Thibault Gateau
email: thibault.gateau@isae-supaero.fr

Lucien Senaneuch
email: lucien.senaneuch@isae-supaero.fr

Sophia Salas Cordero
email: sophia.salas@isae-supaero.fr

Rob Vingerhoeds
email: rob.vingerhoeds@isae-supaero.fr

Open-source Framework for the Concurrent Design of CubeSats

Keywords: open-source, Software, CubeSat, Software Architecture, Preliminary Design, Concurrent Design Engineering

In this paper, the open-source Nanospace framework is presented, dedicated to facilitate concurrent engineering during the preliminary design phase of CubeSats. It allows for direct information exchange between third-party expert software, while allowing transparent data visualization to any team member. It provides a web based GUI, and relies on a database with ACID properties and provides a RESTful API. Nanospace ensures concurrent access to the data, which is relevant when teams are working remotely. Nanospace also provides an intuitive way of visualizing other experts' contributions that can be of high value when looking for internal project understanding and transparency. The paper presents the modular software architecture of Nanospace, as well as design choices and the different options to connect to third-party specialized software and the database.

I. INTRODUCTION

The preliminary design of CubeSats requires close cooperation between experts from different disciplines for the analysis and modeling of the concerned subsystems. This modeling process of each subsystem may be influenced by design parameters of other subsystems, leading to strong interdependencies between subsystems. These inter-dependencies are present throughout the whole life cycle of the CubeSat. This situation explains why often concurrent engineering approaches are used for the initial stage of satellite design; CubeSats are no exception to this. Specific software allowing to structure this concurrent approach may help to support these preliminary design phases.

Within the current practice of CubeSat preliminary design, it seems that no suitable open-source software tools are available to support this design process; many experts use their own software tools and rely on manual information transfer. Functionalities of different software tools are often redundant, or even re-developed each time they are required, rather than re-used. Therefore there is a clear need for a framework to facilitate the management of information, models and data during the concurrent design process of CubeSats. Such framework may be able to increase the consistency throughout the information exchange, important to the preliminary design process of a CubeSat. Afterwards, it could be applied as well all along the life cycle of the project thanks to strong interconnections between domain-specific software.

Ideally, each discipline expert should be able to include necessary up-to-date inputs in their own software tools for running the required simulations or calculations in order to provide the expected outputs to the team. Monitoring this data flow would enable to be aware of real-time changes in a transparent way, which is essential for an effective teamwork; whether it is remotely, on site or a mixture of both.

In this paper, Nanospace (Fig. 1) is presented, a software framework dedicated to facilitate direct information exchange between third-party expert software, while allowing transparent data visualization to any team member. It provides a web based GUI, and relies on a database with ACID properties 1and provides a RESTful API.

This paper is structured as follows: Section II of this paper presents an overview of the preliminary design of a CubeSat, which includes important data exchange models considerations. Then, in section III, the recommended standards are outlined and current open-source solutions for CubeSats preliminary design reviewed. The modular software architecture of Nanospace (Source code available at https://gitlab.isaesupaero.fr/nanostar/nanospace) is explained in the following section, along with the different options to connect third-party specialized software and the database, as well as the work environment. The achievements and future work recommendations are summarized in the conclusion section.

II. PRELIMINARY DESIGN FOR CUBESATS

The preliminary design of CubeSats requires strong expertise across several fields. In this paper, preliminary design is identified as the 0/A phase according to ESA definition equivalent to Pre-Phase-A/Phase-A for NASA. Moreover, this work provides specific focuses on preliminary design for nanosatellites projects, although its use is wider. The scope of this paper covers specifically CubeSats [START_REF] Heidt | Cubesat: A new generation of picosatellite for education and industry low-cost space experimentation[END_REF], [START_REF] Cappelletti | Cubesat missions and applications[END_REF].

During the preliminary design, engineers usually rely on domain specific software for analysis, modeling, simulation, etc. It would be hard to conceive a complex project development • Many experts share common models, inputs and/or outputs. They are updating them, but not always tracking changes;

• Using existing standards is recommended -to the extent that standards have been defined, are relevant and convenient, and are implemented. Using standards greatly improves teamwork and project management;

• Lack of communication and misunderstanding between experts of different disciples should not be underestimated;

• Human resource limitation such as large turnover should be taken into account from the beginning of the project. The possibility for effective data exchange between experts is a key requirement in concurrent engineering. The degree of integration of a software into a process depends on the way that the software interacts within the process and how the data is shared. If an expert has to manually re-write data into a software, it is assumed that there is "no automated interaction". Reciprocally, if each affected data is automatically updated when changes are made, it is assumed that there are "fully automated interactions". For example, if the mission analyst modifies the semi-major axis of the orbit, the link budget should have to be updated. It can be done manually, by the telecommunication expert who will re-run a script. However it is also possible to automatically trigger the same script when detecting the semi-major axis change. There are two options to connect specialized software together:

• to re-develop a dedicated specialized software entirely integrated with the concurrent engineering process, with high integration of the software but also high development costs. Software and experts would share an unified data model;

• to use specialized software "as it is" with low development costs and low level of integration of the software, and put the effort on the consistency of input/output data. That options could lead to the conversion of data format. As often, a mixed solution can answer this problem. Existing specialized software could be modified, and data models could be adapted. A dedicated script can ensure the consistency of the common data.

B. Challenges

Theoretically a legitimate approach would be to rely on standards. If we suppose that all software are following standards such as the one proposed by the ECSS (European Cooperation for Space Standardization) standards [START_REF]European Cooperation for Space Standardization[END_REF], [START_REF] Jones | Introducing ecss software-engineering standards within esa[END_REF], the issue of the data sharing consistency should be solved. However, standards and models are still subject to interpretation when dealing with implementation [START_REF] Arias | Lessons learned from an onboard ecss pus object-oriented implementation[END_REF], [START_REF] Humeau | A lightweight and efficient control center based on modern technologies[END_REF].

Even if subsystems experts are not necessarily using software with standardized inputs/outputs, system engineers are used to deal with issues of format consistency. Some reasons for not modifying the data format already in-use in specialized software include in-house culture, operational availability at the moment of implementation, or software version compati-bility. Furthermore, different standards may exist for the same type of data.

To summarize, a successful project using concurrent engineering should take into account:

• consistency of shared data format;

• specialized software already in-use;

• transparency of data exchange: data format, data location, data transformation;

C. Approach

Concurrent Design Engineering (CDE) [START_REF] Bandecchi | Concurrent engineering applied to space mission assessment and design[END_REF] is a methodology which inherently takes into account these success factors above (see section III-B). In this paper, concurrent engineering is seen in a spatial context [START_REF] Knoll | Review of concurrent engineering design practice in the space sector: state of the art and future perspectives[END_REF], based on "work in parallel" and "co-located work". A bottom-up approach was chosen based on the needs of the subsystems engineers. A system engineer should be in charge of manually ensuring that the process is following the correct path, and that the data is consistent between subsystems and that up-to-date information is correctly shared and understandable between the different experts. The objective is not to suppress the role of the system engineer, but to facilitate the interactions and communications between experts, at a system level. The whole process should be as smooth as possible, to limit any additional work from the subsystem experts. Also, it was encountered that grating access to all the experts is a plus.

Generally, a team conducting a preliminary CubeSat design for a specific space mission should deal with the following elements:

• mass budget Therefore the goal of this paper is to propose a tool that facilitates the process of getting all these deliverable, for a team working remotely.

III. STANDARDS AND SOFTWARE FOR PRELIMINARY

DESIGN

In this section, a brief overview of classic data standards and existing open-source software that allow partly a CubeSat preliminary design is presented, along with related work on concurrent design engineering tools.

A. Existing Standards for Data Format

The Consultative Committee for Space Data Systems (CCSDS) provides recommendations related to data standardization. Many advantages of respecting such recommendations can be seen, such as interoperability, cross-support, reduction of risk, development time, and project costs. An exhaustive list of used standards can be found in [START_REF] Scholz | Cubesat standards handbook: A survey of international space standards with application for cubesat missions[END_REF]. In practice, the following elements were favored:

• CCSDS Orbit Ephemeris Message (OEM) files;

• CCSDS Attitude Data Messages (AEM) files;

• ECSS-E-TM-10-25A [START_REF]European Cooperation for Space Standardization[END_REF];

• STEP file for geometric data, although no real standard used;

• Electronic Data Sheet (EDS) for equipment.

B. Concurrent Design Engineering

Concurrent Design Engineering (CDE) applied to space mission preliminary design [START_REF] Bandecchi | Concurrent engineering applied to space mission assessment and design[END_REF] is a methodology applied to facilitate the process of subsystem design parameters converging into preliminary models, and architectures. This methodology is usually supported by a Concurrent Design Facility (CDF) [START_REF] Domizio | A model for preliminary design procedures of satellite systems[END_REF].

Many CDE implementations are proposed by space agencies -e.g. NASA Team-X [START_REF] Oberto | The nasa exploration design team: Blueprint for a new design paradigm[END_REF], ESA OCDT, CNES IDM-CIC [START_REF] Gal | Idm-cic[END_REF], and DLR Virtual satellite -by academics -e.g. Cedesk [START_REF] Skoltech | CEDESK[END_REF] C 2 ERES DOCKS and FOrPlan [START_REF] Chagas | Modeling and design of a multidisciplinary simulator of the concept of operations for space mission pre-phase a studies[END_REF] -or by private companies -e.g. Rheagroup CDP4, and Valispace. A review and comparison table between these tools has been proposed by Knoll and Golkar [16], also accessible online.

However, for three main reasons make that these software do not meet the requirements imposed to this project: license incompatibility, integration issues with third-party software and/or heavy spreadsheet focus.

In an academic context, there are several reasons to turn to open-source software, also within the framework of Cube-Sat projects [START_REF] Scholz | Toward open source cubesat design[END_REF]. Many open-source software, methodologies and recommendations can be easily found online, includeing for example the Libre Space Foundation initiative, full open-source CubeSat projects such as the UPSAT initiative, FloripaSat-I [START_REF] Mariano | Qualification and validation test methodology of the open-source cubesat floripasat-i[END_REF], and educational projects [START_REF] Geeroms | Ardusat, an arduino-based cubesat providing students with the opportunity to create their own satellite experiment and collect realworld space data[END_REF]. The "opensource Satellite" initiative provides a list of teams and software of the open-source ecosystem.

Few open-source solutions are providing a full set of compatible specialized software that are also open-source. CDF tools do not systematically incorporate discipline-specific software, which implies the need to use internal software that may be proprietary. In addition, it might be required to setup a network dedicated to the deployment of the CDF (e.g. CDP4). In a nutshell, all these CDE implementations on their own are not enough to achieve a full preliminary design. Third-party software are required.

Current usage of CDF tools shows that project managers pre-dominantly use spreadsheets with their pros and cons. Even though spreadsheets are powerful tools, they are not designed to replace databases. Usually spreadsheets neither support competitive data access, nor support data checking, data validation, data searching and data retrieval. Databases improve data integrity and data consistency. "Some things, which are difficult to do or error prone in spreadsheets, can be done easily and reliably in database" [START_REF] Gordon | Spreadsheet or database: Which makes more sense?[END_REF].

IV. NANOSPACE ARCHITECTURE This section describes the Nanospace software architecture and implementation choices. Nanospace was designed to facilitate academic CubeSats preliminary design and is made up of, mainly, a GUI, a database and an API. The specific requirements established are explained in subsection section IV-A . The implementation choices that were taken are presented in section IV-B and in section IV-C it is shown how third-party external domain specific software can be interfaced to Nanospace.

A. Nanospace high-level requirements

Nanospace shall:

• support Concurrent Design Engineering (see section III-B);

• support concurrent access to shared data models;

• allow remote located team-work;

• be modular and flexible to comply with experts needs;

• facilitate third-party software interactions;

• be open-source;

• be adapted to an academic usage (from the final user point of view):

easy to deploy or access (on a student laptop); user friendly (intuitive and easy to handle for a student); platform independent.

B. Implementation choices

To comply with the high-level requirements, it was concluded that Nanospace should:

• instantiate a centralized database;

• provide a REST API (REpresentational State Transfer API -Application Programming Interface);

• use Web service oriented software (when provided);

• follow standards (such as ECSS) insofar as possible.

Communications between third-party services and the application also needs to be taken into account to facilitate access to the database for any type of program and language (Python, C, C++, java, Go, Octave, Julia...). For sake of developers access, an interface with a high level of abstraction is necessary. For this purpose, it was chosen to be oriented as web applications, using HTTP requests and respecting REST convention.

Nanospace is therefore composed of three main components (Fig. 5):

• A User Interface -Nanospace-UI -in the frontend (see section IV-B1);

• A database -Nanospace-DB -in the backend (see section IV-B2);

• A REST API -provided by Nanospace-Service -also in the backend (see section IV-B3).

It should be noted that Nanospace requires additional components to be used. For example, a browser is required to interact with Nanospace (see section IV-B4).

1) Nanospace-UI:

Nanospace-UI (Fig. 1) is the main visual interface for any project member to interact, at any point in time, manually, with the model. Driven by the need for cross-platform access without any installations from client side (except a "modern" web browser), web technology was chosen. On Nanospace-UI, a user can:

• authenticate her/himself for accessing to the application and the projects he is responsible of;

• add other users as co-responsibles of a project;

• create and modify a project or a model (project composition of element);

• characterize the model with values;

• create requirements based on model characteristics;

• use classic functionalities such as copy, drag-and-drop, auto-completion;

• make basic operation between referenced values ("like in a spreadsheet");

• create one or several modes for each components;

• access all the requirements;

• export or import the entire model on a system file in JSON (JavaScript Object Notation) format;

• be notified when a modifications is occurring on the data displayed by the UI;

• access an history of the past modifications;

• get notified of a required change whether the data are displayed or not. The Project Tree of Nanospace is explicitly printed on the left side. A user can access a context menu to modify the model. By clicking on a component, the user can display specific values, and by clicking on a value the user toggle a menu to modify it.

2) Nanospace-DB:

Following usual approaches, data entities can follow a hierarchical tree data structure with variable depth. To increase performance when handling this type of structure, data is stored in graph form. Data must be write-protected in order to allow access competition. Neo4j complies with these requirements. In addition Neo4j has ACID properties. It is a NoSQL database storing graphs. Neo4j has also a larger community than other databases such as OrientDB [START_REF] Vergnes | Bases de donnees graphes : comparaison de NEO4J et OrientDB[END_REF];

Data in the database is stored in a graph form, defining the nodes of the graph as model entities (see Fig. 2). A data model consists of:

• a project storing elements that will constitute the model;

• components that are composing the project;

• a mode describing the different functional options of a component ;

• a value specifying modes (and specifying indirectly his components);

• a user who is responsible for the project. Whereas in the current implementation only five entities have been taken, adaptation to a more complex structure so to fully comply with current standards [START_REF] Domizio | A model for preliminary design procedures of satellite systems[END_REF], [START_REF] Bouquin | Describing smallsat missions with metasat[END_REF] 3) Nanospace-Service: The Nanospace-Service allows applications (webpage GUI, scripts, etc.) to manipulate the model. Nanospace-Service implements a REST API, allowing specific domain applications and user interfaces to communicate with the database. Thirdparty programs can also access to the database and:

• can authenticate themselves;

• can create, can modify, or can delete elements of the model2 ;

• cannot create requirements;

• cannot create a project.

4) Additional components: Some additional components are deployed:

• An HTTP server to serve the main graphical interface;

• A Broker message to deal with asynchronous events between each application;

• A database to store the data events, that correspond to dated events having circulated on the platform.

C. Three ways to include domain specific modules

Three ways are proposed to interact with Nanospace-DB through different levels of complexity, depending on the final user will and skill. The wish is that an engineer with no specific IT skills should be able to use it, whereas a subsystem expert with some skills in SW code development or even to a full stack web developer should be able to use more advanced features. In this way it is for example possible to directly add a parameter for a space mission or also to script an optimization procedure according to a specific database inputs, possibly publishing the results directly on the database. Finally, one can also retrieve database elements from a common HTML requests and taking advantage of the REST API to build an dedicated web application. Therefore, three main ways are available to interact with the project database (see Fig. 5):

1) Manually interacting with Nanospace-UI (see Fig. 1); 2) Embedded code to facilitate Nanospace-Service

• through a generic Angular Component (see for example Fig. 3, code is available in the npm Registry)

• through a simple generic Python API (see Fig. 4, code is available in Nanospace deposit). 3) Full compliance with Nanospace REST, API (usually web applications oriented) V. WORK ENVIRONMENT This section describes the required environment to fully take advantage of the proposed solution.

A. Classic Software Support

It should be noted that concurrent engineering does not replace standard project management approaches and that Nanospace is therefore not intended to provide to the user with a "standard project management tool" with functionalities such as task management, code versioning, or team communication channels. As a consequence, the goal is not to have une full unique framework for preliminary design of CubeSats. Such functionalities need to be covered by other tools, such as the following that are commonly used in our design environment when working on preliminary design (and further):

• a standard project versioning (e.g a Git deposit); • a chat (e.g RocketChat);

• a video conference service (e.g Jitsi);

• a project scheduler (e.g ProjectLibre);

• a dedicated framework for task management, bugs and issues tracking, often coupled with previous tools (e.g GitLab).

B. Nanostar Software Suite

The Nanostar Software Suite -NSS -is an example of a Nanospace constellation (Fig. 6). This NSS is currently under development. All modules are provided, developed and supported by different institutes of the Nanostar Consortium, and should respect as far as possible the CCSDS standards. Nanospace remains the backbone of the NSS, allowing a smooth interaction between each subsystem expert software.

VI. DISCUSSION

Nanospace does not aim to implement a particular Model-Based Systems Engineering (MBSE) approach nor to replace a system engineer. It aims to facilitate the exchange of data between software. The role of the system engineers is to ensure the project consistency. They should propose an instantiation of Nanosapace according to their team software and requirements. However, the inclusion of the formal MBSE process before the instantiation of a Nanospace software constellation should be explored. open-source system engineering tools have been proposed [START_REF] Jpl | Open model based engineering environment[END_REF], [START_REF] Kulkarni | A model based systems engineering approach towards developing a rapid analysis and trades environment[END_REF].

The Nanospace version presented in this paper is a prototype. The current tools offered by Nanospace are being used in different CubeSat development projects, and over the course of these projects, new needs and requirements emerge for the evolution of the software, some of which are currently being implemented. Currently designers are able to access and modify directly parameter values in the database. In spite of Nanospace-DB ACID property, consistency issue may appear during third party software computation process. To tackle this issue the implementation of a message broker, to automatically manage event messages, is planned.

At the moment, the Nanospace-UI allows the user to export/load a project to/from a JSON (JavaScript Object Notation) file. Compatibility with JSON-LD (JSON for Linked Data) would be a plus, to follow standardisation initiatives such as MetaSat [START_REF] Bouquin | Describing smallsat missions with metasat[END_REF].

Additional software could be added to a Nanospace constellation. For example, optimization tools may have a direct interest on relying on the database for their different iterations processes: integration of OpenMDAO [START_REF] Gray | OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization[END_REF] to a Nanospace instance is currently under study.

VII. CONCLUSION

Nanospace is an open-source software dedicated to facilitate the preliminary design of CubeSats for remote teamwork. It includes three main components: a web based GUI -Nanospace-UI -, a database with ACID properties -Nanospace-DB -, and a RESTful API through Nanospace-Service.

Nanospace can add value to the preliminary design of a CubeSat project, when integrated into a consistent software package, such as the Nanospace Constellation. In such a constellation, a set of selected third-party software is able to interact with common centralized models provided by the database. Therefore, Nanospace should be easy to integrate to third-party application. Integration can be implemented (or not) at different levels:

1) manual data value filling in Nanospace-UI (totally independent from the application), 2) intermediate interfaces easy to integrate in one's code (Python API or Angular Component examples are provided), and 3) direct HTTP requests based on the provided REST service. Nanospace ensures concurrent access to the models, which is relevant when teams are working remotely. Nanospace also provides an intuitive way of visualizing other experts' contributions that can be of high value when looking for internal project understanding and transparency. Nanospace is open-source (AGPL v3 license). Source code is available here. Nanospace is also currently running on a test server. An example of a Nanospace constellation has been used in the context of the Nanostar project, the NSS constellation. Which is available here.

Fig. 3 .Fig. 4 .

 34 Fig.3. Visual rendering of the angular nanospace selection menu. Some features are provided, such as researching an element name or value: in this example, the user was looking for the semi major axis (SMA) value in the database and is able to import it into its own web component.

 is straightforward.

			(Element Entity)	
			+ idElement		
			+ name		
			+ creationDate	
			+ modificationDate	
	(Element) Project	+ responsibleList + description	
			Create	
	isComposed	Responsible		
					+ idUser
		Create	User	+ name + mail
					+ password
					+ role
	(Element) Components	isModulableWith	Create	
	isComposed			Create
			(Element)		
			Mode		
				have
			isComposed		(Element) Value
	+ width	(Value)			
	+ height	Matrice			
			(Value)		
		+ string	String	(Value) Number	(Value) Requirement	+ condition
			+ number	(Value)	+ conditionResult
			+ marginHigh	Formula
			+ marginLow	
					+ formula
					+ formulaResult
					+ marginHigh
					+ marginLow

Fig. 2. Graph of the database model prototype. Only five entities are taken into account: project, components, mode, value, and user.

Atomicity, Consistency, Isolation, Durability.

Each modification of the database should be logged.