Modélisation atomistique de l'ancrage des dislocations dans les aciers Fe-C

Arnaud Allera^{1*}, Fabienne Ribeiro², Michel Perez³, David Rodney¹

* arnaud.allera@univ-lyon1.fr

¹ Université de Lyon, Université Claude Bernard Lyon 1, CNRS, **Institut Lumière Matière**, F-69622, VILLEURBANNE, FR ² IRSN/PSN-RES/SEMIA/LSMA, Centre d'études de Cadarache, 13115, Saint Paul-lez-Durance, FR ³ Université de Lyon, INSA de Lyon, MATEIS, UMR CNRS 5510, Villeurbanne, FR

Contexte

- Plasticité des alliages c.c. substitutionnels bien comprise, modèles quantitatifs
- Encore des difficultés pour les c.c. interstitiels (énergies de liaison élevée, diffusion rapide)
- Simulations atomistiques pour relier ab initio et échelles suppérieures

Effet de la température sur la limite élastique dans Nb-Mo à haute entropie (Maresca, Curtin, 2020)

Modèle Monte Carlo cinétique d'une dislocation vis dans un alliage substitutionnel W-Re (Zhao, Marian, 2018)

Potentiel interatomique Fe-C

Quelques propriétés

Critères principaux :

- Plasticité (barrière de Peierls, coeur compact, plan de glissement)
- Propriétés d'alliage (sites interstitiels, reconstruction de coeur)

Approche :

- 10 potentiels Fe/Fe-C testés
- Hybridation des deux plus satisfaisants (Becquart 2007, Proville 2012)
- **Meilleur accord** avec les données *ab initio* de référence

[1] Ventelon et al., Acta. Mat. (2013)
[2] Becquart et al., CMS, (2007)
[3] Proville et al. Nat. Mat. (2012)

[4] Liyanage et al., PRB, (2014)[5] Schultz, Mat. Sci. Eng. (1968)[6] Lüthi, PhD Thesis, (2017)

Glissement thermiquement activé dans Fe

- Mécanisme de plasticité à basse température: formation de paires de décrochements
- Approche stochastique basée sur la Théorie de l'État de Transition (ou TST) à $\dot{\gamma}$ imposé:

probabilité de saut :

$$p(\tau) = \nu \exp\left[\frac{-G(T,\tau)}{kT}\right]$$

probabilité de survie au temps t :

$$W(t) = \exp\left(-\int_0^t p(\dot{\tau}_0 u)\right) du$$

→ on déduit un flow stress (où cette probabilité chute)

Calcul direct de G (T, τ) : code PAFI

😂 Swinburne, Marinica, PRL, 2018

Résultat (domaine harmonique)

Accord avec simulations DM Et aux grandes T, petits $\dot{\gamma}$?

Au delà de l'hypothèse harmonique

Collaboration avec Tom Swinburne, CINAM

- Calcul de G dans un large domaine de température-contrainte
- ΔS linéaire en contrainte dans le domaine harmonique (confirmé par DM)
 - Vers un rapprochement avec conditions expérimentales ($^{\gamma}$.T)

Domaine de validité estimé de l'hypothèse harmonique

Mobilité des dislocations dans une solution solide de C

- Environnement complexe (structure 3D de la ligne)
- Fort ancrage par les solutés (chutes de contrainte)
- Interactions à courte portée prépondérantes

Coeur reconstruit conforme aux données *ab initio*

Ligne de dislocation interagissant avec une solution solide de carbone

Effet de la largeur de la zone sans carbone autour du plan de glissement

Mode de désancrage des dislocations

Fort effet attractif qui stabilise le premier décrochement

• Explique le fort effet durcissant du C

Désancrage d'une dislocation décorée de deux C, et courbe contrainte-déformation associée

1st DK 2nd DK

Deux barrières consécutives pour désancrer la dislocation

Effet de l'espacement des solutés

- Fort effet de longueur de segment (inattendu dans un c.c.)
- Comportement type "maillon faible" si plusieurs longueurs (L > l)
- Modification du modèle probabiliste

Pour chaque barrière (hypothèse harmonique)

$$p_{i,L}(\tau) = \nu e^{S_0 \sigma} e^{\frac{-H_{i,L}(\tau)}{kT}}$$

Probabilité de survie à t si 1er saut à t* :

$$W(t) = W_1(t) + W_1(t^*)W_2(t - t^*)$$

Effet de la longueur de segment

Conclusion et perspectives

- Nouveau potentiel Fe-C (publication à venir)
- Deux changements d'échelle effectués
- Modèle de durcissement par le carbone

Perspectives

- Rapprochement avec conditions expérimentales (TST)
- Prise en compte de populations de solutés (en solution ou atmosphère) et de leur diffusion (collab. Jaime Marian, UCLA)

