

Modelling the topology of radiation-induced damage at the cell population level.

Yann Thibaut, Carmen Villagrasa, Sébastien Incerti, Yann Perrot

► To cite this version:

Yann Thibaut, Carmen Villagrasa, Sébastien Incerti, Yann Perrot. Modelling the topology of radiation-induced damage at the cell population level.. 46th Annual Meeting of the European Radiation Research Society, ERRS 2021, Nov 2021, CAEN, France. 2021. hal-03513510

HAL Id: hal-03513510 https://hal.science/hal-03513510

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Liberté Égalité Fraternité

MODELING THE RADIATION-INDUCED DNA DAMAGE TOPOLOGY AT THE CELL POPULATION LEVEL

Y. THIBAUT¹, C. VILLAGRASA¹, S. INCERTI², and Y. PERROT¹ ¹ IRSN/PSE-SANTE/SDOS/LDRI, ² CNRS/IN2P3/CENBG

ROSIRIS PROGRAM

• Goal: Define a multiparametric EBR.

- Why: To optimize the risk estimation in radiation therapies.
- How: Developing a simulation tool to predict the risk associated to an irradiation, by a multiscale

INTRODUCTION

A nanodosimetric simulation chain, based on Geant4-DNA toolkit (*geant4-dna.org*), has already been developed at IRSN, to model the DNA damage topology induced by different radiation qualities at the cell nucleus scale. The next step consists in extending this modeling at the cell population level. To this, the stochastic distribution of the energy imparted for each nucleus of the population must be idered (*Gruel*, *Plos One*, 2016).

MATERIALS and METHODS

- Building a microdosimetric database of monoenergetic spectra over a large energy range (1 keV to 20 MeV) for different particles (e-, p+, α) in endothelial nucleus.
- Interpolating between the database spectra to obtain any non-simulated $\frac{2}{2}$ monoenergetic spectra ($f_1(y)$).
- Combining the spectra, according to a given beam quality, to obtain the $f_1(z)$ spectrum of the cell population.
- Distributing the events cell by cell in the population.

To benchmark our method, we compare the event distribution obtained for a 14.5 MeV neutrons irradiation with the one obtained by Monte-Carlo simulation.

RESULTS

It can be observed that the mean error for the calculation by interpolation of the microdosimetric spectra database does not exceed 2% on the entire energy range. The energy distribution of the events obtained corresponds to that calculated by Monte Carlo method.

Protons that pass trough the nucleus (exited): database spectra

DISCUSSION

The results of the benchmark of the event distribution method in the cell population are satisfactory. Indeed, the events distribution agrees with the results obtained by Monte Carlo modeling. The next step is to link each of these events to a damage topology using nanodosimetric calculations. To validate this step, we will compare our results to experimental measurements.

ERRS 2021, 46th Annual Meeting of the European Radiation Research Society, Caen, France

Institut National de Physique Nucléaire et de Physique des Particules

