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On the decoding of the sum of Gabidulin codes

We investigate the decoding of the sum of Gabidulin codes. We show that there exists a probabilistic polynomialtime decoder up to some bound. We then give some potential applications of constructing and decoding a sum of Gabidulin codes. This approach can lead to a new insight in designing rank-metric based cryptographic schemes.

I. INTRODUCTION

There are very few families of decodable codes in rank metric. Namely, the family of trivial codes [START_REF] Silva | Communication over finitefield matrix channels[END_REF], the family of Gabidulin codes [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF], and the family of LRPC codes [START_REF] Gaborit | Low rank parity check codes and their application to cryptography[END_REF]. Apart from that, there are codes derived from Gabidulin codes that are used in [START_REF] Loidreau | A new rank metric codes based encryption scheme[END_REF]. These codes are masked versions of Gabidulin codes, enabling to design public-key encryption schemes.

The problem that we investigate in this paper is the problem of decoding the sum of Gabidulin codes. Interestingly enough, this is a problem which appears when one analyzes cryptosystems based on the problem of reconstructing linearized polynomials, [START_REF] Faure | A new public-key cryptosystem based on the problem of reconstructing p-polynomials[END_REF], [START_REF] Lavauzelle | Ramesses, a rank metric encryption scheme with short keys[END_REF].

We show that the formulation of this problem can give some insight in decoding problems and give rise to further understanding on how to design public-key cryptosystems.

In the first section, we introduce notations and especially the notion of skew polynomial rings which are an elegant and simple manner to deal algebraically with rank metric and Gabidulin codes. Under this setting, Gabidulin codes are just the evaluation codes of bounded degree skew polynomials using the operator evaluation.

Then, we state the problem of decoding the sum of Gabidulin codes and show that there is a simple probabilistic polynomial-time decoder up to some bound. Under some assumptions, we show that the failure probability of this algorithm is exponentially small.

Finally, we present some potential applications. We show that by considering a random k-dimensional code as the sum of k 1-dimensional Gabidulin codes, we recover the result of [START_REF] Aragon | A new algorithm for solving the rank syndrome decoding problem[END_REF] for the decoding of random codes. We also show that investigating properties of the sum of Gabidulin codes could be of interest in designing and analyzing rank metric based public-key cryptography based on algebraic decoding.

II. PRELIMINARIES AND NOTATIONS

Let q be a power of a prime and let F q denote the finite field of order q. We consider the finite field extension of degree m: F q m /F q .

We use F m×n q to denote the set of all m × n matrices over F q and F n q m for the set of all row vectors of length n over

F q m .
Let θ be a generator of the Galois group. For instance, it could be the mapping x → x q , but everything we write stays true for any generator of the Galois group. Moreover, for simplicity, we denote by x [i] the value θ i (x).

In this setting, we define the skew polynomial ring or Ore ring [START_REF] Ore | On a special class of polynomials[END_REF] denoted by F q m [X; θ] by defining the usual operations

• Addition is classical addition; • X • a = θ(a) • X.
With these operations, this ring is left and right Euclidean. We denote by P X = i=0 p i X i any element P of F q m [X; θ] of degree to distinguish it from the usual polynomial ring.

There are several ways to define an evaluation map on this ring [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations[END_REF]. Here, we choose the so-called operator evaluation, meaning that for any α in some finite field where the action θ is meaningful (for instance any finite field with the same characteristic as F q ), we have

∀P ∈ F q m [X; θ], P α def = i=0 p i θ i (α).
If θ corresponds to the Frobenius automorphism, then this evaluation corresponds to the evaluation of so-called ring of linearized polynomials defined in [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations[END_REF]. We naturally extend the notion of evaluation to a vector : ∀y = (y 1 , . . . , y n ), P y = (P y 1 , . . . , P y n ).

Let M be a matrix over F q m , we denote by rk q m (M ) its rank over F q m . Rank metric is naturally related to the evaluation of skew polynomials. Namely, let y = (y 1 , . . . , y n ) ∈ F n q m , then by definition the rank of y is the dimension of the F q -vector space generated by its components, i.e. rk q (y) = dim( y 1 , . . . , y n q ). Theorem 1 ( [START_REF] Schmidt | Error and erasure correction of interleaved Reed-Solomon codes[END_REF]): Let y = (y 1 , . . . , y n ) ∈ F n q m , then if rk q (y) = t, there exist a unique A y ∈ F q m [X; θ], monic of degree t such that A y y = 0.

In this setting, Gabidulin codes are defined as evaluation codes of skew polynomials over linearly independent elements. Definition 1 ( [2], [START_REF] Delsarte | Bilinear forms over a finite field, with applications to coding theory[END_REF]): Let g = (g 1 , . . . , g n ) ∈ F n q m , formed with F q -linearly independent elements. The Generalized Gabidulin code of dimension k and of support g denoted by G k (g) is defined by

G k (g) = f g , f ∈ F q m [X; θ] deg(f ) ≤ k -1 .
In the following, and since we are in finite fields we will simply call them Gabidulin codes rather than Generalized Gabidulin codes.

III. DECODING OF THE SUM OF GABIDULIN CODES

Let {G kj (g j ) ⊂ F n q m } j=1 be a set of k j -dimensional Gabidulin codes with support vectors g j . We define by

C = j=1 G kj (g j )
the code formed with the sum of the Gabidulin codes and k, d min be the dimension and the minimum distance of the code C. To be convenient, we denote k a := j=1 k j .

Our goal is to study in which case we can decode it and up to which bound in the rank metric.

A. Problem

The decoding problem we address is the following: Let

y = c + e
where c ∈ C and e has rank t. This implies that • There exists skew polynomials

f j ∈ F q m [X; θ] with degree ≤ k j -1, such that c = j=1 f j g j .
• There exists a unique skew polynomial A e ∈ F q m [X; θ], monic and of degree t such that A e e = 0

From the F q -linearity of the evaluation of skew polynomials, we can rewrite the decoding problem as follows:

A e y = j=1 (A e • f j ) g j . (1) 
The unknowns of the system are the coefficients of the skew polynomials. Hence, we obtain a non homogenous bivariate system with t + k a + 1 unknowns and n equations.

A way to decode would then be to homogeneize the system and solve it by using Gröbner bases, but this is not the direction we investigate. As in [START_REF] Loidreau | A Welch-Berlekamp like algorithm for decoding Gabidulin codes[END_REF], [START_REF] Augot | Generalized gabidulin codes over fields of any characteristic[END_REF], we prefer to linearize the system and understand when the solution space is 1dimensional to relate it directly to the decoding of C.

B. Linearizing the problem

We now consider the following system:

A y = j=1 N j g j . (2) 
where A has degree t and for j ∈ {1, . . . , }, deg(N

j ) ≤ t + k j -1.
The number of equations is equal to n and the number of variables can be counted as follows:

• t + 1 variables to characterize the skew polynomial A;

• t + k a to characterize the polynomials N j .

Hence, the number of variables is ( + 1)t + k a + 1. In case ( + 1)t + k a < n, this implies that the matrix of the system is degenerate, and the solution space often is of small dimension, typically 1.

We can relate the solutions of system ( 1) and ( 2) by the following immediate theorem.

Theorem 2: Let (f 1 , . . . , f , A) be a solution of ( 1) then

(A • f 1 , . . . , A • f , A) is a solution to (2)
This theorem is a straightforward generalization of the systems written for the Welch-Berlekamp decoding algorithm [START_REF] Loidreau | A Welch-Berlekamp like algorithm for decoding Gabidulin codes[END_REF], [START_REF] Augot | Generalized gabidulin codes over fields of any characteristic[END_REF]. More precisely, we can prove the following theorem Theorem 3:

Let y ∈ F n q m . Let L y,t (C) = {(c i , e i ) | y = c i + e i , c i ∈ C, rk q (e i ) ≤ t}.
If the solution space of ( 2) is 1-dimensional, then there is at most one element in L y,t (C). Moreover, any non zero solution (A, N 1 , . . . , N ) of the system provides the same solution (A, A\N 1 , . . . , A\N ) to [START_REF] Silva | Communication over finitefield matrix channels[END_REF], where A\N denotes the left Euclidean division of N by A in F q m [X; θ].

This gives a natural decoding algorithm consisting in enumerating the solution space of system (2). Let d be the dimension of this solution space this gives a list decoding algorithm recovering L y,t with complexity

O P (n, m)q m(d-1) ,
where P is a polynomial of degree at most 3. The exponent is d -1 and not d since we only need to enumerate the 1-dimensional vector spaces and not all the elements in the solution space. Namely, we need to enumerate the solution space of the linear system, and then perform the left Euclidean division in F q m [X; θ] corresponding to the linear algebra operations.

Corollary 1: A necessary condition for the dimension of solution space of the system (1) to be ≤ 1 is

( + 1)t + k a < n. Proof: Suppose that |L y,t (C)| ≥ 2. Let (c 1 , e 1
) and (c 2 , e 2 ) be two distinct elements of L y,t (C). Then they respectively correspond to solutions (A e1 , f 1 , . . . , f ) and [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] . From the hypothesis that the solution vector space is 1-dimensional, and the fact that A e1 and A e2 are monic, this implies that A e1 = A e2 , and that any solution has the form

(A e2 , h 1 , . . . , h ) of (1). Therefore (A e1 , A e1 •f 1 , . . . , A e1 •f ) and (A e2 , A e2 • h 1 , . . . , A e2 • h ) are solutions of
α • (A e1 , A e1 • f 1 , . . . , A e1 • f ), α ∈ F q m
C. Discussion on the failure probability In this section, we investigate the failure probability, that is we consider that we are in the conditions of Corollary 1, where ( + 1)t + k a < n and where the solution space of (2) has dimension d ≥ 2. This corresponds to the case where the decoding cannot be completed in polynomial-time.

As in [START_REF] Overbeck | Public key cryptography based on coding theory[END_REF], we define the operator λ t which map a matrix M = (m ij ) ∈ F s×n q m to a block matrix:

λ t : F s×n q m → F s(t+1)×n q m M →    M . . . M [t]    , where M [u] := (θ u (m ij )). Let (A, N 1 , . . . , N ) ∈ F q m [X; θ]
be a solution to the linear system [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]. We now identify any polynomial in F q m [X; θ] with the vector formed by its coefficients. Then solving (2) is equivalent to solving the following linear system

M •      -A N 1 . . . N      = 0,
where M = (λ t (y) , λ t+k1-1 (g 1 ) , • • • , λ t+k -1 (g ) ).

The matrix M is n × (( + 1)t + k a + 1) -matrix in F q m . Its kernel ker(M ) is the solution space of (2). From our hypotheses, the dimension of ker(M ) is at least 1. A necessary condition to be able to decode in polynomial-time is that dim ker(M ) is exactly 1.

We need to compute the probability of non-unique decoding P(|L y,t (C)| > 1) = P(dim ker(M ) > 1). By the rank-nullity theorem, dim ker(M ) + rk q m (M ) = ( + 1)t + k a + 1. If the dimension of the solution space is greater than 1, then rk q m (M ) < ( + 1)t + k a .

Let M be the set of all n × (( + 1)t + k a + 1) -matrices in F q m of the form

λ t (g 0 ) , λ t+k1-1 (g 1 ) , • • • , λ t+k -1 (g ) .
Let us also define A as the set of all n × ( + 1) -matrices in F q m of the form g 0 , g 1 , . . . , g such that g 0 , g 1 , . . . , g ∈ F n q m and ∀j ∈ {1, . . . , }, rk(g j ) = n. Given a set of integers (k 0 = 1, k 1 , . . . , k ), we define the following bijection

ϕ : A → M g 0 , . . . , g → λ t+k0-1 (g 0 ) , . . . , λ t+k -1 (g )
Theorem 4: For A is chosen uniformly from A, and M = ϕ(A) of rank r, then

P A [r < ( + 1)t + k a ] ≤ n r+1 4 q 2m ≤ 1 q m . Proof: Let S := {h ∈ F n
q m |h has n -(r + 1) coordinates 0} Since r < ( + 1)t + k a , there exists h ∈ S such that hM = 0. Thus, for j ∈ {0, . . . , }, λ t+kj -1 (g j )h = 0.

(

) 3 
This in particular implies that h ∈ j=1 G ⊥ t+kj -1 (g j ). Therefore rk q (h) ≥ t + k max where k max := max{k j }. Let

A h = {A ∈ A | hϕ(A) = 0}.
We determine the probability that for a fixed h ∈ S with rk q (h) ≥ t + k max , there exists A ∈ A h . This probability will be |A h | |A| . Then,

P A [r < ( + 1)t + k a ] ≤ 1 q m -1 h∈S,rkq(h)≥t+kmax |A h | |A| . (4) 
The term 1/(q m -1) comes from the fact that for any vector h ∈ S, and for any α ∈ F q m \ {0}, we have A h = A αh . For a given h ∈ S, we now look at the cardinality of A h . Now, let A ∈ A h , this implies that λ t+kj -1 (g j )h = 0, for j ∈ {0, . . . , }. In particular, this implies ∀i ∈ {0, . . . , t + k j -1}, g

[i]

j h = 0. Therefore, by applying the inverse of θ a sufficient number of times, we obtain ∀i ∈ {0, . . . , t + k j -1}, g j (h [-i] ) = 0.

Now let h

j := h [-(t+kj -1)] , then ∀i ∈ {0, . . . , t + k j -1}, g j (h [i] j ) = 0.
It implies that λ t+kj -1 (h j )g j = 0. We need the following lemma:

Lemma 1 (Lemma 3.51 [START_REF] Lidl | ser. Encyclopedia of Mathematics and its Applications[END_REF]): Given g ∈ F n q m then rk q m (λ k (g)) = min{k + 1, rk q (g)}.

Since rk q (h) ≥ t + k max , Lemma 1 implies that for j ∈ {0, . . . , }, rk q m (λ t+kj -1 (h j )) = t + k j . Moreover, dim ker(λ t+kj -1 (h j )) + rk q m (λ t+kj -1 (h j )) = n.

Hence, dim ker(λ t+kj -1 (h j )) = n-(t+k j ). It implies that the number of possible vectors g j is at most (q m ) n-(t+kj ) . Therefore,

|A h | ≤ j=0 (q m ) n-(t+kj ) = (q m ) ( +1)(n-t)-ka-1 .
To complete the proof, we also need the following lemma Lemma 2 (Lemma 3.13 [START_REF] Overbeck | Public key cryptography based on coding theory[END_REF]): Given n ≤ m, the number of matrices A ∈ F m×n q such that rk q (A) = n is larger than q mn 4 . As a consequence, it is also the lower bound for the number of vectors u ∈ F n q m such that rk q (u) = n. Since ∀j ∈ {1, . . . , }, rk q (g j ) = n, from Lemma 2, the number of possible vectors g j is q mn 4 . Moreover g 0 can be chosen completely arbitrarily, thus adding a factor of q mn . Hence, the number of possible matrices A ∈ A is greater than q mn 4 q mn . Thus,

|A| ≥ (q m ) n( +1) 4 and |A h | |A| ≤ 4 (q m ) ka+( +1)t+1 .

Finally we have

|S| q m -1 = n r+1 (q m -1) r+1 q m -1 ≈ n r + 1 q mr .
From the inequality (4), we obtain that

P A [r < ( + 1)t + k a ] ≤ n r+1 4 q mr q m•(ka+( +1)t+1) .
Now since 1 ≤ k a + ( + 1)t -r , we have

P A [r < ( + 1)t + k a ] ≤ n r+1 4 q 2m ≤ 1 q m .
Now we can sum up and establish our main result Theorem 5 (Main theorem): Let g 1 , . . . , g be a randomly chosen set of vectors of rank n in F n q m . Let

C = j=1 G kj (g j ),
then C can be decoded up to t errors with a failure probability upper-bounded by q -m with a polynomial-time complexity, under the condition that ( + 1)t + k a < n.

D. Discussion on the dimension and minimum distance 1) Dimension of the code:

Let G be the generator matrix of the code C . Then G = ((λ k1-1 (g 1 )) , . . . , (λ k -1 (g )) ).

The matrix G is n × k a matrix in F q m . Similar to the Theorem 4, for g j are chosen uniformly in F q m such that rk(g j ) = n, then the probability such that rk q m (G) < k a is smaller than q -m . Therefore, the dimension of the code C is equal to k a with high probability.

2) The minimum distance:

We investigate the bound for the minimum distance d min of the code C. By Singleton bound [START_REF] Singleton | Maximum distance q-nary codes[END_REF], d min ≤ n -k + 1.

E. Comparison with the Hamming metric case

If Gabidulin codes are evaluation codes for the skew polynomial rings, and since their sum can be in some sense decoded, it could be of interest to see if this can be adapted in some way to Hamming metric and generalized Reed-Solomon codes. Unfortunately, this is not the case. Consider the following decoding problem:

y = c + e,
where

• c = j=1 f j (b j )
, where the f j are polynomials of degree k j -1 and b j ∈ F n q m are formed of distinct elements; • e = (e 1 , . . . , e n ) ∈ F n q m has Hamming weight t. Let E be the support of size t of e, that is the set of non-zero positions. Then, for any j ∈ {1, . . . , }, there exists a unique monic polynomial A j (x) of degree t such that

∀i ∈ E, A j (b ji ) = 0.
This raises the problem that the annihilator polynomial depends on the chosen elements thus obtaining the following systems

∀i = 1, . . . , , A i (b i )y = j=1 A i (b i )f j (b j ).
We would like to transform the product of elements into the product of polynomials as in the case rank metric. Let us fix b 1 . Then for all i = 2, . . . , , there exists a polynomial B i (x) of degree ≤ n, such that b i = B i (b 1 ). Therefore, by setting F j (x) = f j (B j )(x) we now obtain

A 1 (b 1 )y = j=1 (A 1 F j )(b 1 ).
This system is very similar to system (1). The problem when we linearize is that the degree of F j is with high probability larger than n. Therefore, the number of unknowns is very probably always larger than n.

IV. APPLICATIONS

In this section, we give examples where the previous theorem has some applications. We do not claim to have obtained extraordinary new results, but we emphasize that this new point of view in decoding could have interesting cryptographic applications.

A. Decoding of Interleaved code

As in [START_REF] Renner | Interleaving loidreau's rank-metric cryptosystem[END_REF], we consider the following model of channel: The error positions are all taken in the same q-ary vector space E, of dimension t, i.e, every error vector e = (e 1 , . . . , e n ) of length n such that for all i ∈ {1, . . . , n}, e i ∈ E. Let A be the unique monic linearized polynomial of degree t such that for all e ∈ E, A e = 0. Suppose that through this channel, one receive u messages y (1) , . . . , y (u) , such that ∀i ∈ {1, . . . , u}, y (i) = c i + e i , where c i ∈ C.

Thus, for all i ∈ {1, . . . , u},

y (i) = j=1 f (i) j g j + e i and A y (i) = j=1 (A • f (i) j ) g j . (5) 
As in the normal case of interleaving, this implies that

A y (i) = j=1 N (i) j g j (6) 
where, for i ∈ {1, . . . , u}, N

∈ F q m [X; θ] has degree ≤ t + k j -1. The system ( 6) is linear in t(u + 1) + uk a + 1 unknowns (the coefficients of polynomials) and nu equations. Therefore, we can hope to decode up to errors of rank t ≤ (u (n -k a )) / (u + 1) .

B. On McEliece type rank-metric based cryptosystem

In GPT-type cryptosystem, we could expect to replace the family of Gabidulin codes with the family of sum of Gabidulin codes. However, by studying the effect of Overbeck's distinguisher, we show that it cannot be replaced directly. More recently [START_REF] Loidreau | A new rank metric codes based encryption scheme[END_REF], a new technique was introduced to scramble Gabidulin codes. If the parameters are not carefully chosen, there exists a simple distinguisher leading to an efficient key recovery attack [START_REF] Coggia | On the security of a Loidreau's rank metric code based encryption scheme[END_REF]. We investigate the effect of this attack if the family of Gabidulin codes is replaced by a sum of Gabidulin codes. We show that the attack cannot be easily adapted.

1) Overbeck 's distinguisher:

Let C = j=1
G kj (g j ) and C rand a random code of dimension k. The idea of Overbeck's distinguisher is to use the automorphism θ to distinguish C from a random code of same dimension.

For the random code C rand , we expect that dim F q m C rand + C [START_REF] Silva | Communication over finitefield matrix channels[END_REF] rand = min(n, 2k) with high probability, since the usual hypothesis in that case is to suppose that C rand and C [START_REF] Silva | Communication over finitefield matrix channels[END_REF] rand behave like two k-dimensional vector spaces randomly and uniformly chosen.

By studying the dimension of C + C [1] , we can show that it is at most k + . For < k < n/2, this implies a distinguisher between this code and the random ones. This indicates that substituting Gabidulin codes by sum of Gabidulin codes as such is probably not a good idea.

2) Loidreau-like encryption scheme: The security of the scheme is supported by two hypotheses

• The public code is indistinguishable from a random code • Bounded distance decoding in rank metric is a cryptographically difficult problem The second point is beyond the scope of this paper. We are interested in the first point. So let us recall the procedure for generating a public-key/private key pair.

• The private key is C = j=1 G kj (g j ).

• The public-key is a randomly chosen generator matrix of CP -1 where P ∈ M n (V) where V is a random λdimensional F q -linear subspace of F q m . We observe the attack by distinguisher. 1) Distinguishing CP -1 from random codes: If we raise a public-key G

[i]

pub to the i-th power of θ we have

G [i] pub = S [i] G [i] (P -1 ) [i]
. The matrix P has entries in V but the matrix P -1 has no reason to belong to some strict subspace of F q m . Thus we avoid the invariant subspace attack [START_REF] Kshevetskiy | Security of gpt-like public-key cryptosystems based on linear rank codes[END_REF], [START_REF] Otmani | Improved cryptanalysis of rank metric schemes based on gabidulin codes[END_REF]. 

C ⊥ pub = j=1
G n-kj (h j )P , for some h j ∈ F n q m such that rk(h j ) = n. Proof: This lemma is straightforward from the fact that

H pub = HP and G ⊥ k (g) = G ⊥ n-k (h) for some h ∈ F n q m [2].
The attack of Alain Couveur and Coggia [START_REF] Coggia | On the security of a Loidreau's rank metric code based encryption scheme[END_REF] needs to compute dim

F q m C ⊥ pub + • • • + C ⊥ pub [i]
corresponding to the construction of C ⊥ , so it requires a representation for the basis of C ⊥ pub . However, from the lemma, it is only a n -k-dimensional subspace of G n-kj (h j )P . Thus, this approach cannot directly lead to the recovery of the private key.

C. Probabilistic polynomial-time decoding of random codes

A direct consequence of Theorem 3, is just a reformulation of a result in [START_REF] Aragon | A new algorithm for solving the rank syndrome decoding problem[END_REF] shows that it is possible to have a probabilistic polynomial-time decoder for random codes up to a certain dimension. Namely, a k-dimensional random code is the direct sum of k 1-dimensional random codes.

Suppose that C is a random code with generator matrix

G =    g 1 . . . g k    ,
where (g j ) k j=1 are linearly independent over F q m . Then, C = k j=1 G 1 (g j ) is a k-dimensional random code. Therefore, we have the immediate following corollary of theorem 3 Corollary 2: Let C be a [n, k] r linear code over F q m , then there is a probabilistic polynomial time decoder for C up to errors of rank t ≤ n -k k + 1 .

The sum of k 1-dimensional codes is a random code of dimension k. With this approach, we recover the decoding of a random rank-metric code [START_REF] Aragon | A new algorithm for solving the rank syndrome decoding problem[END_REF].

  2) Distinguishing C ⊥ P := C ⊥ pub from random codes. A generator matrix of C ⊥ pub is H pub = HP , where H is a parity-check matrix of C. The invariant subspace attack requires computing dim F q m C ⊥ pub + • • • + C ⊥ pub [i] but we may not have enough information for C ⊥ . Lemma 3: The dual code of C pub is