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Abstract—We investigate the decoding of the sum of Gabidulin
codes. We show that there exists a probabilistic polynomial-
time decoder up to some bound. We then give some potential
applications of constructing and decoding a sum of Gabidulin
codes. This approach can lead to a new insight in designing
rank-metric based cryptographic schemes.

I. INTRODUCTION

There are very few families of decodable codes in rank
metric. Namely, the family of trivial codes [1], the family of
Gabidulin codes [2], and the family of LRPC codes [3]. Apart
from that, there are codes derived from Gabidulin codes that
are used in [4]. These codes are masked versions of Gabidulin
codes, enabling to design public-key encryption schemes.

The problem that we investigate in this paper is the problem
of decoding the sum of Gabidulin codes. Interestingly enough,
this is a problem which appears when one analyzes cryp-
tosystems based on the problem of reconstructing linearized
polynomials, [5], [6].

We show that the formulation of this problem can give
some insight in decoding problems and give rise to further
understanding on how to design public-key cryptosystems.

In the first section, we introduce notations and especially
the notion of skew polynomial rings which are an elegant
and simple manner to deal algebraically with rank metric and
Gabidulin codes. Under this setting, Gabidulin codes are just
the evaluation codes of bounded degree skew polynomials
using the operator evaluation.

Then, we state the problem of decoding the sum of
Gabidulin codes and show that there is a simple probabilistic
polynomial-time decoder up to some bound. Under some
assumptions, we show that the failure probability of this
algorithm is exponentially small.

Finally, we present some potential applications. We show
that by considering a random k-dimensional code as the sum
of k 1-dimensional Gabidulin codes, we recover the result
of [7] for the decoding of random codes. We also show that
investigating properties of the sum of Gabidulin codes could
be of interest in designing and analyzing rank metric based
public-key cryptography based on algebraic decoding.

II. PRELIMINARIES AND NOTATIONS

Let q be a power of a prime and let Fq denote the finite field
of order q. We consider the finite field extension of degree m:
Fqm/Fq .

We use Fm×nq to denote the set of all m× n matrices over
Fq and Fnqm for the set of all row vectors of length n over
Fqm .

Let θ be a generator of the Galois group. For instance,
it could be the mapping x 7→ xq , but everything we write
stays true for any generator of the Galois group. Moreover,
for simplicity, we denote by x[i] the value θi(x).

In this setting, we define the skew polynomial ring or Ore
ring [8] denoted by Fqm [X; θ] by defining the usual operations
• Addition is classical addition;
• X · a = θ(a) ·X .
With these operations, this ring is left and right Euclidean.

We denote by P 〈X〉 =
∑`
i=0 piX

i any element P of
Fqm [X; θ] of degree ` to distinguish it from the usual polyno-
mial ring.

There are several ways to define an evaluation map on this
ring [9]. Here, we choose the so-called operator evaluation,
meaning that for any α in some finite field where the action
θ is meaningful (for instance any finite field with the same
characteristic as Fq), we have

∀P ∈ Fqm [X; θ], P 〈α〉 def=
∑̀
i=0

piθ
i(α).

If θ corresponds to the Frobenius automorphism, then this
evaluation corresponds to the evaluation of so-called ring of
linearized polynomials defined in [9]. We naturally extend the
notion of evaluation to a vector :

∀y = (y1, . . . , yn), P 〈y〉 = (P 〈y1〉, . . . , P 〈yn〉).

Let M be a matrix over Fqm , we denote by rkqm(M) its
rank over Fqm . Rank metric is naturally related to the eval-
uation of skew polynomials. Namely, let y = (y1, . . . , yn) ∈
Fnqm , then by definition the rank of y is the dimension of the
Fq-vector space generated by its components, i.e.

rkq(y) = dim(〈y1, . . . , yn〉q).

Theorem 1 ( [10]): Let y = (y1, . . . , yn) ∈ Fnqm , then if
rkq(y) = t, there exist a unique Ay ∈ Fqm [X; θ], monic of
degree t such that Ay〈y〉 = 0.

In this setting, Gabidulin codes are defined as evaluation
codes of skew polynomials over linearly independent elements.

Definition 1 ( [2], [11]): Let g = (g1, . . . , gn) ∈ Fnqm ,
formed with Fq-linearly independent elements. The General-
ized Gabidulin code of dimension k and of support g denoted
by Gk(g) is defined by



Gk(g) =
{
f〈g〉, f ∈ Fqm [X; θ]

deg(f) ≤ k − 1

}
.

In the following, and since we are in finite fields we will
simply call them Gabidulin codes rather than Generalized
Gabidulin codes.

III. DECODING OF THE SUM OF GABIDULIN CODES

Let {Gkj (gj) ⊂ Fnqm}`j=1 be a set of kj-dimensional
Gabidulin codes with support vectors gj . We define by

C =
∑̀
j=1

Gkj (gj)

the code formed with the sum of the Gabidulin codes and
k, dmin be the dimension and the minimum distance of the

code C. To be convenient, we denote ka :=
∑̀
j=1

kj .

Our goal is to study in which case we can decode it and up
to which bound in the rank metric.

A. Problem

The decoding problem we address is the following: Let

y = c+ e

where c ∈ C and e has rank t. This implies that

• There exists skew polynomials fj ∈ Fqm [X; θ] with
degree ≤ kj − 1, such that

c =
∑̀
j=1

fj〈gj〉.

• There exists a unique skew polynomial Ae ∈ Fqm [X; θ],
monic and of degree t such that Ae〈e〉 = 0

From the Fq-linearity of the evaluation of skew polynomials,
we can rewrite the decoding problem as follows:

Ae〈y〉 =
∑̀
j=1

(Ae · fj)〈gj〉. (1)

The unknowns of the system are the coefficients of the skew
polynomials. Hence, we obtain a non homogenous bivariate
system with t+ ka + 1 unknowns and n equations.

A way to decode would then be to homogeneize the system
and solve it by using Gröbner bases, but this is not the
direction we investigate. As in [12], [13], we prefer to linearize
the system and understand when the solution space is 1-
dimensional to relate it directly to the decoding of C.

B. Linearizing the problem

We now consider the following system:

A〈y〉 =
∑̀
j=1

Nj〈gj〉. (2)

where A has degree t and for j ∈ {1, . . . , `}, deg(Nj) ≤
t + kj − 1. The number of equations is equal to n and the
number of variables can be counted as follows:
• t+ 1 variables to characterize the skew polynomial A;
• `t+ ka to characterize the polynomials Nj .
Hence, the number of variables is (`+1)t+ka+1. In case

(`+1)t+ka < n, this implies that the matrix of the system is
degenerate, and the solution space often is of small dimension,
typically 1.

We can relate the solutions of system (1) and (2) by the
following immediate theorem.

Theorem 2: Let (f1, . . . , f`, A) be a solution of (1) then
(A · f1, . . . , A · f`, A) is a solution to (2)

This theorem is a straightforward generalization of the
systems written for the Welch-Berlekamp decoding algorithm
[12], [13]. More precisely, we can prove the following theorem

Theorem 3: Let y ∈ Fnqm . Let

Ly,t(C) = {(ci, ei) | y = ci + ei, ci ∈ C, rkq(ei) ≤ t}.

If the solution space of (2) is 1-dimensional, then there
is at most one element in Ly,t(C). Moreover, any non zero
solution (A,N1, . . . , N`) of the system provides the same
solution (A,A\N1, . . . , A\N`) to (1), where A\N denotes
the left Euclidean division of N by A in Fqm [X; θ].

This gives a natural decoding algorithm consisting in enu-
merating the solution space of system (2). Let d be the
dimension of this solution space this gives a list decoding
algorithm recovering Ly,t with complexity

O
(
P (n,m)qm(d−1)

)
,

where P is a polynomial of degree at most 3. The exponent
is d − 1 and not d since we only need to enumerate the
1-dimensional vector spaces and not all the elements in the
solution space. Namely, we need to enumerate the solution
space of the linear system, and then perform the left Euclidean
division in Fqm [X; θ] corresponding to the linear algebra
operations.

Corollary 1: A necessary condition for the dimension of
solution space of the system (1) to be ≤ 1 is

(`+ 1)t+ ka < n.

Proof: Suppose that |Ly,t(C)| ≥ 2. Let (c1, e1) and
(c2, e2) be two distinct elements of Ly,t(C). Then they
respectively correspond to solutions (Ae1

, f1, . . . , f`) and
(Ae2

, h1, . . . , h`) of (1). Therefore (Ae1
, Ae1

·f1, . . . , Ae1
·f`)

and (Ae2 , Ae2 · h1, . . . , Ae2 · h`) are solutions of (2) . From
the hypothesis that the solution vector space is 1-dimensional,



and the fact that Ae1
and Ae2

are monic, this implies that
Ae1

= Ae2
, and that any solution has the form

α · (Ae1 , Ae1 · f1, . . . , Ae1 · f`), α ∈ Fqm

C. Discussion on the failure probability

In this section, we investigate the failure probability, that
is we consider that we are in the conditions of Corollary 1,
where (`+ 1)t+ ka < n and where the solution space of (2)
has dimension d ≥ 2. This corresponds to the case where the
decoding cannot be completed in polynomial-time.

As in [14], we define the operator λt which map a matrix
M = (mij) ∈ Fs×nqm to a block matrix:

λt : Fs×nqm → Fs(t+1)×n
qm

M 7→

 M
...

M [t]

 ,

where M [u] := (θu(mij)). Let (A,N1, . . . , N`) ∈ Fqm [X; θ]
be a solution to the linear system (2). We now identify
any polynomial in Fqm [X; θ] with the vector formed by its
coefficients. Then solving (2) is equivalent to solving the
following linear system

M ·


−A
N1

...
N`

 = 0,

where M = (λt(y)
>, λt+k1−1(g1)

>, · · · , λt+k`−1(g`)>).
The matrix M is n × ((` + 1)t + ka + 1) - matrix in

Fqm . Its kernel ker(M) is the solution space of (2). From
our hypotheses, the dimension of ker(M) is at least 1. A
necessary condition to be able to decode in polynomial-time
is that dimker(M) is exactly 1.

We need to compute the probability of non-unique decoding
P(|Ly,t(C)| > 1) = P(dimker(M) > 1). By the rank-nullity
theorem, dimker(M) + rkqm(M) = (` + 1)t + ka + 1. If
the dimension of the solution space is greater than 1, then
rkqm(M) < (`+ 1)t+ ka.

Let M be the set of all n× ((`+ 1)t+ ka + 1) - matrices
in Fqm of the form(

λt(g0)
>, λt+k1−1(g1)

>, · · · , λt+k`−1(g`)>
)
.

Let us also define A as the set of all n × (` + 1) - matrices
in Fqm of the form (

g>0 , g
>
1 , . . . , g

>
`

)
such that g0, g1, . . . , g` ∈ Fnqm and ∀j ∈ {1, . . . , `}, rk(gj) =
n. Given a set of integers (k0 = 1, k1, . . . , k`), we define the
following bijection

ϕ : A → M(
g>0 , . . . , g

>
`

)
7→

(
λt+k0−1(g0)

>, . . . , λt+k`−1(g`)
>)

Theorem 4: For A is chosen uniformly from A, and M =
ϕ(A) of rank r, then

PA [r < (`+ 1)t+ ka] ≤
(
n
r+1

)
4`

q2m
≤ 1

qm
.

Proof: Let

S := {h ∈ Fnqm |h has n− (r + 1) coordinates 0}

Since r < (` + 1)t + ka, there exists h ∈ S such that
hM = 0. Thus, for j ∈ {0, . . . , `},

λt+kj−1(gj)h
> = 0. (3)

This in particular implies that h ∈
⋂̀
j=1

G⊥t+kj−1(gj). There-

fore rkq(h) ≥ t+ kmax where kmax := max{kj}. Let

Ah = {A ∈ A | hϕ(A) = 0}.

We determine the probability that for a fixed h ∈ S with
rkq(h) ≥ t+kmax, there exists A ∈ Ah. This probability will

be
|Ah|
|A|

. Then,

PA [r < (`+ 1)t+ ka] ≤
1

qm − 1

∑
h∈S,rkq(h)≥t+kmax

|Ah|
|A|

.

(4)
The term 1/(qm−1) comes from the fact that for any vector

h ∈ S , and for any α ∈ Fqm \ {0}, we have Ah = Aαh.
For a given h ∈ S, we now look at the cardinality of Ah.
Now, let A ∈ Ah, this implies that λt+kj−1(gj)h

> = 0, for
j ∈ {0, . . . , `}. In particular, this implies

∀i ∈ {0, . . . , t+ kj − 1}, g
[i]
j h> = 0.

Therefore, by applying the inverse of θ a sufficient number
of times, we obtain

∀i ∈ {0, . . . , t+ kj − 1}, gj(h[−i])> = 0.

Now let hj := h[−(t+kj−1)], then

∀i ∈ {0, . . . , t+ kj − 1}, gj(h[i]
j )> = 0.

It implies that λt+kj−1(hj)g
>
j = 0. We need the following

lemma:
Lemma 1 (Lemma 3.51 [15]): Given g ∈ Fnqm then

rkqm(λk(g)) = min{k + 1, rkq(g)}.
Since rkq(h) ≥ t + kmax, Lemma 1 implies that for j ∈

{0, . . . , `}, rkqm(λt+kj−1(hj)) = t+ kj . Moreover,

dimker(λt+kj−1(hj)) + rkqm(λt+kj−1(hj)) = n.

Hence, dimker(λt+kj−1(hj)) = n−(t+kj). It implies that
the number of possible vectors gj is at most (qm)n−(t+kj).
Therefore,

|Ah| ≤
∏̀
j=0

(qm)n−(t+kj) = (qm)(`+1)(n−t)−ka−1.

To complete the proof, we also need the following lemma



Lemma 2 (Lemma 3.13 [14]): Given n ≤ m, the number
of matrices A ∈ Fm×nq such that rkq(A) = n is larger than
qmn

4
.

As a consequence, it is also the lower bound for the
number of vectors u ∈ Fnqm such that rkq(u) = n. Since
∀j ∈ {1, . . . , `}, rkq(gj) = n, from Lemma 2, the number

of possible vectors gj is
qmn

4
. Moreover g0 can be chosen

completely arbitrarily, thus adding a factor of qmn. Hence,
the number of possible matrices A ∈ A is greater than(
qmn

4

)`
qmn. Thus,

|A| ≥ (qm)n(`+1)

4`
and
|Ah|
|A|

≤ 4`

(qm)ka+(`+1)t+1
.

Finally we have

|S|
qm − 1

=

(
n
r+1

)
(qm − 1)r+1

qm − 1
≈
(

n

r + 1

)
qmr.

From the inequality (4), we obtain that

PA [r < (`+ 1)t+ ka] ≤
(
n
r+1

)
4`qmr

qm·(ka+(`+1)t+1)
.

Now since 1 ≤ ka + (`+ 1)t− r , we have

PA [r < (`+ 1)t+ ka] ≤
(
n
r+1

)
4`

q2m
≤ 1

qm
.

Now we can sum up and establish our main result
Theorem 5 (Main theorem): Let g1, . . . , g` be a randomly

chosen set of vectors of rank n in Fnqm . Let

C =
∑̀
j=1

Gkj (gj),

then C can be decoded up to t errors with a failure probability
upper-bounded by q−m with a polynomial-time complexity,
under the condition that (`+ 1)t+ ka < n.

D. Discussion on the dimension and minimum distance

1) Dimension of the code:
Let G be the generator matrix of the code C . Then

G> = ((λk1−1(g1))
>, . . . , (λk`−1(g`))

>).

The matrix G is n × ka matrix in Fqm . Similar to the
Theorem 4, for gj are chosen uniformly in Fqm such that
rk(gj) = n, then the probability such that rkqm(G) < ka is
smaller than q−m. Therefore, the dimension of the code C is
equal to ka with high probability.

2) The minimum distance:
We investigate the bound for the minimum distance dmin

of the code C. By Singleton bound [16], dmin ≤ n− k + 1.

E. Comparison with the Hamming metric case

If Gabidulin codes are evaluation codes for the skew polyno-
mial rings, and since their sum can be in some sense decoded,
it could be of interest to see if this can be adapted in some
way to Hamming metric and generalized Reed-Solomon codes.
Unfortunately, this is not the case. Consider the following
decoding problem:

y = c+ e,

where

• c =
∑̀
j=1

fj(bj), where the fj are polynomials of degree

kj − 1 and bj ∈ Fnqm are formed of distinct elements;
• e = (e1, . . . , en) ∈ Fnqm has Hamming weight t.
Let E be the support of size t of e, that is the set of non-zero

positions. Then, for any j ∈ {1, . . . , `}, there exists a unique
monic polynomial Aj(x) of degree t such that

∀i ∈ E , Aj(bji) = 0.

This raises the problem that the annihilator polynomial
depends on the chosen elements thus obtaining the following
systems

∀i = 1, . . . , `, Ai(bi)y =
∑̀
j=1

Ai(bi)fj(bj).

We would like to transform the product of elements into the
product of polynomials as in the case rank metric. Let us fix
b1. Then for all i = 2, . . . , `, there exists a polynomial Bi(x)
of degree ≤ n, such that bi = Bi(b1). Therefore, by setting
Fj(x) = fj(Bj)(x) we now obtain

A1(b1)y =
∑̀
j=1

(A1Fj)(b1).

This system is very similar to system (1). The problem when
we linearize is that the degree of Fj is with high probability
larger than n. Therefore, the number of unknowns is very
probably always larger than n.

IV. APPLICATIONS

In this section, we give examples where the previous theo-
rem has some applications. We do not claim to have obtained
extraordinary new results, but we emphasize that this new
point of view in decoding could have interesting cryptographic
applications.

A. Decoding of Interleaved code

As in [17], we consider the following model of channel: The
error positions are all taken in the same q-ary vector space E ,
of dimension t, i.e, every error vector e = (e1, . . . , en) of
length n such that for all i ∈ {1, . . . , n}, ei ∈ E . Let A be
the unique monic linearized polynomial of degree t such that
for all e ∈ E , A〈e〉 = 0. Suppose that through this channel,
one receive u messages y(1), . . . ,y(u), such that

∀i ∈ {1, . . . , u}, y(i) = ci + ei,



where ci ∈ C.

Thus, for all i ∈ {1, . . . , u}, y(i) =
∑̀
j=1

f
(i)
j 〈gj〉+ ei and

A〈y(i)〉 =
∑̀
j=1

(A · f (i)j )〈gj〉. (5)

As in the normal case of interleaving, this implies that

A〈y(i)〉 =
∑̀
j=1

N
(i)
j 〈gj〉 (6)

where, for i ∈ {1, . . . , u}, N (i)
j ∈ Fqm [X; θ] has degree ≤

t + kj − 1. The system (6) is linear in t(u` + 1) + uka + 1
unknowns (the coefficients of polynomials) and nu equations.
Therefore, we can hope to decode up to errors of rank

t ≤ b(u (n− ka)) / (u`+ 1)c .

B. On McEliece type rank-metric based cryptosystem

In GPT-type cryptosystem, we could expect to replace the
family of Gabidulin codes with the family of sum of Gabidulin
codes. However, by studying the effect of Overbeck’s distin-
guisher, we show that it cannot be replaced directly. More
recently [4], a new technique was introduced to scramble
Gabidulin codes. If the parameters are not carefully chosen,
there exists a simple distinguisher leading to an efficient key
recovery attack [18]. We investigate the effect of this attack
if the family of Gabidulin codes is replaced by a sum of
Gabidulin codes. We show that the attack cannot be easily
adapted.

1) Overbeck ’s distinguisher:

Let C =
∑̀
j=1

Gkj (gj) and Crand a random code of dimen-

sion k. The idea of Overbeck’s distinguisher is to use the
automorphism θ to distinguish C from a random code of same
dimension.

For the random code Crand, we expect that
dimFqm

(
Crand + C[1]rand

)
= min(n, 2k) with high probability,

since the usual hypothesis in that case is to suppose that
Crand and C[1]rand behave like two k-dimensional vector spaces
randomly and uniformly chosen.

By studying the dimension of C+ C[1], we can show that it
is at most k+ `. For ` < k < n/2, this implies a distinguisher
between this code and the random ones. This indicates that
substituting Gabidulin codes by sum of Gabidulin codes as
such is probably not a good idea.

2) Loidreau-like encryption scheme: The security of the
scheme is supported by two hypotheses
• The public code is indistinguishable from a random code
• Bounded distance decoding in rank metric is a crypto-

graphically difficult problem
The second point is beyond the scope of this paper. We are

interested in the first point. So let us recall the procedure for
generating a public-key/private key pair.

• The private key is C =
∑̀
j=1

Gkj (gj).

• The public-key is a randomly chosen generator matrix
of CP−1 where P ∈ Mn(V) where V is a random λ-
dimensional Fq- linear subspace of Fqm .

We observe the attack by distinguisher.
1) Distinguishing CP−1 from random codes: If we raise a

public-key G
[i]
pub to the i-th power of θ we have

G
[i]
pub = S[i]G[i](P−1)[i].

The matrix P has entries in V but the matrix P−1 has
no reason to belong to some strict subspace of Fqm . Thus
we avoid the invariant subspace attack [19], [20].

2) Distinguishing C⊥P> := C⊥pub from random codes. A
generator matrix of C⊥pub is Hpub = HP>, where H is
a parity-check matrix of C. The invariant subspace attack
requires computing dimFqm

(
C⊥pub + · · ·+ C⊥pub

[i]
)

but we
may not have enough information for C⊥.
Lemma 3: The dual code of Cpub is

C⊥pub =
⋂̀
j=1

Gn−kj (hj)P>,

for some hj ∈ Fnqm such that rk(hj) = n.
Proof: This lemma is straightforward from the fact that
Hpub = HP> and G⊥k (g) = G⊥n−k(h) for some h ∈ Fnqm
[2].
The attack of Alain Couveur and Coggia [18] needs to
compute dimFqm

(
C⊥pub + · · ·+ C⊥pub

[i]
)

corresponding to
the construction of C⊥, so it requires a representation for
the basis of C⊥pub. However, from the lemma, it is only
a n − k-dimensional subspace of Gn−kj (hj)P>. Thus,
this approach cannot directly lead to the recovery of the
private key.

C. Probabilistic polynomial-time decoding of random codes
A direct consequence of Theorem 3, is just a reformulation

of a result in [7] shows that it is possible to have a probabilistic
polynomial-time decoder for random codes up to a certain
dimension. Namely, a k-dimensional random code is the direct
sum of k 1-dimensional random codes.

Suppose that C is a random code with generator matrix

G =

 g1
...
gk

 ,

where (gj)
k
j=1 are linearly independent over Fqm . Then, C =

k∑
j=1

G1(gj) is a k-dimensional random code. Therefore, we

have the immediate following corollary of theorem 3
Corollary 2: Let C be a [n, k]r linear code over Fqm , then

there is a probabilistic polynomial time decoder for C up to
errors of rank

t ≤
⌊
n− k
k + 1

⌋
.

The sum of k 1-dimensional codes is a random code of
dimension k. With this approach, we recover the decoding of
a random rank-metric code [7].
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