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Abstract: Obtaining the total wavefunction evolution of interacting quantum systems provides access
to important properties, such as entanglement, shedding light on fundamental aspects, e.g., quantum
energetics and thermodynamics, and guiding towards possible application in the fields of quantum
computation and communication. We consider a two-level atom (qubit) coupled to the continuum of
travelling modes of a field confined in a one-dimensional chiral waveguide. Originally, we treated
the light-matter ensemble as a closed, isolated system. We solve its dynamics using a collision model
where individual temporal modes of the field locally interact with the qubit in a sequential fashion.
This approach allows us to obtain the total wavefunction of the qubit-field system, at any time, when
the field starts in a coherent or a single-photon state. Our method is general and can be applied to
other initial field states.

Keywords: collision model; quantum non-Markovian dynamics; input–output formalism; quantum
optics; open quantum systems; repeated interaction model; quantum thermodynamics; waveguide
quantum electrodynamics; quantum entanglement

1. Introduction

Since the establishment of quantum theory, quantum optics has described a plethora
of phenomena of light-matter interactions coupling atomic degrees of freedom to few field
modes, e.g., in cavity quantum electrodynamics (QED) [1] and more recently in circuit
QED [2]. The characterization of the quantum state of the light-matter system, e.g., light-
matter entanglement, is key to the experimental realization of information processes [3],
quantum batteries [4], and to the fundamental research in quantum thermodynamics [5]. In
past decades, an emerging endeavor arose, aiming to characterize the quantum properties
of matter coupled to propagating field modes in waveguides, a field known as waveguide
QED [6], that soon became central in the research on quantum computation [7], commu-
nication [8], and quantum thermodynamics [9–13]. In such systems, matter couples to
an infinite continuum number of modes, rendering more difficult the characterization of
light-matter entanglement from a full solution of the closed-system dynamics.

The paradigmatic setup of waveguide QED is a two-level atom (qubit) coupled to
the field propagating in a one-dimensional waveguide, the so-called one-dimensional (1D)
atom. This system can be experimentally implemented in several state-of-the-art platforms
of integrated photonics [14], superconducting circuits [15,16], and atomic physics [17,18].
A number of approaches to obtain the solution of this system have been considered and here
we mention but a few important ones. Notably, when the field and the qubit shares only
one quantum of excitation, the Wigner–Weisskopf theory provides the total wavefunction
solution [19,20]. For a few-photon or a coherent initial state, the closed-system solution has
been solved in the Heisenberg picture, providing distribution functions of the output fields
at any time [21], furthermore, the long-time limit of the field state has been derived from a
scattering approach [22–25]. In addition, the joint state of the qubit and the output field
can be obtained from a master equation coming from an effective model [26], capturing the
entanglement between the atom and some degrees of freedom of the field. Our goal is to
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obtain the joint qubit-field state at any time employing the collision model (CM) framework
that is naturally manifested within the 1D atom model as we now discuss it.

Collision models (CMs) have been widely employed to study the dynamics of open
quantum systems [27]. They comprise a powerful and intuitive microscopic framework
to derive Markovian and non-Markovian master equations [28,29]. The key underlying
concept of CMs is to model the interaction between a system and an environment (bath) as
a sequence of brief two-body “collisions” between the system and incoming bath units. The
system state is computed at the end of each collision, leading to a stroboscopic evolution
with discrete time. When the interaction time of each collision tends to zero and the
number of bath units tends to infinite, one reaches the continuous-time limit and the master
equations are obtained. In order to get a meaningful master equation from the CMs, it
is usually assumed that the coupling constants between the system and the bath units
diverge, a condition that may seem difficult to fulfil in nature. However, considering the 1D
atom in the interaction picture with respect to the field Hamiltonian, and suitably defining
discrete temporal mode operators, one can show that the CM framework is naturally
manifested within the model [30,31], even containing the required diverging coupling.
This result demonstrates waveguide QED as a suitable platform to physically realize the
CM framework.

In the CM framework of the 1D atom, the electromagnetic field becomes the bath,
regarded as an ensemble of discrete temporal modes that take the role of the bath units.
The temporal modes, prepared in the input state, freely propagate in the waveguide until
they reach the qubit position. At the qubit position, the temporal modes couple to the qubit
one by one leading to a state change of both qubit and field. After the interaction, they
keep propagating freely defining the output state, see Figure 1. As is usually the case for
CMs, the master equation for the qubit can be obtained by tracing out the temporal modes
after each collision. When the temporal modes of the field are initially uncorrelated, this
leads to the well-known Optical Bloch Equation [32]. Moreover, from this CM view of the
qubit-field interaction, one is also naturally led to an input–output view of the evolution,
that is now built in the interaction picture instead of the usual input–output theory defined
in the Heisenberg picture [33].

We apply the CM framework to two typical cases of quantum optics: a coherent
input field and a single-photon wavepacket, highlighting a classical and a non-classical
statistics, respectively. Considering an effective unitary operator for each collision between
the qubit and the temporal modes, we are able to take the continuous-time limit of the joint
qubit-field wavefunction at any time and hence obtain the solution of the dynamics.

The paper is organized as follows. In Section 2, we recall the collision model of the 1D
atom firstly presented in Ref. [30]. In Sections 3 and 4, we use this framework to derive
the qubit-field wavefunctions for a coherent input field and for a single-photon input field,
respectively.
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Figure 1. Collision model of the 1D atom. The field, propagating from left to right with constant
velocity v, is decomposed into discrete temporal modes created by the bosonic operators a†

n, see
Equation (4). Time and space are considered to be discrete, i.e., t → tn = n∆t and x → xn = nv∆t.
(a) Snapshot of the system at time tn, beginning of the nth collision. The temporal mode created by
the operator a†

n is arriving at the qubit position (x = 0) where it is going to interact, then it defines
the input operator, i.e ain(tn) = an/

√
∆t. The temporal mode created by the operator a†

n−1 that just
interacted with the qubit defines the output operator aout(tn) = an−1/

√
∆t. (b) Snapshot of the

system at time tn+1, beginning of the (n + 1)th collision. Now, the mode number n + 1 defines the
input, and the mode number n defines the output. The state of the qubit changed with respect to the
time tn due to the past collision with the mode number n.

2. Collision Model of the 1D Atom

We consider a qubit coupled with a multimode electromagnetic field in a one-dimensional
chiral waveguide. The bare qubit Hamiltonian is given by Hq = h̄ωqσ+σ−, with σ− = |g〉〈e|,
σ+ = |e〉〈g|, and σz = |e〉〈e| − |g〉〈g|, where |e〉 (resp. |g〉) denotes the qubit excited (resp.
ground) state. The bare field Hamiltonian is given by H f = ∑∞

k=0 h̄ωkb†
k bk, where b†

k
(resp. bk) creates (annihilates) one photon of discrete frequency ωk = k(v2π/L), where
we assumed that the field propagates from left to right with velocity v on a segment of
length L, with periodic boundary condition. The operator bk satisfies the bosonic com-
mutation relation [bk, b†

k′ ] = δk,k′ . Furthermore, we assume that the field-qubit coupling is
weak enough that only field frequencies near to ωq are important (quasi-monochromatic
approximation) [34], and that the coupling is uniform in frequency (first Markov approx-
imation) [33]. In this case, the interaction Hamiltonian in the interaction picture with
respect to Hq + H f reads V(t) = ih̄g ∑k ei(ω0−ωk)tσ+bk + h.c., where h.c. stands for hermi-
tian conjugate. Throughout the paper the operators in the interaction picture have their
time dependence written explicitly.

In order to show how the CM framework arises naturally from the above Hamiltonian,
we first rewrite the time-evolution operator as

U(0, t) = lim
N→∞

N−1

∏
n=0

U(tn+1, tn), (1)
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where tn = n∆t, ∆t = t/N, and

U(tn, tn+1) ≡ Un = exp
{
− i

h̄
∆tV(tn)

}
. (2)

In order to derive the last equality we have used the Magnus expansion [35] of
the unitary evolution operator U(tn, tn+1) at small ∆t, where the terms featuring the
commutator [V(t′), V(t′′)] can be neglected as shown in [31]. The coupling Hamiltonian
V(tn) can be also rewritten as

V(tn) = ih̄
√

γ

∆t

(
σ+(tn)an − σ−(tn)a†

n

)
, (3)

where γ = g2L/v and the temporal mode annihilation operator an has been defined as

an =

√
v∆t

L ∑
k

e−iωktn bk. (4)

From the commutation relation for bk, it follows that
[
an, a†

n
]
= δn,n′ . Equations (1)–(3)

imply that the evolution of the qubit-field state can be seen as a series of infinitesimal
evolutions, i.e., collisions, that couple the qubit with only a single temporal mode an at a
time. For further reference, at time tn the state can be written as ρ(tn) = Un−1ρ(tn−1)U†

n−1.
The CM framework suggests intuitive definitions of input and output operators in

the interaction picture. We define aout(tn) ≡ an−1/
√

∆t, meaning that the output mode
is the last temporal mode that has interacted with the qubit; we also define ain(tn) ≡
an/
√

∆t, meaning that the input mode is the next temporal mode that is going to interact
with the qubit, see Figure 1. Using these definitions, we can find a relation among the
average values of input and output operators. We need to take ∆t� γ−1 so that we can
approximate Un in Equation (2) to the second order in V(tn), i.e., Un ≈ 1− i∆tV(tn)−
V2(tn)

2 ∆t2, corresponding to the first order in ∆t. Now, using Equation (3), we get the
following expressions (at the first order in ∆t):

〈aout(tn)〉 = Tr

[
U†

n−1an−1Un−1√
∆t

ρ(tn−1)

]
=
〈an−1〉√

∆t
−√γ〈σ−(tn−1)〉; (5)

and

〈ain(tn)〉 =
〈an〉√

∆t
. (6)

Putting together Equations (5) and (6), we get the discrete input–output relation

〈aout(tn)〉 = 〈ain(tn−1)〉 −
√

γ〈σ−(tn−1)〉. (7)

Let us notice that Equation (7) is the discrete-time analogue of the input–output
relation which can be derived from the standard theory [33] in the Heisenberg picture, i.e.,
〈bout(t)〉 = 〈bin(t)〉 −

√
γ〈σ−(t)〉.

3. Closed-System Solution for the Coherent Input Field

We now provide the qubit-field state solution when the field starts in a monochro-
matic coherent state |βp〉 of frequency ωp = ωq − δ. In order to comply with the quasi-
monochromatic approximation, the detuning δ must satisfy |δ| � ωq. This state is uncorre-
lated in the temporal domain and, therefore, under the interaction in Equation (3) gives
rise to a Markovian qubit’s dynamics described by a Lindblad master equation [30].

The field’s state can be written as a product in the temporal mode basis:

|βp〉 ≡ D(βp)|0〉 =
⊗

n
D(αn)|0n〉 ≡

⊗
n
|αn〉, (8)
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where |0〉 ≡ ⊗
n |0n〉 is the field’s vacuum, D(βp) ≡ e(βpb†

p−β∗pbp) is the displacement
operator in the frequency domain, D(αn) ≡ e(αna†

n−α∗nan) is the one in the time domain, and
αn =

√
v∆t/Lβpe−iωptn . To derive Equation (8) we plug the inverse of Equation (4) in the

displacement operator D(βp), obtaining D(βp) =
⊗

nD(αn), see also Ref. [30].
Provided that the qubit’s initial state is also a pure state |φ0〉, the system’s wavefunction

at time tN is given by:

|Ψ(tN)〉 =
N−1

∏
n=0

Un|βp, φ0〉 = D(βp)D†(βp)
N−1

∏
n=0

UnD(βp)|0, φ0〉 = D(βp)
⊗

l

D†(αl)

(
N−1

∏
n=0

Un

)⊗
m
D(αm)|0, φ0〉

=D(βp)
N−1

∏
n=0
D†(αn)UnD(αn)|0, φ0〉 ≡ D(βp)

N−1

∏
n=0

Ũn|0, φ0〉. (9)

In the last equality we denoted by Ũn the collisional unitary operator in the displaced
frame, which is defined as

Ũn ≡ D†(αn)UnD(αn) = e−iδ∆tσ+σ−+ iΩ∆t
2 σy− i∆t

h̄ V(tn), (10)

with Ω = 2
√

γβp. In the above expression, we also assumed that the frame rotates with the
driving frequency, i.e., σ−(tn) = e−iωptn σ−.

Due to the shape of the interaction, Equation (3), at each time tn at most one excitation
of the field is absorbed or emitted. This implies that, when the field starts from the vacuum,
its state at any time contains a maximum of one excitation for each temporal mode. It is clear
that this condition simplifies the solution of the dynamics, for this reason, in the following,
we will compute the wavefunction in the displaced frame, i.e., |Ψ̃(tN)〉 = ∏N−1

n=0 Ũn|0, φ0〉.
Let us notice that in order to come back to the the lab frame we just need to apply the
operator D(βp) to |Ψ̃(tN)〉, see the last equality of Equation (9).

Once restricted the Fock basis of each temporal mode to {|0n〉, |1n〉}, with |1n〉 ≡ a†
n|0n〉,

the state |Ψ̃(tN)〉 has the general shape

|Ψ̃(tN)〉 = ∑
ε

[
f (0)ε,φ0

(tN) +
N−1

∑
n1=0

f (1)ε,φ0
(tN ; tn1)a†

n1
+

N−1

∑
n1=0

N−1

∑
n2=n1

f (2)ε,φ0
(tN ; tn1 , tn2)a†

n1
a†

n2
+ . . .

]
|0, ε〉, (11)

where ε ∈ {e, g} denotes the qubit’s state, and the dots correspond to the components with
m > 2 photons emitted reading: ∑N−1

n1=0 . . . ∑N−1
nm=nm−1 f (m)

ε,φ0
(tN ; tn1 , . . . , tnm)a†

n1
. . . a†

nm |0, ε〉.
In order to find the total wavefunction we need to find the explicit expression of the
coefficients f (m)

ε,φ0
(tN ; tn1 , . . . , tnm).

Let us start with f (0)ε,φ0
(tN), which is given by

f (0)ε,φ0
(tN) = 〈ε, 0|Ψ̃(tN)〉 = 〈ε|

[
N−1

∏
n=0
〈0n|Ũn|0n〉

]
|φ0〉, (12)

where we used the fact that the operator Ũn only acts on the state of the qubit and of the
nth temporal mode. In order to evaluate the qubit’s operator 〈0n|Ũn|0n〉, we expand the
unitary evolution operator in Equation (10) up to the second order in V(tn), corresponding
to the first order in ∆t, and we

〈0n|Ũn|0n〉 = 1− iδ∆tσ+σ− +
iΩ∆t

2
σy −

γ∆t
2

σ+σ− ≈ e−γ∆t/4−iδ∆t/2e
−i∆t

2 ((δ−iγ/2)σz−Ωσy), (13)
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where the last equality becomes exact in the limit of ∆t� γ−1. Substituting the expression
above in Equation (12), we find

f (0)ε,φ0
(tN) = e−γtN /4−iδtN /2〈ε|e

−itN
2 [(δ−iγ/2)σz−Ωσy]|φ0〉, (14)

which is straightforward to compute for any |φ0〉 and |ε〉. Performing this calculation for
the four relevant terms, we obtain

f (0)g,g (t) = e−γt/4−iδt/2[cos(Ω′t/2) + sin(Ω′t/2)(γ + i2δ)/(2Ω′)
]
, (15)

f (0)g,e (t) = e−γt/4−iδt/2 sin(Ω′t/2)Ω/Ω′, (16)

f (0)e,g (t) = −e−γt/4−iδt/2 sin(Ω′t/2)Ω/Ω′, and (17)

f (0)e,e (t) = e−γt/4−iδt/2[cos(Ω′t/2)− sin(Ω′t/2)(γ + i2δ)/(2Ω′)
]
, (18)

where Ω′ =
√
(Ω)2 + (δ− iγ/2)2.

Now we can look at the component with one photon emitted:

f (1)ε,φ0
(tN ; tn1) = 〈ε, 0|an1 |Ψ̃(tN)〉 = 〈ε|

[
N−1

∏
n=n1+1

〈0n|Ũn|0n〉
]
〈0n1 |an1Ũn1 |0n1〉

[
n1−1

∏
n=0
〈0n|Ũn|0n〉

]
|φ0〉. (19)

Here we just need to evaluate the qubit’s operator 〈0n|anŨn|0n〉, which gives (at the
first order in ∆t)

〈0n|anŨn|0n〉 = −
√

γ∆tσ−(tn) = −
√

γ∆tσ−e−iωptn . (20)

Plugging the expression above in Equation (19) we get

f (1)ε,φ0
(tN ; tn1) = −

√
γ∆t f (0)ε,g (tN − tn1)e

−iωptn1 f (0)e,φ0
(tn1). (21)

Repeating the same strategy we can obtain f (2)ε,φ0(tN ; tn1 , tn2):

f (2)ε,φ0
(tN ; tn1 , tn2) = 〈ε, 0|an1 an2 |Ψ̃(tN)〉 =〈ε|

[
N−1

∏
n=n2+1

〈0n|Ũn|0n〉
]
〈0n2 |an2Ũn2 |0n2〉

[
n2−1

∏
n=n1+1

〈0n|Ũn|0n〉
]

× 〈0n1 |an1Ũn1 |0n1〉
[

n1−1

∏
n=0
〈0n|Ũn|0n〉

]
|φ0〉. (22)

Evaluating all the terms, we find

f (2)ε,φ0
(tN ; tn1 , tn2) = γ∆t f (0)ε,g (tN − tn2)e

−iωptn2 f (0)e,g (tn2 − tn1)e
−iωptn1 f (0)e,φ0

(tn1). (23)

From these and the other terms not shown, we find the explicit expression of the
functions f (m)

ε,φ0
(tN ; tn1 , . . . , tnm) for any number m ≥ 2 of photons emitted as

f (m)
ε,φ0

(tN ; tn1 , . . . , tnm) = (−
√

γ∆t)m f (0)ε,g (tN − tnm)e
−iωptnm

[
m

∏
i=2

f (0)e,g (tni − tni−1)e
−iωptni−1

]
f (0)e,φ0

(tn1). (24)

The continuous-time version of Equation (11) can be found taking the limits tN → t,
a†

n/
√

∆t→ a†(t), and ∑N−1
n=0 ∆t→

∫ t
0 dt′.

When the input field is intense, namely γ� Ω, and resonant with the qubit, the ex-
pressions of the coefficients simplify since we can take Ω′ ≈ Ω and γ/Ω ≈ 0. Furthermore,
we can neglect the terms containing multiple photon emissions, whose probability goes to
zero. In this case, we find the simple expression
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|Ψ̃(t)〉 ≈e−γt/4
[

cos
(

Ωt
2

)
−√γ

∫ t

0
dt′ cos

(
Ω(t− t′)

2

)
sin
(

Ωt′

2

)
e−iωqt′ a†(t′)

]
|0, g〉

+ e−γt/4
[

sin
(

Ωt
2

)
−√γ

∫ t

0
dt′ sin

(
Ω(t− t′)

2

)
sin
(

Ωt′

2

)
e−iωqt′ a†(t′)

]
|0, e〉, (25)

where we set the qubit’s initial state to the ground state. We note that in the long-time
limit, t→ ∞, the field state obtained from our solution is consistent with the one derived
in Ref. [25] using a generalization of scattering theory.

Finally, our method provides the well-known Wigner–Weisskopf solution [19] when
the initial field’s state is |0〉 and the initial qubit’s state is |e〉. In this case, due to the
conservation of the total number of excitations, we expect a solution of the form

|Ψ(tn)〉 = h(0)e,e (tN)|0, e〉+
N−1

∑
n1=0

h(1)g,e (tN ; tn1)a†
n1
|0, g〉, (26)

with:

h(0)e,e (tN) =〈e, 0|Ψ(tN)〉 = 〈e|
[

N−1

∏
n=0
〈0n|Un|0n〉

]
|e〉 = 〈e|e−γtN σ+σ−/2|e〉 = e−γtN /2, (27)

h(1)g,e (tN ; tn1) =〈g, 0|anΨ(tN)〉 = 〈g|
[

N−1

∏
n=n1+1

〈0n|Un|0n〉
]
〈0n1 |an1Un1 |0n1〉

[
n1−1

∏
n=0
〈0n|Un|0n〉

]
|e〉

=−
√

γ∆te−iωqtn1 h(0)e,e (tn1) = −
√

γ∆te−(γ+iωq)tn1 . (28)

Plugging Equation (27) in Equation (26) and taking the continuous-time limit we get

|Ψ(t)〉 = e−γt/2|0, e〉 −√γ
∫ t

0
dt′e−γt′/2−iωqt′ a†(t′)|0, g〉. (29)

4. Closed-System Solution for the Single-Photon Input Field

Here we provide the solution when the field starts in a single-photon wavepacket of
central frequency ωp = ωq − δ with δ� ωq:

|1p〉 =
∞

∑
n=0

√
∆tξ(tn)a†

n|0〉, (30)

with ∑∞
n=0 ∆t|ξ(tn)|2 = 1. The field in Equation (30) is already correlated in the temporal

domain before even interacting with the qubit, i.e., it can not be written as a product
state of the individual temporal modes: the resulting qubit’s reduced dynamics is non-
Markovian [36,37]. In order to solve the full dynamics, we use a more general strategy
than the one used in the previous section. We replace Un, given by Equation (2), with an
effective unitary mapMn having an equivalent action in the limit of ∆t� γ−1. Applying
this map repeatedly to the initial state leads to recursive relations for the unnormalized
field states |ψe(tN)〉 and |ψg(tN)〉 contained in the joint qubit-field wavefunction:

|Ψ(tN)〉 = UN−1 . . . U0|Ψ(t0)〉 ≈ MN−1 . . .M0|Ψ(t0)〉 ≡ |ψe(tN), e〉+ |ψg(tN), g〉. (31)

This effective map reads

Mn|g, ψg(tn)〉 = e
−γ∆t

2 |g, ψg(tn)〉+
√

1− e−γ∆teiωqtn an|e, ψg(tn)〉, (32)

Mn|e, ψe(tn)〉 = e
−γ∆t

2 |e, ψe(tn)〉 −
√

1− e−γ∆te−iωqtn a†
n|g, ψe(tn)〉. (33)
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The effective mapMn gives the following recursive relations:

|ψg(tn)〉 = e−γ∆t/2|ψg(tn−1)〉 −
√

1− e−γ∆te−iωqtn a†
n|ψe(tn−1)〉, and (34)

|ψe(tn)〉 = e−γ∆t/2|ψe(tn−1)〉+
√

1− e−γ∆teiωqtn an|ψg(tn−1)〉. (35)

When the initial state of the qubit is the ground state, i.e., |Ψ(t0)〉 = |g, 1p〉, the
expressions above give rise to a closed form:

|ψg(tN)〉 =
N−1

∑
n=0

[
√

∆tξ(tn)− γ∆te−
γtn

2 −iωqtn
n

∑
m=0

(
e

γtm
2 +iω0tm

√
∆tξ(tm)

)]
a†

n|0〉

+
∞

∑
n=N

√
∆tξ(tn)a†

n|0〉, (36)

|ψe(tN)〉 =
√

γ∆te−
γtN

2

N−1

∑
n=0

e
γtn

2 +iωqtn
√

∆tξ(tn)|0〉. (37)

Substituting the equations above in Equation (31) and taking the continuous-time
limit, we get

|Ψ(t)〉 = √γξ̃(t)|0, e〉+
(∫ ∞

t
dt′ξ(t′) +

∫ t

0
dt′
[
ξ(t′)− γξ̃(t′)e−iωqt′

])
a†(t′)|0, g〉, (38)

with ξ̃(t) = e−γt/2
∫ t

0 dt′
[

e
γt′
2 +iωqt′ξ(t′)

]
. Let us notice that tracing Equation (38) over the

field, we obtain the qubit’s state derived in Refs. [36,37], while taking its long-time limit we
obtain the final field’s state derived in Ref. [22].

Finally, we point out that the effective map in Equation (32) can, in principle, be used to
derive the full system’s wavefunction with any kind of input field. According on the input
state, getting a closed form for the total wavefunction may be more or less complicated. In
the spontaneous emission case, for example, it is straightforward to verify that the effective
map provides the expected solution given by Equation (29).

5. Conclusions

We derived the analytical solution of the 1D atom’s closed-dynamics using the CM
framework. We analyzed two paradigmatic cases corresponding to different input fields,
i.e., a coherent and a single-photon field. These fields give rise, respectively, to a Markovian
and a non-Markovian qubit’s reduced dynamics. We showed that, besides being useful
to derive master equations, CMs are also useful to derive qubit-field wavefunctions. The
method presented is general and can be applied to other kinds of input fields or to different
shapes of the qubit-field interaction allowing for a CM treatment. Framing the CM into
a closed-system approach can shed new light on the thermodynamical analysis. Indeed,
the pure state of the full system provides access to the correlations between the qubit and
the bath, and among different time units of the bath, possibly revealing the microscopic
mechanism underlying the total entropy production [38].
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