
cessed: 2021-02-25.

[16] D. Knoll and A. Golkar, “A coordination method for concurrent design
and a collaboration tool for parametric system models,” Concurrent

Engineering, vol. 26, no. 1, pp. 5–21, 2018.
[17] A. Scholz and J.-N. Juang, “Toward open source cubesat design,” Acta

astronautica, vol. 115, pp. 384–392, 2015.
[18] M. G. Mariano, F. E. Morsch, M. S. Vega, S. L. Oriel, S. L. Kessler,

B. E. Augusto et al., “Qualification and validation test methodology of
the open-source cubesat floripasat-i,” Journal of Systems Engineering

and Electronics, vol. 31, no. 6, pp. 1230–1244, 2020.
[19] D. Geeroms, S. Bertho, M. De Roeve, R. Lempens, M. Ordies, and

J. Prooth, “Ardusat, an arduino-based cubesat providing students with
the opportunity to create their own satellite experiment and collect real-
world space data,” in 22nd ESA Symposium on European Rocket and

Balloon Programmes and Related Research, vol. 730. Citeseer, 2015,
p. 643.

[20] K. J. Gordon, “Spreadsheet or database: Which makes more sense?”
Journal of Computing in Higher Education, vol. 10, no. 2, pp. 111–
116, 1999.

[21] N. Vergnes, “Bases de donnees graphes : comparaison de
NEO4J et OrientDB,” Conservatoire National des Arts et

Metiers, 2015. [Online]. Available: https://www.irit.fr/∼Thierry.Millan/
MemoiresENG221/Nicolas vergnes.pdf

[22] Bouquin, Daina and Papadeas, Pierros and Chivvis,
Daniel and Williams, Allie and Tsiligiannis, Vasilis and Damkalis,
Fredy and Frey, Katie, “Describing smallsat missions with metasat,”
Proceedings of the Small Satellite Conference, 2020.

[23] N. JPL, “Open model based engineering environment,” http://www.
openmbee.org/., 2019, [Online] Accessed: 2021-02-25.

[24] T. Kulkarni, K. DeBruin, A. Nelessen, K. A. Reilley, R. Peak, S. J.
Edwards, and D. N. Mavris, “A model based systems engineering
approach towards developing a rapid analysis and trades environment,”
AIAA SPACE 2016, p. 5472, 2016.

[25] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A.
Naylor, “OpenMDAO: An open-source framework for multidisciplinary
design, analysis, and optimization,” Structural and Multidisciplinary

Optimization, vol. 59, no. 4, pp. 1075–1104, April 2019.

