Emmanuel Schermann 
  
Hassan Omran 
  
Sylvain Durand 
  
Renaud Kiefer 
  
  
  
  
Stochastic Trajectory Optimization for Autonomous Soaring of UAV

Keywords: Thermal soaring, speed to fly, stochastic optimization

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stochastic Trajectory Optimization for Autonomous Soaring of UAV

Emmanuel Schermann * , * * Hassan Omran * , * * * Sylvain Durand * , * * Renaud Kiefer * , * *

INTRODUCTION

Large birds and glider pilots commonly use motions of air to extract energy from the atmosphere, enabling them to fly with minimum energy consumption. This process of using motions of the air mass to gain altitude is usually called "soaring". Soaring can be classified into i) dynamic soaring, where the source of the energy is a wind gradient Lawrance andSukkarieh (2009, 2011); [START_REF] Bird | Closing the Loop in Dynamic Soaring[END_REF], and ii) static soaring -the focus of the present studywhere rising air is the source of the lift. Buoyant plumes of warm or moist air called updrafts or thermals are generally used in static soaring. This rising air usually comes from near the ground where the thermal energy of the sun transfers to the air by conduction. The heated and/or moisten air then becomes lighter and rises. The greater the temperature difference between the warm air and the surrounding air, the higher the rate of ascent.

Rising air is a very complex and turbulent phenomenon FAA (2013). If the air close to the ground rises, there will be no gas to take its place. Thus when the air is homogeneously heated, the air does not rise. Nothing can happen until an instability ultimately causes the release of warm air (like non-homogeneous ground surface, nonhomogeneous heating, air turbulence, etc). Realistic dynamic convective environment simulation has been developed based on Rayleigh-Bénard convection model (1916).

The speed distribution of a thermal tends to be stronger in the core and reduces progressively outwards. Through a deeper analysis of the behavior of the air mass, several factors can contribute to increasing the difficulty of modeling such a phenomenon. Ascending currents are very hard to predict since they are the result of instability. They have a limited life span and drift with the wind. Moreover, they are transparent and there is currently no reliable way to acquire information on air mass movements, except by flying through them. Therefore, it seems extremely difficult to give a reliable model of this uncertain and nondeterministic parameter.

Many soaring strategies have been developed over the years by gliding pilots to improve the energy harvesting, allowing their plane to stay aloft for several hours without landing. On the other hand, autonomous UAVs (Unmanned Autonomous Vehicles) have become a subject of keen interest in different fields (such as surveillance, atmospheric measurements, fire monitoring, etc). Their main drawback is endurance because of the limited embedded energy resources. Thanks to the increasing computational power of on-board computers, autonomous soaring algorithms have been developed in recent years, allowing considerable improvements in endurance, by using natural energy resources of the atmosphere [START_REF] Lee | Predictive control for soaring of unpowered autonomous UAVs[END_REF]; [START_REF] Kagabo | Trajectory determination for energy efficient autonomous soaring[END_REF]; [START_REF] Andersson | Thermal Centering Control for Autonomous Soaring; Stability Analysis and Flight Test Results[END_REF].

The trade-off with thermal soaring is that UAV has to stop its cruising progression while gaining altitude (the time increases without changing the covered distance).

The present study is devoted to an optimization approach for thermal soaring, which is stochastic by nature because sources of ascending energy appear spontaneously and randomly. In a seminal work, [START_REF] Cochrane | MacCready theory with uncertain lift and limited altitude[END_REF] proposed a mathematical solution to the problem of static soaring, minimizing the time of flight for a given distance to go given a statistical model of the thermals. Here, the dual problem of maximizing the distance covered in a limited time is addressed. In order to solve the stochastic optimization problem despite the thermal modeling difficulties, the problem is separated into two sub-problems: i) decide whether to exploit a thermal when the glider encounters one (depending on its strength) or to move forward, and ii) find the optimal speed of flight between the different thermals (note that their position and strength are not a priori known). The uncertain parameter is then how probable it is to find a thermal with a given strength in the future.

The proposal could be used to provide a stochastic optimal trajectory, for instance in soaring competitions. Typically, low-scaled radio-controlled gliders operated by ground pilots contest in the so-called GPS-triangle competition.

The aim is to fly in a circuit of 2 kilometers, defined by 3 checkpoints, and do as many rounds as possible in 30 minutes without using any engine (see http:// gps-triangle.net/ for the rules and further details). The gliders have to efficiently acquire energy using static soaring to win the competition. Pilots could be interested in confronting their performance with an optimal procedure. Note that the proposed algorithm will not have any a priori information on the field (except a probabilistic model) compared to other pilots who can gather information by looking at various indicators (like other glider behaviors, birds, ground texture, ground exposure to sunlight, etc).

The rest of the document is organized as follows. The fly mechanics context and original Cochrane's theory are introduced in section 2. The proposed method is developed in section 3, with simulation results in section 4. Section 5 finally concludes the paper and gives some perspectives.

FLY MECHANICS

Sink rate and glide ratio

An aircraft (heavier than air) requires a series of aerodynamic forces to be able to fly without falling. During the flight, a glider can be considered as being acted by three forces. The force generated by the air is decomposed as the drag force, which is caused by the dissipating of the aircraft energy through air friction, and the lift which is by convention the rest of the aerodynamic forces. Thus, drag acts in the same direction as the air mass motion in the craft reference, while lift acts in the plane orthogonal to drag. Weight acts vertically at the center of mass.

As a result to the aerodynamic forces, and more particularly to the lift-to-drag ratio (one of the major goals in aircraft design is to maximize this ratio), when a glider moves forward in a steady flight (constant speed in still air), it will also sink. The relationship between the forward and the downward traveled distances, or equivalently speeds, is represented using the so-called polar curve (see Fig. 1), which can be found experimentally for a specific glider by measuring the sink at different speeds in calm conditions (FAA ( 2013)). The sink rate is how much altitude the glider loses over time and the glide ratio is how much distance it can travel over time. Two points are particularly interesting for soaring: the minimum sink speed where the plane maximizes the endurance and the best glide speed where the plane maximizes the forward-to-downward traveled distance, as depicted in Fig. 1. Actually, a model of the glider is not needed since the trajectory optimization will be based on the polar curve.

Fig. 1. Typical polar curve for a glider.

Speed to fly theory and MacCready setting

Speed to fly theory FAA (2013) gives the plane the ability to adjust its velocity in an optimal manner, taking into account the real-time measurement of the air motion and the expected updraft velocity of the next thermal that the plane will encounter. The aim is to maximize the average cross-country speed by optimizing the airspeed in both rising and sinking air. This theory is a well-known tool used by sailplane pilots. Speed to fly depends on

(1) The rate of climb expected to achieve the next thermal or updraft (2) The rate of ascent or descent of the air mass through which the glider is flying (3) The glider's inherent sink ratio as a function of glide ratio

The calculation of the optimal speed to fly to obtain the best glide ratio is the horizontal speed of the glider V that solves

V dS(V ) dV -S(V ) = V c = W + S min (1) 
where V c is the average climb rate in the thermal (in m.s -1 ), W the thermal strength, S min the minimum sink the plane is capable of and S(V ) the sink rate of the glider. In other words, the optimal speed V depends on the average climb rate and should be continuously adjusted to obtain the best glide ratio. The mathematical development to obtain (1) is not detailed here for the sake of space constraints. This theory is very useful for the present study, because it gives the possibility to fly at the optimal speed given a sequence of checkpoints and thermals to follow, under the assumptions of knowing strength and position of the next thermals and uniform updraft characteristics over altitude. However, these assumptions are far from being realistic since i) neither the strength nor the shape are uniform with respect to altitude and ii) the position of thermals can only be approximately known (e.g. drift and lifespan) if a mapping is performed before the experiment.

The volatile and elusive character of thermals make any deterministic analysis of little use and, therefore, probabilistic studies should be more promising.

With experience, sailplane pilots can have an idea of the typical strength of a thermal and its particular at-mospheric conditions, but it is not guaranteed that the best thermals will be encountered while gliding. Therefore, they make use the speed to fly theory by using an expected thermal strength, i.e. V c in (1), which is called the MacCready setting. If the strength is higher than this setting, the plane should climb the thermal, otherwise the plane should continue cruising. When the plane is at high altitude, it is more likely that it will meet a strong thermal before reaching the ground, and the probability decreases as altitude decreases. The MacCready setting is eventually reduced when losing altitude, that might lead to a conservative flight, but it lowers the threshold for acceptable thermals in order to be able to gain altitude and avoid premature landing.

Cochrane statistical approach and extension

The MacCready setting ( 1) is an intuitive and qualitative approach, which has been confirmed by a quantitative statistical analysis in Cochrane (1999). Cochrane's strategy depends on a dynamic programming algorithm, in which the distance to fly (in the context of a standard US crosscountry contest) is divided into one-mile steps. The lifts the plane could encounter are based on a probabilistic characterization of thermals. For each step and any altitude, the optimal speed to fly is computed to minimize the expected time to complete the race, taking into account all possible thermals. The model is solved numerically from the last mile where the state of the plane is known (boundary condition is zero altitude) backward to the current position of the plane. At each step, the optimal setting is determined with respect to altitude for the given thermal condition.

US soaring contest (which Cochrane's approach was designed for) and GPS-triangle contest (application for the present proposal) are different in their objectives: 1) the aim in US soaring contest is to minimize the time required to cover a given distance, whereas 2) in GPS-triangle contest it is to maximize the covered distance in a given time.

While it could seem interesting to use the information harvested in the previous rounds, in reality thermals move and can dissipate within minutes (the glider takes approximately 2 minutes to make a turn in the GPS-triangle competition, without stopping at any thermal). It is then assumed here that no information is known concerning the location of thermals on the triangle trajectory. Therefore, to simplify the problem, the triangle can be unwrapped and considered as a straight line. This does not affect the result, considering that the turning time at a checkpoint is negligible compared to the whole flight.

TRAJECTORY STOCHASTIC OPTIMIZATION FOR AUTONOMOUS SOARING OF UAV

In the present study, the speed to fly as well as the choice to climb a thermal or cruise is decided by solving a stochastic optimization problem, using a dynamic programming resolution similar to Cochrane's work. This requires to find a set of state variables that contain all the information the autopilot of the UAV needs to compute the optimal MacCready setting (1). Cochrane used altitude and distance left as the state, but in the present case, the altitude h and the remaining time t are enough since the thermal probability model and all other parameters are not changing during the flight (the current traveled distance x has no impact on the optimal strategy). Therefore, the objective is to maximize the expectation of X, which is the total traveled distance in a given time interval max (E(X)) where E(•) denotes the expectation operator that applies over the random variation of future thermals.

Probability function and airlift/sink

It is supposed that for all possible thermal strength W the probability of finding at least one thermal of this strength over a given distance d is known. These probabilities can be found based on pilot experiences, or by making some statistics flying over the field before the experiment. Based on this, it is then possible to find a function f ∆x (W ) which corresponds to the probability of finding at least one thermal of strength W and no thermal of higher strength over a distance ∆x. Because the state is discretized over time, the traveled distance during one time step while flying at speed

v is ∆x = v∆t. So f ∆x (W ) is a density function with W f ∆x (W ) = 1.
It is assumed not to have horizontal wind, but it can be interesting to take into account the vertical air motion during cruising. Between the time instants t and t + ∆t, if the plane meets and crosses a thermal of core strength W , it will take some benefit from it. Otherwise, the air mass will only sink to compensate from the other thermals (mass conservation). The model of the airlift/sink during cruising is given by l(W ) = a + W b where a is the constant air sink and b is a coefficient with value between 0 and 1 (0 means no benefit from the thermal). The lift l(W ) is abbreviated as l in the sequel.

Value function

The value function Φ(•) denotes the total distance X the plane will achieve after a certain interval time, given the current time t and altitude h, but also the lift l that the plane will meet during the next time step. At a given state (t, h), if the already traveled distance x increases the value function will also increase and, therefore, it also varies with respect to x. The value function is finally defined as Φ(h, x, t, l) = max E(X|h, x, t, l) where the vertical bar | denotes a conditional expectation, i.e. this is the best E(X) the plane can do knowing h, x, t and l. It is the best guess over the performance the plane is able to achieve, knowing information on the plane position and the air it is flying into. In order to find the value function whatever the next lift l is, it is possible to find Φ(h, x, t) by writing

Φ(h, x, t) = max E(X|h, x, t) = E(Φ(h, x, t, l)|h, x, t) = W Φ(h, x, t, l(W ))f ∆x (W ) (2) 
Note that the function value is never known in the following, even at the boundary conditions, but in fact its knowledge is not necessary to solve the problem.

Optimal speed to fly

Suppose that the choice of cruising has been made. Because Φ(h, x, t) needs to always be maximized from one step to another, the optimal speed to fly between the time t and t + ∆t can be found by picking the speed that maximizes the value function at the end of the next time step. The optimal speed v * is thus the one that gives

max v Φ( h, x, t)
where h, x, t are the values of the variables h, x, t at the next time step. For a plane flying at speed v, they are defined by

h = h + (l -S(v))∆t x = x + v∆t t = t + ∆t (3) 
where S(v) is the sink rate at speed v, i.e. the polar. By setting the derivative of the value function Φ( h, x, t) with respect to v to zero (to be optimal) gives

Φh d h dv + Φ x dx dv + Φt d t dv = 0
where

Φ x := ∂Φ( h,x, t) ∂ x , Φh := ∂Φ( h,x, t) ∂ h
and Φt := ∂Φ( h,x, t) ∂ t

for ease of reading. Then, substituting (3) yields

Φ x Φh = dS(v) dv := S (v) (4) 
Note that S (v) is the derivative of S(v) with respect to v.

If Φx

Φh is known, ( 4) is easy to solve because dS (v) dv is an affine function of v. Its solution is the optimal speed to fly v * that maximizes the value function for this time step. In order to find v * at all other steps, it is necessary to find a relation between Φ x/Φh := ∂Φ( h,x, t) 

∂ x / ∂Φ(
where " " can be replaced by h, x or t. Substituting (2), then (5) turns out

∂Φ(h, x, t) ∂ = E ∂Φ(h, x, t, l) ∂ |h, x, t = W ∂Φ(h, x, t, l) ∂ f ∆x (W ) (6) 
By combining (4), ( 5) and ( 6), then any optimal speed can be recursively computed in all possible states (h, t) if the boundary conditions are known.

Thermals and climb-or-cruise decision

So far, only the cruising case has been explored. The possibility of using thermals has then to be also included in the value function. When the plane stays in a thermal, its altitude increases, but the time spent also increases because the plane does not improve the traveled distance.

For a given plane position (h, x), a loss of time ∆t > 0 costs ∂Φ(h,x,t,l) ∂t ∆t < 0 in expected total distance. However, a gain of altitude ∆h > 0 improves the value by a distance ∂Φ(h,x,t,l) ∂h ∆h > 0. Therefore, climbing a thermal can be interesting only if the gain in expected distance due to ∆h is greater than the loss due to ∆t, that is if ∂Φ(h,x,t,l) ∂h ∆h > -∂Φ (h,x,t,l) ∂t ∆t. This implies

dh dt ≈ ∆h ∆t > - ∂Φ(h,x,t,l) ∂t ∂Φ(h,x,t,l) ∂h ≥ 0
where dh dt represents the vertical speed of the plane in the thermal. It can be defined by dh dt = W + S min as in (1), where S min is the minimum sink the plane is capable of. The criterion for the climb-or-cruise decision λ is

W + S min > - ∂Φ(h,x,t,l) ∂t ∂Φ(h,x,t,l) ∂h = - ∂Φ( h,x, t) ∂ t ∂Φ( h,x, t) ∂ h = - Φt Φh := λ (7)
If the decision of climbing is taken, the plane will stay in the thermal until the criterion ( 7) is not respected anymore. Moreover, since the thermal strength is known for the thermal, the knowledge of the problem during all the climb is the same. Then, the value function and its derivatives are equal to those of the point where the plane leaves the thermal.

Boundary conditions

The values of the derivatives Φt and Φh used in the climbor-cruise criterion (7) as well as Φ x used to find the optimal speed (4) are recursively defined and thus have to be initialized. The only states where the value function can be expressed explicitly is at the boundaries, namely when the plane has landed (h = 0) or when the time is over (t = T , with T the maximal flight time). Therefore, it is necessary to start the computing of the optimal strategy from these ending conditions, and iterate back in time to the starting time (t = 0).

First, when the plane is on the ground (h = 0), the traveled distance x will not evolve and thus the value function is equal to Φ(0, x, t) = x:

• If the plane was at a distance x + dx, the value function would be Φ(0, x + dx, t) = x + dx. It means that the derivative with respect to x is equal to Φ(0,x+dx,t)-Φ(0,x,t) dx = dΦ(0,x,t) dx = ∂Φ(0,x,t) ∂x = 1. • If the plane was at an altitude 0 + dh, the value function would be Φ(dh, x, t) = x+L/D max dh, where L/D max is the best glide ratio the plane is capable of (the plane fly as much conservatively as possible).

Thus ∂Φ(0,x,t) ∂h = L/D max . Note that the derivative at altitude h = 0 is not continuous, and the one that is needed is the one for h ≥ 0.

• If the plane was at a time t + dt, the value function would be Φ(0, x, t + dt) = x because time has no importance when the plane has landed: ∂Φ(0,x,t) ∂t = 0.

Second, in the case the plane is still aloft (t = T ), the value function is equal to Φ(h, x, T ) = x:

• If the plane was at a distance x + dx, the value function would be Φ(h, x + dx, T ) = x + dx and ∂Φ(h,x,T ) ∂x = 1 as before. • If the plane was at an altitude h + dh, the value function would be Φ(h + dh, x, T ) = x because the time is over. Therefore ∂Φ(h,x,T ) ∂h = 0.

But since the optimal speed (4) is calculated using Φx Φh , the optimal speed would be infinity for all altitude which is not a good place to start (during one time step back all values of the derivatives will correspond to a point with h = ∞). Since the plane has to be on the ground at the end, it is possible to find the derivatives at the time t = T -∆t , because at this place the plane has full knowledge of the future conditions. In this latter case (t = T -∆t), the value function is

Φ(h, x, T -∆t) = x + v(h, t)∆t = x + v(h, t)(T -t) (8)
If no lift is present at the last step, then the optimal speed v(h, t) can be found by solving

S(v(h, t)) = -h ∆t = -h T -t (9) 
because -h ∆t is the vertical speed the plane should have to be at the ground at time T . Finally, the partial derivatives are (see Appendix 6.2)

∂Φ(h, x, T -∆t) ∂t = S(v(h, t) S (v(h, t)) -v(h, t) ∂Φ(h, x, T -∆t) ∂h = -1 S (v(h, t)) ∂Φ(h, x, T -∆t) ∂x = 1 (10) 
It can be noticed that derivatives at the boundaries are not dependent on x, as initially assumed, so the problem can be solved using only the two state variables h and t.

Iterative resolution

Remind the present optimization problem is solved recursively from time t = T back to time t = 0. First, consider the plane is at the ground at time t = T (initialisation). All three derivatives Φ x, Φh and Φt are known from time T -∆t for all possible h, see (10). Then, for all possible thermal strength W , the recursion process is:

(1) The optimal speed at time t is found for all altitudes by solving (4).

(2) The derivative values ∂Φ(h, ,t,l) ∂ are reported at their corresponding altitudes based on (5) and (3). Because the plane increases its altitude while flying (when iterating from the end to the start), the values of the derivatives will not be known at altitude h = 0. The boundary values of the derivatives when h = 0 are used instead (see above).

(3) For all altitudes, the climb-or-cruise decision is taken based on (7). If the decision is to climb, the derivative values at the current position are replaced by those of the point where the thermal will be left (criterion not respected, or maximal altitude met). The leaving point can be few altitude steps and time steps away in the future, where the derivatives have already been calculated. (4) The expected values ∂Φ(h, ,t) ∂ are found using (6).

Then, go to the next time step t new = t old -∆t, and return to the first step of the recursion process. Do this until reaching the time t = 0.

SIMULATION RESULTS

The optimal procedure has been implemented in Matlab. The derivatives ∂Φ(h, ,t) ∂h and ∂Φ(h, ,t) ∂t are stored in order to be usable for fly tests in simulation or in real conditions (the derivative with respect to time is always equal to 1). Since the MacCready setting λ(h, t) := -Φt Φh allows to find the optimal speed from (4) and the climb-or-cruise criterion from ( 7), the analysis of the result can only focus on this value. Moreover, MacCready setting is easy to interpret since it represents how aggressive or conservative the plane has to fly. The only parameters that need to be defined in order to solve the optimization problem are the polar, the couple (a, b) to define the inter thermal lift/sink, the maximal and minimal altitudes where thermaling is allowed (the plane needs to be visible by the pilot, and altitude needs to be saved to land properly) and the thermal distribution. Note that the computing time when using 60 different thermal strengths is only 4 times the one when using only 6 values. Moreover, the computing time with steps that gives relatively smooth curves is less than 1s with a standard laptop and thus could be implemented on an in-board computer.

For the plane's flight simulation results, the thermal map is randomly constructed based on the thermal repartition. The plane flies exactly in the same conditions as in the optimization, but from the beginning (t = 0) to the end. Simulation tests over 10000 flights show that the results from the optimal strategy seem consistent and rather promising. The average speed is more than 11m.s -1 including stops for climbs and premature landing cases, and only 7% of premature landings occurred. A typical flight is given in Fig. 2(a). The thermal strengths denote the climbing speed in the thermal (W + S min ). The plane always leaves the thermal at an altitude where λ = W + S min . In a second example, see Fig. 2(b), the maximal possible climbing speed in the optimization was 3m.s -1 , and the last thermal the plane met was of this strength. Therefore, it is not interesting to stop for another thermal until the end. This can be observed by the fact that the MacCreading setting stays constant and does not decrease at the end. Furthermore, for all tests, the plane always land less than 2s before or after t = T , if no land-outs occurred. This is due to the discretization imperfections. It can also be noticed that the MacCreading setting tends to always be higher close to the end because the probability of using all the possible time increases with the time if the plane did not land before.

Note that these results cannot be directly compared to Cochrane's approach because the problem is different: maximize the total distance covered in a limited time vs. minimize the time of flight for a given distance.

CONCLUSIONS AND FUTURE WORK

This project investigated the possibility of using vertical movements of the air mass as an energy source for an autonomous UAV glider. The thematic being wide, this study was considered in the more restricted framework of the GPS-triangle competition for manual gliders, thus defining clear objectives and constraints. Research was carried out in order to efficiently choose the sources of energy to be used, as well as the speed of flight to adopt. The problem has been simplified by different assumptions, in order to allow the optimal resolution of this optimization problem taking into account the uncertain nature of the occurrence of these sources. The procedure for finding the optimal answer, based on the concept of dynamic programming, was implemented under Matlab and tested on simulated glider flights.

Next step will be the implementation of the method in a low-scale glider for real tests. Different improvement areas will also be studied, like i) taking the centering time into account when the plane meets a thermal, ii) consider the wind that directly affects thermals and therefore the optimal strategy, or iii) build the thermal probability repartition P d (W ) in real time (instead of assuming it is known in advance).

APPENDICES

How to find (5)

If the decision to cruise is made, the knowledge on the problem is the same at the point (h, x, t) knowing the lift l, as at point ( h, x, t), and thus it is possible to write the value function iteration equation Φ(h, x, t, l) = max E(X|h, x, t, l) = max v Φ( h, x, t)

If the plane flies at the optimal speed v * to the next time step in the lift l, previous equation becomes Φ(h, x, t, l) = Φ( h, x, t) = Φ(h + (l -S(v The extension for the derivative with respect to x and t is trivial, that finally yields the general relation (5). 

.

  

  (a) Trajectory with respect to the traveled distance of a typical flight simulation. A lap approximately corresponds to 2km. . (b) Other flight trajectory.

Fig. 2 .

 2 Fig. 2. Illustrative examples of flight tests in simulation.

6. 2

 2 How to find(10) On the first hand, the partial derivative of (8) with respect to time is∂Φ(h, x, T -∆t) ∂t = ∂v(h, t) ∂t (T -t) -v(h, t)Furthermore, the time derivative of S gives ∂S(v(h, t(h, t))(T -t) 2 Combining the latter relations yields the first relation in (10).On the other hand, the partial derivative with respect to altitude is∂Φ(h, x, T -∆t) ∂h = ∂v(h, t) ∂h (T -t)and the derivative of S with respect to h gives ∂S(, yields the second relation in (10).

  Thus the previous relation can be written as ∂Φ(h, x, t, l) ∂h = Φh 1 -Φ x Φh

									∂v ∂h	∆t + Φ x ∂v ∂h	∆t = Φh
	Its derivative with respect to h gives
	∂Φ(h, x, t, l) ∂h	=		∂Φ( h, x, t) ∂h	= Φh	∂ ∂h h	+ Φ x ∂ ∂h x	+ Φt	∂ ∂h t
	Using (3) and substituting (4) gives
	∂ ∂h h	= 1 -= 1 -	∂S(v) ∂v Φ x Φh ∂v ∂h	∂v ∂h ∆t	∆t = 1 -S (v)	∂v ∂h	∆t
	∂ ∂h x ∂ t ∂h	= = 0 ∂v ∂h	∆t			

* ))∆t, x + ∆t v * , t + ∆t)