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MCQUILLAN'S APPROACH TO THE GREEN-GRIFFITHS CONJECTURE FOR SURFACES

After reviewing the proof by Bogomolov of the fact that, on smooth projective surfaces with c 2 1 > c 2 , curves of bounded geometric genus form a bounded family, we explain the main steps of the proof, given by McQuillan, of the Green-Griffiths conjectures for these surfaces. Observed from far, the two proofs follow the same strategy but the second requires a much deeper analysis of the tools involved. In order to describe the McQuillan proof, we explain the construction of the Ahlfors currents associated to entire curves in variety and we show how these can be used to produce a substitute of intersection numbers. A proof of the tautological inequality either in the standard then in the logarithmic case is given. We will explain how the hypothesis imply that we may suppose that the involved entire curve (which is supposed to not exist) is the leaf of a foliation. In order to simplify some technical points of the proof, we will make some restrictions on the singularities of this foliation (the general case requires a deeper technical analysis but the main ideas of the proof are already visible under this restriction). In the last section we give a very brief description of a possible strategy (proposed by McQuillan) for the proof of the general case of the conjecture; we will also explain the main difficulties one would need to overcome.
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Introduction

Let X be a smooth projective variety. If X is hyperbolic, then there is no, non constant analytic map f : C → X. It is also known that hyperbolicity implies algebraic hyperbolicity. Thus if X is hyperbolic and L is an ample line bundle on it, we can find a constant A for which the following holds: for every smooth projective curve C of genus g and morphism f : C → X we have deg(f * (L)) ≤ A(2g -2).

For a smooth projective surface of general type we cannot expect that an inequality like the one above holds. This is, for instance, due to the fact that one can find rational or elliptic curves on it. But probably the following conjecture holds: Conjecture 1.1. Let X be a smooth projective surface of general type. Let L an ample line bundle on it. Then there exist constants A and B for which the following holds: for every smooth projective curve C of genus g and morphism f : C → X we have

(1.1) deg(f * (L)) ≤ Ag + B.
This conjecture is very deep and, in particular, it implies that on a surface of general type there are only finitely many rational or elliptic curves. More specifically the conjecture implies the following: Conjecture 1.2. Let X be a smooth surface of general type. Then there exists a proper Zariski closed set Z ⊂ X for which the following holds: If C is a rational or an elliptic curve and f : C → X is a non constant map, then f factorise through Z.

The Green-Griffiths conjecture is a generalization of this last conjecture: Conjecture 1.3. (Green-Gritffiths Conjecture) Let X be a smooth surface of general type. Then there exists a proper Zariski closed set Z ⊂ X for which the following holds: every non constant analytic map f : C → X factorizes through Z.

If, in the possibility that Conjecture 1.2 is false, we may weaken the conjecture 1.3 by requiring only that the closed set Z depends only on f (but it should be one dimensional).

In this chapter we will discuss some advances on these conjectures and a strategy, due to McQuillan, to attack conjecture 1.3 in general.

The reader can refer also to the paper [START_REF] Paun | Value Distribution Theory for Parabolic Riemann Surfaces[END_REF] for another description of the proof and a generalization to parabolic Riemann Surfaces.

2. Curves of bounded genus on surfaces with big cotangent bundle . Definition 2.1. Let X be a smooth projective variety and E be a vector bundle over it. We will say that E is ample, big, nef . . . , if the tautological bundle O(1) is ample, big, nef, . . . on the projective bundle P(E) respectively.

We start this section by showing how to prove algebraically a strong version of conjecture 1.1 on varieties with ample cotangent bundle. Remark that if a variety X has ample cotangent bundle, then his canonical line bundle K X is ample too. Theorem 2.2. Let X be a smooth projective variety with ample cotangent bundle. Then there exists a constant A with the following property: for every smooth curve C of genus g and every non constant map f : C → X we have

(2.1) deg(f * (K X )) ≤ A(2g -2).
Proof. Consider the structure morphism p : P(Ω 1 X ) → X. Since, by hypothesis, O(1) is ample on P(Ω 1 X ), there is an integer N for which the line bundle

M N := O(N ) ⊗ p * (K -1 X ) is ample on it.
Let C be a smooth projective curve and f : C → X be a non constant map. The natural map f * (Ω 1 X ) → Ω 1 C gives, by functoriality, a map f :

C → P(Ω 1 X ) such that f = p • f . By construction f * (O(1)) → Ω 1 C . Thus deg(f * (O(1)) ≤ 2g -2. Since M N is ample on P(Ω 1 X )) we have that deg(f * (M N )) ≥ 0. Consequenty deg(f * (K X )) ≤ N (2g -2).
We observe that, in particular, we obtain that such a variety do not contain rational or elliptic curves.

Bogomolov theorem 2.3 [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] generalize theorem 2.2 to surfaces whose cotangent bundle is big.

Theorem 2.3. (Bogomolov) Let X be a smooth projective surface with big cotangent bundle. Then there exist constants A 1 and A 2 with the following property: for every smooth curve C of genus g and every non constant map f : C → X we have

(2.2) deg(f * (K X )) ≤ A 1 (2g -2) + A 2 .
Observe that a sufficient condition for the cotangent bundle to be big is that c 1 (X) 2 > c 2 (X) (exercise).

Let's remark an interesting corollary:

Corollary 2.4. Let X be a surface with big cotangent bundle. Then X contains only finitely many rational or elliptic curves.

Proof. Indeed, curves of bounded genus in such a surface are a bounded family and surfaces of general type are not covered by rational or elliptic curves.

We now prove theorem 2.3.

Proof. As before we fix an ample line bundle L on X. Consider the natural morphism p : P(Ω 1 X ) → X. If M is a line bundle on P(Ω 1 X ), we denote by Bs(M ) the base locus of it; it is a Zariski closed set which coincides with P(Ω 1 X ) if and only if H 0 (X, M ) = {0}. For every positive integers n and m, consider the closed set B n,m := Bs((O(m)⊗p * (L -1 )) ⊗n ) ⊂ P(Ω 1 X ). Let B = n,m B n,m .

Since O(1) is big, we have that B = P(Ω 1 X ). By Noetherianity we may suppose that there exists n 0 and m 0 such that B = B n 0 ,m 0 .

Let C be a smooth projective curve of genus g and f : C → X be a non constant map. Suppose that the lift f : C → P(Ω 1 X ) of f do not factor through B. This implies that there is a global section s ∈ H 0 (P(Ω 1 X ); (O(n 0 ) ⊗ p * (L -1)) m 0 ) which do not vanish identically along f (C). Consequently deg(f ( O(n 0 )) ⊗ f * (L -1 )) ≥ 0. Thus

(2.3) deg(f * (L)) ≤ n 0 (2g -2).
Thus, for these curves it suffices to take A 2 bigger then n 0 .

We must now deal with the case when the morphism f factor through B. Consider an irreducible component of B. By abuse of notation we will denote it again by B.

If p(B) is of dimension at most one the conclusion of the theorem easily follows: f (C) can only be a finite list of curves inside X, the genus and the degree of which can be absorbed by the constant A 2 .

Suppose that p : B → X is dominant. In this case, since B = P(Ω 1 X ), the dimension of B is two.

We will now show that the image of C in B is leaf of a natural foliation on it.

Lemma 2.5. There exists a smooth projective surface B, a birational morphism B → B and a natural algebraic foliation F on B with the following property: Let f 1 : C → B be a lift of f . Then, either C belongs to a finite list or f 1 (C) is a leaf of the foliation F .

Before we start the proof of the lemma, we recall some basic definitions of foliations on surfaces.

2.1.

Standard fact about algebraic foliations on surfaces. Definition 2.6. Let Y be a smooth algebraic surface. An algebraic foliation F is a subsheaf N de Ω 1 Y which is locally free of rank one such that the quotient Ω 1 Y /N is torsion free. We recall the following facts: a) The line bundle N is usually called the conormal sheaf of the foliation. The line bundle det(Ω 1 Y /N ) is usually called the canonical sheaf of F and denoted by K F . b) There is a zero dimensional subscheme Z ⊂ Y (in general non reduced) which is called the singular locus of the foliation and an exact sequence

(2.4) 0 -→ N -→ Ω 1 Y -→ I Z ⊗ K F -→ 0 where I Z is the ideal sheaf of Z.
Points in the support of Z are called singular points of the foliation. Points outside Z are called regular, or smooth, points for the foliation.

c) Consequently we have

K Y = N ⊗ K F . d)
Let M be a Riemann surface (not necessarily compact nor algebraic). A morphism ι : M → Y is said to be a piece of leaf of the foliation if: d.1) There is a discrete set of points P ⊂ M such that ι| M \P :

M \ P → Y is a local embedding; d.2) the natural map ι * (N ) → ι * (Ω 1 Y ) → Ω 1 M is the zero map.
e) If z ∈ Y is a regular point for the foliation, then there is a unique piece of leaf of the foliation passing through z.

e.1) If z ∈ Y is a regular point of the foliation, we can find a maximal piece of leaf of the foliation passing through z (any other piece of leaf passing through z is contained in the image of it). This piece of leaf of the foliation will be called the leaf of the foliation passing through z.

f) Denote by ∆ the one dimensional unit disk. If z ∈ Y is a regular point for the foliation, then there is an analytic neighborhood z ∈ U ⊂ Y isomorphic to ∆ × ∆ with coordinates (z 1 , z 2 ) and the restriction of the exact sequence 2.4 to U is the exact sequence

(2.5) 0 -→ O U dz 1 -→ O U dz 1 ⊕ O U dz 2 -→ O U dz 2 -→ 0.
Consequently the leaves of the foliation passing through U are given by the equations

z 1 = c (c ∈ ∆).
Point (f) above explains a bit the geometry of a foliation on the open set of regular points: we can cover the regular locus of the foliation by open sets such that the restriction of the foliation to each of them is just a product. On the other side, near the singular locus of the foliation, the structure of the leaves may be much more complicated.

g) Suppose that Y 1 is a smooth projective surface and p :

Y 1 → Y is a dominant morphism. We have an inclusion p * (N ) → p * (Ω 1 Y ) → Ω 1 Y 1 . The saturation N 1 of N inside Ω 1 Y 1 is then a foliation on Y 1 .
It will be called the pull back of the foliation F to Y 1 via p and denoted by p * (F ).

One should be aware that, in general, the conormal sheaf of p * (F ) is not p * (N ) and, in general, K p * (F ) = p * (K F ). h) A leaf M of the foliation is said to be algebraic if the Zariski closure of its image in Y is an algebraic curve.

i) Suppose that S is a smooth algebraic curve and f : Y → S is a dominant morphism. The natural exact sequence

(2.6) 0 -→ f * (Ω 1 S ) -→ Ω 1 Y -→ Ω 1 Y /S -→ 0 induces a foliation F f on Y .
The leaves of this foliation are the fibres of f thus they are all compact. Observe that in general f * (Ω 1 S ) is not the conormal sheaf of F f . The conormal sheaf of F f will be the saturation of f * (Ω 1 S ) in Ω 1 Y . j) A foliation F is said to be a fibration if there is a a birational morphism p : Y 1 → Y and a dominant morphism f : Y 1 → S where S is a smooth projective curve such that p * (F ) = F f . All the leaves of a fibration are algebraic.

The following theorem characterizes foliations with "many" algebraic leaves, cf. [START_REF] Jounaoulou | Hypersurfaces solutions d'une équation de Pfaff analytique[END_REF]:

Theorem 2.7. (Jouanoulou) Let F be a foliation on a smooth projective surface. Then F has infinitely many algebraic leaves if and only if it is a fibration (and thus all the leaves are algebraic).

For a detailed reference on foliations on algebraic surfaces, cf. [START_REF] Brunella | Birational geometry of foliations, Congr. UMALCA, notas de curso[END_REF]. Let's prove Lemma 2.5:

Proof. Over P(Ω 1 X ) we have the tautological exact sequence (2.7) 0 -→ Ω 1

P(Ω 1 X )/X (1) -→ p * (Ω 1 X ) -→ O(1) -→ 0.
Observe that if f : C → X is a morphism and f :

C → P(Ω 1 X ) is the natural lift, then the natural map f * (Ω 1 P(Ω 1 X )/X (1)) → f * (Ω 1 X ) → Ω 1
C is the zero map. Let B 1 be a desingularization of B. denote by p : B 1 → B and by h : B 1 → X the natural projections. By construction we have an inclusion p * (Ω 1

P(Ω 1 X /X (1))| B ) → h * (Ω 1 X ) → Ω 1 B 1 . Let N ⊂ Ω 1 B 1 be the saturation of p * (Ω 1 P(Ω 1 X /X (1))| B )
. Taking a blow up B of B 1 if necessary, we may suppose that N is locally free of rank one and thus it defines a foliation F on B.

Suppose now that f (C) intersects the smooth locus of B. Thus we can lift f to a morphism f 1 : C → B. By construction, and the observation above, the natural map f * 1 (N ) → Ω 1 C is the zero map. Thus f 1 (C) is a leaf of the foliation F . Since there are only finitely many curves contained in the singular locus of B the conclusion of the Lemma follows. Now the conclusion of Theorem 2.3 easily follows from Jouanoulou Theorem 2.7: If f (C) factors through B then either it belongs to a finite list (thus his degree and genus may be absorbed by the constant A 2 ) or it is leaf of an algebraic foliation F over B.

If the foliation is a fibration then all the leaves (up to finitely many) are algebraically equivalent. in particular they will be of fixed genus and degree. Thus an inequality as the one proposed by the theorem holds, up to rise the constant A 1 if necessary If the foliation is not a fibration then there will be only finitely many algebraic leaves and their degree and genus may be absorbed in the constant A 2 .

Entire curves on surfaces with big cotangent bundle

In this section, the core of the chapter, we will see how a strategy which is essentially similar to the proof of Bogomolov theorem, may prove Green-Griffiths conjecture 1.3 for surfaces with big cotangent bundle. The proof, even if it follows the same philosophy, is much more involved and requires stronger technical tools. In the meanwhile we will see that the proof will also provide a very easy proof of Theorem 2.2.

The first thing we remark in the proof of Theorem 2.3 is that there is an extended use of intersection theory. Since we deal with analytic maps of C inside a variety we cannot use it but Nevanlinna theory can provide a substitute of it.

3.1. Review of Nevanlinna Theory. Let X be a smooth projective variety and ω a closed positive (1, 1) form on it. Let f : C → X an analytic map. For every positive real number r we define the characteristic function

(3.1) T f (r) := r 0 dt t |z|<t f * (ω).
and more in general, for every closed (1, 1) form α on X we define

(3.2) T f (r, α) := r 0 dt t |z|<t f * (α).
Observe that T f (r, •) is a positive current of type (1, 1). Similarly, if γ is a (1, 1) form over C we may define T (r, γ) in the same way. We will show now how the characteristic function may play the role of an intersection number.

Remark 3.1. It is known that T f (r) = O(log(r)) if and only if the map f is algebraic. To avoid degenerate cases, we suppose from now on, that the entire maps we consider are not algebraic.

Similarly, if β is a (1, 1) form on C we can define T (r, β). If D = i n i P i is a (possibly infinite) formal sum of points of C (if the sum is infinite, we suppose that there is no accumulating point), we define the counting function of D by

(3.3) N (D, r) := |P i |<r n i log r |P i | .
If L is an hermitian line bundle on C and s ∈ H 0 (C, L), then we define the proximity function of s by With this notation, we have the Nevanlinna First Main Theorem:

Theorem 3.2. Let L be an hermitian line bundle on C and s ∈ H 0 (C, L). Then there exists a constant C, independent on r such that

(3.5) T (r, c 1 (L)) + m(s, r) = N (div(s), r) + C.
Where c 1 (L) is the (1, 1) form associated to L.

In order to relate the characteristic function with intersection theory, we show now that, given a smooth projective variety X and an entire map f : C → X, the positive (1, 1) current T f (r, -) is "very small" on exact forms. We fix an ample line bundle L equipped with a positive hermitian metric. Lemma 3.3. Let α be a smooth exact (1, 1) form on X. Then, for evert positive there exists a constant C, depending on α, such that, for every r outside a subset of finite Lebesgue measure we have:

(3.6) |T f (r, α)| ≤ C (T f (r, c 1 (L)) log(r))) 1/2+ .
Proof. We will actually prove that there exists a constant C such that

(3.7) |T f (r, α)| ≤ C T f (r, c 1 (L))(log(T f (r, c 1 (L)))) 1+ log(r)) 1/2 .
We put g(z) := 1 2 log |z| 2 . We may suppose that α = ∂β for a (1, 0) form β on X. By Stokes theorem we have

T f (r; α) = r 0 dt t |z|=t f * (β) = |z|<r dg ∧ f * (β) = C 1 + r 0 <|z|<r dg ∧ f * (β).
(We fix r 0 > 0).

By Cauchy-Schwartz inequality, (3.8)

r 0 <|z|<r dg ∧ f * (β) ≤ r 0 <|z|<r f * (β) ∧ f * (β) 1/2 • r 0 <|z|<r dg ∧ d c g 1/2
.

An easy computation gives 0

< r r 0 dg ∧ d c g < C 3 log(r). Since X is compact, we can find a constant C 2 such that β ∧ β ≤ C 2 • c 1 (L) (by this we mean that C 2 • c 1 (L) -β ∧ β is a positive (1, 1
) form on X). Thus, by applying Stokes theorem again (3.9)

r 0 <|z|<r f * (β) ∧ f * (β) ≤ d dr (T f (r, c 1 (L))) .
The conclusion follows from the following classical Lemma. 

1 F (x) ≤ H (x) H(x) log 1+ H(x))
.

The conclusion follows by integrating the inequality above and taking the change of variable H(x) = t.

3.2.

The Ahlfors current associated to an entire curve. With this in mind, we can associate to an entire map a closed positive current which will play the role of intersection theory.

Let X be smooth projective and L an ample line bundle on it. Suppose that the metric on L is positive.

Let f : C → X be an entire map. Consider the family of positive currents on X T r :

A 1,1 -→ R α -→ T f (r,α) T f (r,c 1 (L)) .
It is a family of currents which is bounded for the standard norm on A 1,1 (but also for the L ∞ norm); consequently we can extract from it a sequence converging, in the weak topology, to a current T f . We now list some properties of the current T f : a) Even if the current T f in principle, depends on the choice of the sequence, we will call it the closed positive Ahlfors current associated to f .

b) The current

T f is not zero because T f (c 1 (L)) = 1. c) By Lemma 3.3, the current T f is closed. d)
Let M be a line bundle on X. Suppose that we fixed a metric on it. since T f is closed, then T f (c 1 (M )) is independent of the chosen metric on M . For instance, given a divisor D on X we can speak about the real number

T f (D). e) if D is an effective divisor on X such that f (C) ⊂ D, then T f (D) ≥ 0.
Indeed, the number T f (D) is independent of the metric chosen on O(D), we can choose a metric on it such that sup D ≤ 1. Thus we have m(r, D) ≤ C where C is independent on r. By Nevanlinna First Main Theorem 3.2, we have

T f (r, c 1 (O(D)) ≥ C. Thus T f (D) ≥ 0.
f) Point (e) implies that, if M is a line bundle on X whose base locus is empty, we have

T f (M ) ≥ 0 and points (b) and (f) imply that if M is ample then T f (M ) > 0. g) More generally, T f (M ) ≥ 0 as soon as f (C) is not contained in the stable base locus of M .
h) If the image of f is Zariski dense, in order to construct the Ahlfors current associated to it, we may suppose that L is just big: indeed, in this case, we may suppose that L = A + D with A ample line bundle and D effective divisor. Thus, by the First Main Theorem 3.2, we can find a constant C independent on r, such that T f (r, c 1 (L)) ≥ T f (r, c 1 (A)) + C. As a consequence we find: Proposition 3.5. Let p : X 1 → X be a birational morphism and f : C → X be an entire map with Zariski dense image. Let f 1 : C → X 1 the lift of f to X 1 . Then we can construct the Ahlfors currents T f and T f 1 associated to f and f 1 respectively, in such a way that

(3.12) p * (T f 1 ) = T f .
Since T f is a closed current, we may consider its class in cohomology. Properties (e), (f) and (g) above show that this class is very similar to a the class of an algebraic curve in X. This is why we see T f as a substitute of intersection theory in this context.

3.3.

The tautological inequality. Let X be a smooth projective variety, p : P(Ω 1 X ) → X be the projective bundle associated to the sheaf of differentials and O(1) be the tautological line bundle on it.

If C is a smooth projective curve of genus g and g : C → X is a non constant morphism. Then, as we saw before, we can lift f to a morphism f : C → P(Ω 1 X ) such that p • f = f and the following inequality holds

(3.13) deg(f * (O(1))) ≤ 2g -2.
If f : C → X is an entire map, we also have a canonical lift f : C → P(Ω 1 X ) such that p • f = f . Consequently we can associate to f the current T f on X and the current T f on P(Ω 1 X ). We will now show that we can choose T f in such a way that p * (T f ) = T f and T f (O(1)) ≤ 0. This second inequality should be interpreted as an analytic analogue of the inequality 3.13.

We suppose that the line bundle L is equipped with a positive metric. Thus c 1 (L) will define a metric on Ω 1 X and from exact sequence 2.7 we obtain a metric on O(1). Theorem 3.6. In the situation above, we can find a set E ⊂ R of finite Lebesgue measure and a positive constant C such that, for every r ∈ E we have

(3.14) T f (r, c 1 (O(1))) ≤ C log(T f (r, c 1 (L))).
Proof. We begin by fixing some notation: over C we fix a coordinate z, thus a trivialization of Ω 1 C = Odz; it will be equipped with the metric such that dz = 1. We denote by P 1 the projective bundle p 1 :

P 1 := P(O X ⊕ Ω 1 X ) → X.
The tautological line bundle on P 1 will be denote by M. By the standard Euler exact sequence on P 1 , the trivial metric on O X and the metric c

1 (L) on Ω 1 X induce a metric on M. The natural surjection O X ⊕ Ω 1 X → Ω 1
X induces an inclusion P(Ω 1 X ) → P 1 as a divisor. For the time being, to avoid confusions, we will denote this divisor by D. We have

O P 1 (D) = M. The natural surjection O X ⊕ Ω 1 X → O X induces a section P 1 : X → P 1 . The natural inclusion Ω 1 X → O X ⊕ Ω 1
X induces a rational map h : P 1 P(Ω 1 X ). Let q : P 1 → P 1 be the blow up along the section P 1 and denote by E the exceptional divisor. The rational map h extends to a morpism h : P 1 → P(Ω 1 X ). If (just for this proof) we denote by L the tautological line bundle on P(Ω 1 X ), we have then

(3.15) h * (L) = q * (M)(-E).
Moreover, the isomorphism above induces a metric on the line bundle O P 1 (E). The morphism f : C → X induces the following surjective morphism:

f * (O X ⊕ Ω 1 X ) -→ Ω 1 C (a, α) -→ f * (a) • dz + f * (α).
Consequently it induces morphisms f 1 :

C → P 1 and f : C → P 1 . By construction we have h • f = f and q • f = f 1 . Remark that, by construction, the image of f 1 never intersects D.
By Nevanlinna First Main Theorem 3.2 applied to the divisors f * (E) and f * 1 (D), we can find constants C E and C D , independent on r, such that

(3.16) T f (r, c 1 (E)) = N ( f * (E), r) -m( f * (E), r) + C E and (3.17) T f 1 (r, c 1 (M)) = -m(f * 1 (D), r) + C D .
Remark that we used that the image of f 1 do not intersect D. Consequently, from relation 3.15 and the fact that N ( f * (E), r) ≥ 0 we deduce that

(3.18) T f (r, c 1 (L)) ≤ m( f * (E), r) -m(f * 1 (D), r) + C 0 Where C 0 is a constant independent on r.
There exists a positive real function

F (z) such that f * (c 1 (L)) = iF (z)dz ∧ dz. A local expression of f , f 1 etc, implies that f * (E) 2 = F (z) F (z)+1 and f * 1 (D) 2 = 1 F (z)+1
. Consequently, in order to conclude, we need to find an upper bound to

(3.19) M f (r) := 2π 0 log F (re iθ ) dθ 2πr .
We have that

(3.20) d dr T f (r, c 1 (L)) = 1 r |z|≤r iF dz ∧ dz. Define S(r) := r d dr T f (r, c 1 (L)
). An easy computation in polar coordinates shows that

(3.21) d dr S(r) = 2π 0 F (re iθ )rdθ.
As soon as r ≥ 1, the concavity of the log implies

(3.22) log( d dr S(r)) ≥ M f (r).
The conclusion follows then from a double application of Lemma 3.4.

Let p : P(Ω 1 X ) → X be the projective bundle of differentials. Since we may suppose that O(1) ⊗ p * (L) is ample on it, Theorem 3.6 implies the following important theorem, which is called Tautological inequality: Theorem 3.7. Let f : C → X be an entire curve and f : C → P(Ω 1 X ) the canonical lift of it. Then we can choose the Ahlfors currents T f and T f associated to f and f respectively in such a way that

(3.23) p * (T f ) = T f and (3.24) T f (O(1)) ≤ 0
Proof. It suffices to remark that, by Theorem 3.6, we have that

T f (r, c 1 (O(1)) + p * (c 1 (L)) ≤ CT f (r, c 1 (L)
) for a suitable constant C. Thus we can extract from the set of currents

T f (r,•) T f (r,c 1 (L))
a sequence converging to a closed positive current T f having the properties (a) -(h) of section 3.1 3.4. The tautological inequality on the bundle of logarithmic differentials. We recall that an effective divisor H on a smooth projective variety X is said to be simple normal crossing if every irreducible component of H is smooth and, locally for the euclidean topology, we can find coordinates z , . . . , z n on X such that H is given by z

1 • z 2 • • • z r = 0 (with r ≤ n).
If H is a simple normal crossing divisor, we can associate to it, the bundle of differentials with logarithmic poles on it. This is the sheaf Ω 1 X (log(H)) of meromorphic differentials with poles at most simple around H. More explicitly, if on a open set where H is given by

z 1 • z 2 • • • z r = 0, then a section of Ω 1 X (log(H)) is a differential ω of the form f 1 dz 1 z 1 + . . . f r dzr
zr + f r+1 dz r+1 + . . . f n dz n with f i holomorphic functions with the property that also d(ω) has simple poles around H.

The sheaf Ω 1 X (log(H)) is locally free of rank n = dim(X). Its dual will be denoted by T X (-log(H)), it is the bundle of derivations which locally can be written as

∂ = g 1 z 1 ∂ z 1 + • • • + g r z r ∂ zr + g r+1 ∂ z r+1 + • • • + g n ∂ zn . If H = i H i , there is a natural exact sequence (3.25) 0 -→ Ω 1 X -→ Ω 1 X (log(H)) -→ i O H i -→ 0
Where the first inclusion is just the natural inclusion of holomorphic differential forms inside the space of differential forms with logarithmic poles.

In particular, as a consequence, we find that (3.26) c 1 (Ω 1 X (log(H))) = K X (H). We will denote by h H : P H → X the projective bundle P(Ω 1 X (log(H)) and by O H (1) its tautological line bundle.

Suppose that L is an ample hermitian line bundle on X with positive first Chern form c 1 (L). Suppose that H = H i and that each O X (H i ) is equipped with a smooth metric. For a suitable positive constant A, the singular (1, 1) form (3.27)

ω sm := Ac 1 (L) + d H i ∧ d c H i H i 2 induces a smooth metric on T X (-log(H)): If ∂ = g 1 z 1 ∂ z 1 +• • •+g r z r ∂ zr +g r+1 ∂ z r+1 +• • •+g n ∂ zn is a local element of T X (-log(H), Then ω sm (∂, ∂) is locally comparable to r i=1 |g i | 2 (|z i | 2 + 1) + n j=r+1 |g j | 2 .
Thus ω sm induces a smooth metric on Ω 1 X (log(H) and eventually a metric on O H [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF].

If M is a Riemann surface and S is a discrete set of points of M with no accumulation points with at most countable cardinality (remark that if M is compact, then this implies that S is a finite set), we can define Ω 1 M (log(S)) in the same way. It is a line bundle on M . If f : M → X is an analytic map such that f (M ) ⊂ H we may consider the set f * (H) red := h -1 (H) (setwise preimage). A local computation shows that there is a natural map (analogous to the map of differentials)

(3.28) h * (Ω 1 X (log(H))) -→ Ω 1 M (log(f * (H) red ). Thus a functorial lifting h H : M → P H . Suppose now that f : C → X is an analytic map such that f (C) ∩ H = ∅.
The analogous of Theorem 3.6 in this situation is the following refined tautological inequality: Theorem 3.8. In the situation above, we may find a set E ⊂ R of finite Lebesgue measure and a constant C H such that, for every r ∈ E we have

(3.29) T f H (r, c 1 (O X (1))) ≤ C H log(T f (r, c 1 (H)).
Proof. The proof follows the same path than the proof of 3.6. We introduce P 1,H = P(O ⊕ Ω 1 X (log H)) and its tautological line bundle M H . Again, we will denote by L H the tautological line bundle of P H . We will denote by • sm M and by • sm L the smooth metrics induced by ω sm on M H and L H respectively. Denote by c 1 (M H ) sm and c 1 (L) sm their first Chern forms.

We introduce the singular (1, 1) form As in the proof of Theorem 3.6, we can find a non negative smooth function

(3.30) ω := Ac 1 (L) + d H i ∧ d c H i H i 2 (log H i ) 2 . If ∂ is a local section of T X (-log(H)) as above, then ω(∂, ∂) is locally comparable with r i=1 |g i | 2 (|z i | 2 + 1 (log |z i |) 2 ) + n j=r+1 |g j | 2 . Again, ω induces a singular metrics • sing
F on C such that f * ( ω) = iF dz ∧ dz.
And, again, following the same strategy of Theorem 3.6, we find that

(3.31) T f H (r, c 1 (L) sing ) ≤ 2π 0 log F (re iθ ) dθ 2πr + C H for a suitable constant C H . Consider now the function (3.32) T f (r, ω) = r 0 dt t |z|<t f * ( ω) = r 0 dt t |z|<t iF dz ∧ dz.
Observe again that f * ( ω) is a smooth form on C. As in the proof of Theorem 3.6, if we define S(r) := r d dr T f (r, ω), we obtain

(3.33) log( d dr S(r)) ≥ 2π 0 log F (re iθ ) dθ 2πr .
The conclusion will follow from Lemma 3.4 and the following two claims:

-Claim 1 There exists a constant C 1 such that

(3.34) T f H (r, c 1 (L) sm ) ≤ T f H (r, c 1 (L) sing ) + C 1 log(T f (r, c 1 (L)).
Proof. Outside the preimage of H, we can find a smooth positive function h such that

• sing L = h • • sm L .
Moreover, a local computation and compactness of X implies that we can find a constant C 2 such that

(3.35) h ≤ C 2 i (log H i ) 2 .
Consequently c 1 (L) sm = c 1 (L) sing -dd c log h and

(3.36) T f H (r, c 1 (L) sm ) ≤ T f H (r, c 1 (L) sing ) + r 0 dt t |z|≤t dd c ((f H ) * (log(h)) .
A double application of Stokes theorem gives

(3.37) r 0 dt t |z|=t dd c ((f H ) * (log(h)) ≤ 2π 0 log(h)(re iθ ) dθ 2πr + C 3 .
Where C 3 is independent on r. Now, the bound 3.35 implies

2π 0 log(h)(re iθ ) dθ 2πr ≤ i 2π 0 log(log H i )) 2 (re iθ ) dθ 2πr + C 4
Concavity of the log implies

(3.38) i 2π 0 log(log H i )) 2 (re iθ ) dθ 2πr ≤ i 2 log( 2π 0 | log H i )|(re iθ ) dθ 2πr
The estimations are independent on the chosen metrics on the involved line bundles, thus we may fix metrics on O(H i ) in such a way, since X is compact,

H i ≤ C < 1. Consequently we have | log H i | = -log H i . By the FMT Theorem 3.2, applied to H i we have (3.39) 2π 0 | log H i )|(re iθ ) dθ 2πr ≤ T f (r, c 1 (O(H i )) + C 5 .
With C 5 independent on r. Thus, since L is equipped with a positive metric, we can find a constant C 6 such that

(3.40) 2π 0 | log H i )|(re iθ ) dθ 2πr ≤ C 6 T f (r, c 1 (L)).
The claim follows.

-Claim 2 There exists a constant C 2 such that

(3.41) T f H (r, ω) ≤ C 2 T f (r, c 1 (L)).
Proof. The following equality holds:

(3.42) -dd c log(log H i ) 2 = d H i ∧ d c H i H i 2 log 2 ( H i ) + 1 | log H i | c 1 (O X (H i )).
And, since X is compact, we can uniformly bound the last term on the right. Consequently we can find a constant A such that

(3.43) ω ≤ Ac 1 (L) - i dd c log(log H i ) 2
Again, an application of Stokes theorem gives

(3.44) T f (r, ω) ≤ AT f (r, c 1 (L)) + i 2π 0 log(log 2 H i (re iθ ) dθ 2πr
and again positivity of c 1 (L) implies

(3.45) i 2π 0 | log H i (re iθ )| dθ 2πr ≤ C 6 T f (r, c 1 (L))
and concavity of the log implies the conclusion of the claim.

The conclusion of the theorem follows.

As a consequence we find the analogous of Theorem 3.7 on the logarithmic case:

Theorem 3.9. Let X be a smooth projective variety and H a simple normal crossing divisor on it. Let f : C → X be an entire curve such that f (C)∩H = ∅. Let f H : C → P(Ω 1 X (log(H)) the canonical lift of f . Then we can choose the Ahlfors currents T f and T f H associated to f and f H respectively in such a way that

(3.46) (h H ) * (T f H ) = T f and (3.47) T f H (O(1)) ≤ 0.
3.5. Varieties with ample cotangent bundle are hyperbolic. We show now how tautological inequality can be applied to give a proof of the fact that there is no, non constant, map f : C → X when X is a variety with ample cotangent bundle. The reader should remark how the proof is formally identical to the proof of the analogous algebraic statement Theorem 2.2.

Theorem 3.10. Let X be a smooth projective variety with ample cotangent bundle. Then every entire map f : C → X is constant.

Proof. Fix an ample line bundle L on X. Consider the projective bundle p : P(Ω 1 X ) → X. Since, by hypothesis, O(1) is ample on it, we may suppose that O(N ) ⊗ p * (L -1 ) is ample as soon as N is sufficiently big.

Let f : C → X an entire map. Consider the Ahlfors currents T f on X and T f on P(Ω 1 X ). Since L is ample we have T f (L) > 0. Since O(N ) ⊗ p * (L -1 ) is ample we have T f (O(N ) ⊗ p * (L -1 )) > 0. But by the tautological inequality we have

(3.48) T f (O(N ) ⊗ p * (L -1 )) < 0
Thus we have a contradiction if f is not constant.

3.6. Green-Griffiths conjecture for surfaces with big cotangent bundle. We will now show how to prove the Green-Griffiths conjecture for surfaces of general type with big cotangent bundle. The first part of the proof will follow the strategy of Bogomolov theorem 2.3 in the algebraic case. The second part of the proof will be more involved and will require a deeper analysis of properties of the foliations on surfaces, cf. [START_REF] Mcquillan | Diophantine approximation and foliations[END_REF].

Theorem 3.11. (McQuillan) Let X be a surface with big cotangent bundle. Then there exists a proper Zariski closed subset Z ⊂ X with the following property: every non constant entire map f : C → X factorizes through Z.

Proof. Let P := P(Ω 1 X ) p → X be the projective cotangent bundle and O(1) the tautological line bundle on it. We also fix an ample line bundle L on X. As in the proof of Theorem 3.10, we associate to the map f the Ahlfors currents T f on X and T f on P. We may suppose that f is Zariski dense.

Using the tautological inequality and the same strategy of the first part of the proof of Theorem 2.3 we see that f factorizes through a two dimensional component of the stable base locus of O [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF].

By the same proof of Lemma 2.5 we obtain the analogous lemma: Lemma 3.12. There exists a smooth surface of general type Y equipped with a foliation F and a dominant morphism h : Y → X with the following property: f lifts to an entire map f Y : C → Y and the image of f Y is leaf of the foliation F .

We remark that:

-By hypothesis, the image of f Y is Zariski dense.

-The surface Y is of general type because it dominates a surface of general type. Thus Theorem 3.11 is consequence of the following Theorem and Corollary 2.4: Theorem 3.13. Let (X, F ) be a smooth projective surface of general type equipped with a foliation. Then every map f : C → X which is leaf of the foliation is algebraically degenerate: the Zariski closure of it is one dimensional.

3.7

. Some heuristics about the proof of McQuillan's Theorem. We make here some remarks which, we hope, will clarify a bit the ideas behind the proof of Theorem 3.13 Suppose for the moment that the foliation we constructed is smooth. This means that the exact sequence

(3.49) 0 -→ N * F -→ Ω 1 X -→ K F -→ 0 is exact. More precisely N * F is a subbundle of Ω 1 X . The first Chern class of N * F is a class in H 1 (X, Ω 1 X ).
Lemma 3.14. We have that

(3.50) c 1 (N * F )) ∈ Im{H 1 (X, N * F ) → H 1 (X, Ω 1 X )}. Proof. The inclusion N * F → Ω 1 X give rise to a global section ω ∈ H 0 (X, Ω 1 X ⊗ N F ).
Choose a covering by polydisks {U α } α∈A of X which trivializes everything: the restriction of N , Ω 1 X , the foliation etc. are trivial on every open set. Since the foliation is smooth. Over every open set U α we can choose coordinates z α and w α such that ω| Uα := ω α = f α dz α for a suitable non vanishing holomorphic function f α . Moreover

(3.51) ω α = g α,β ω β on U αβ := U α ∩ U β , where g α,β ∈ O * U αβ is a cocycle representing N F . Recall that, with this notation, the cocycle { dg α,β g α,β } represents c 1 (N F ) in H 1 (X, Ω 1 X )
. By construction we can find holomorphic forms γ α on U α such that (3.52) dω α = γ α ∧ ω α (they will be γ α = dfα fα ). If we differentiate equation 3.51 and we use 3.52 we obtain

(3.53) γ α -γ β - dg α,β g α,β ∧ ω β = 0.
Which means that, up to a coboundary,

dg α,β
g α,β is proportional to ω β . This is the conclusion of the lemma because c 1 (N F ) is represented by the class of dg α,β g α,β . We would show now how the Lemma below may explain the ideas behind the proof of McQuillan Theorem 3.11.

Suppose for the moment that the foliation in Theorem 3.13 is without singularities.

In this case, the foliation give rise to a section p F : X → P such that p * F (O(1)) = K F . Let ι : Y → X be a smooth projective curve which is leaf of the foliation. By construction we will have that ι : Y → P factorises through the image of p F and we have then that

(3.54) deg(ι * (K F )) = 2g(Y ) -2.
On the other side, since Y is a leaf of the foliation, the composite map

(3.55) H 1 (X, N * F ) -→ H 1 (X, Ω 1 X ) -→ H 1 (Y, Ω 1 
Y ) is the zero map. Thus Lemma 3.14 tels us that

(3.56) deg(ι * (N * F )) = 0. Consequently, since K X = N * F ⊗ K F , we obtain that, if Y is a compact leaf of the foliation, then (3.57) deg(K X | Y ) ≤ 2g(Y ) -2.
Suppose that (X, F ) is again a smooth surface of general type equipped with a smooth foliation. Suppose that ι : C → X is a leaf of the foliation.

Since we still have the section p F : X → P, the Tautological inequality 3.7 implies that (3.58) T ι (K F ) ≤ 0 Indeed, p * F (O(1)) = K F and we may suppose that (p F ) * (T f ) = T f . Lemma 3.14 tells us that, up to ∂ of smooth forms, the first Chern form of N * F is represented by a class which is in A 1,1 (N * F ) thus it will vanish when restricted to ι(C). Thus Lemma 3.3 implies that (3.59)

T ι (N * F ) = 0 Consequently, we obtain that T ι (K X ) ≤ 0. This is impossible if X is of general type and ι(C) is Zariski dense.

In general the foliation in Theorem 3.13 cannot supposed to be regular everywhere and singularities of it prevent the argument above to work directly. Never the less, the proof in the general case will follow the ideas above.

In order to prove Theorem 3.13 we will then compute the value of the Ahfors current on the canonical line bundle and on the conormal line bundle of the foliation.

The presence of singularities of the foliation makes the proof much more involved. Since the general case is, technically, quite complicate, we will make some restrictive hypothesis on the possible singularities.

Before we start the main part of the proof, we need to recall some advances properties of foliations on surfaces.

3.8. Some advanced facts about foliations on complex surfaces. Let ∆ be a two dimensional disk with coordinates (z, w). A foliation F on ∆ is given by a derivation ∂ = a 1 (z, w)∂ z +a 2 (z, w)∂ w , where a i (z, w) are analytic functions such that Sing(∂) := {a 1 (z, w) = a 2 (z, w) = 0} is zero dimensional. We will suppose that F is singular. Shrinking ∆ if necessary we may suppose that Sing(∂) = {(0, 0)}.

Let m be the maximal ideal of (0, 0) in O ∆ . Since F is singular in (0, 0), the derivation ∂ defines a C-linear map m → m verifying Liebnitz rule. Consequently it defines a linear map L F : m/m 2 → m/m 2 . Denote by λ 1 and λ 2 the eigenvalues of L F . Definition 3.15. The singularity (0, 0) of the foliation F is said to be reduced, if at least one of the λ i , for instance λ 2 , is different from zero, and λ := λ 1 λ 2 ∈ Q >0 . Of course, if X is a smooth surface and F is a foliation on it, we may give the definition of reduced singularity for every p ∈ X which is singular for the foliation.

One of the main theorems of the theory of foliations is the following "resolution of singularities of foliations", cf. [START_REF] Seidenberg | Reduction of singularities of the differential equation Adx = Bdy[END_REF]: Theorem 3.16. (Seidenberg) Let X be a smooth surface and F be a foliation on it. There exists a birational morphism p : X → X such that the foliation p * (F ) is with only reduced singularities. The birational morphism p is obtained by successive blowups of points which are singular for the foliation on the corresponding varieties.

Consequently, in the proof of Theorem 3.13 we may suppose that the foliation has reduced singularities.

We will now list some properties of reduced singularities:

We suppose that (X, F ) is a surface with a foliation with only only reduced singularities. a) If p ∈ X is a singular point for the foliation, then there are at least one and at most two leaves passing through p. These leaves intersect properly (distinct tangents) in p and they are smooth. b) If p ∈ X and h p : X p → X is the blow up of X at p, then h * p (F ) is a foliation with only reduced singularities.

Observe that if p ∈ X is a smooth point for the foliation, then h * p (F ) acquires a singular point which lies over the exceptional divisor of X p . This singular point is the intersection between the strict transform of the leaf through p and the exceptional divisor. Moreover, the exceptional divisor is a leaf of the the foliation. c) If p ∈ X is a singular point of the foliation and h p : X p → X is the blow up of X at p then h * p (K F ) = K h * p (F ) . Thus, the canonical sheaf of the foliation is essentially an invariant by blowup of foliations with reduced singularities.

The canonical sheaf K F is not a true invariant by blowup of foliations with reduced singularities because if p ∈ X is a smooth point of the foliation and E p is the exceptional divisor of X p , then K h * p (F ) = h * p (K F )(E p ). A special kind of reduced foliations are linear reduced foliations: these are foliations which, near each point, are either regular or that we may choose local coordinates centered in the point in such a way the foliation is generated by a derivation of the form

(3.60) ∂ = λ 1 z∂ z + λ 2 w∂ w with λ 1 • λ 2 = 0 and λ 1 λ 2 ∈ Q >0 .
To avoid many technical complications, from now on, we will suppose the following restrictive hypothesis:

The foliation involved in Theorem 3.13 has only linear reduced singularities.

Observe that, the fact that the singularities are reduced is not restrictive because of Seidenberg theorem 3.16. On the other side, the hypothesis that the singularities are linear is a true restriction with respect to the general case. The main steps and ideas of the proof are well described under this restrictive hypothesis and the proof in the general case requires only some more technical considerations.

We would like to check here that properties (a) and (b) above are verified for a surface with only linear reduced singularities.

Remark that the problem is local so we may suppose that we are on a two dimensional disk.

Let ∂ = λ 1 z∂ z +λ 2 w∂ w be a linear reduced foliation on a disk. Thus λ i = 0 and λ 1 /λ 2 ∈ Q >0 .

(a L ) The only leaves passing through the origin (0, 0) are the axes z = 0 and w = 0.

Proof. We begin by remarking that the axes are indeed leaves of the foliation. The conormal sheaf of the foliation is locally generated by the differential form ω F = λ 2 wdz -λ 1 zdw. Thus the leaves (up to the leaf w = 0) will be locally solutions of the differential equation

(3.61) z (w) = λ 1 λ 2 • z(w) w .
The fact that λ 1 λ 2 ∈ Q implies that the only solution through (0, 0) is the the curve z = 0.

b L ) If p is a singular point of a linear reduced foliation F and h p :

X p → X is the blow up of X at p then K h * p (F ) = h * p (K F ). Proof. We recall that, if E p is the exceptional divisor of X p , then K Xp = h * p (K X )(E p
). The equation of the blow up is locally given by w = zu. Thus the derivation ∂ acts on the variable u by

∂(u) = ∂ w z = z•∂(w)-w•∂(z) z 2
= (λ 2 -λ 1 )u. Which means that the foliation h * p (F ) is locally generated by λ 1 z∂ z + (λ 2 -λ 1 )u∂ u . This shows that the foliation h * p (F ) is again linear reduced.

The conormal sheaf

N * h * p (F ) is (locally) generated by (λ 2 -λ 1 )udz -λ 1 zdu. On the other side, h * p (N * F ) is generated by h * p (λ 2 wdz -λ 1 zdw) = λ 2 zudz -λ 1 z(zdu + udz) = z((λ 2 - λ 1 )udz -λ 1 zdu).
Since the equation of the exceptional divisor E p is locally given by z = 0, the equation above means that h

* p (N * F )(E p ) = N * h * p (F ) . Since K Xp = N * h * p (F ) ⊗ K h * p (F ) and K X = N * F ⊗ K F , the conclusion follows.
We also have the following property: c L ) Suppose that (X, F ) is a foliated surface, h p : X p → X is the blowup of X at a singular point of F and E p is the exceptional divisor of X p . Then:

1) the foliation h * p (F ) has two singular points on E p : they correspond to the intersection of E p with the strict transforms of the leaves of F through p.

2) E p is a leaf of h * p (F ).

3.9. Foliations and logarithmic differentials. Let (X; F ) be a surface with a foliation with only linear reduced singularities which is not a fibration. Blowing up X we may suppose that the following property is verified: Every algebraic curve C ⊂ X which is a leaf of F is smooth. By Jouanoulou Theorem 2.7, there are only finitely many algebraic leaves of F (otherwise, the foliation is a fibration and it cannot contain a dense leaf).

Consequently, let F = F i be the divisor of algebraic leaves of F . Each of the F i is smooth and the divisor F is a simple normal crossing divisor.

Let P := {p 1 , . . . , p n } be the set of the singular points of the foliation and let F 1 = F j ≤ F be an effective divisor. Denote by P F 1 ⊂ P the subset of points of P which are contained in F 1 and by P F 1 the set P \ P F 1 .

The exact sequence 3.25 induces an inclusion N * F → Ω 1 X (log(F 1 )). Let N * F (log(F 1 )) be the saturation of it inside Ω 1 X (log(F 1 )). It can be considered as a "foliation with logarithmic poles".

Here we show:

Proposition 3.17. The sheaf Ω 1 X (log(F 1 ))/N * F (log(F 1 )) is locally free on X \ P F 1 . In particular, Ω 1 X (log(F 1 ))/N * F (log(F 1 )) is locally free in the intersections F i ∩ F j with F i and F j appearing in F 1 .

Proof. The problem is local, thus we may suppose that X is a two dimensional disk with coordinates z ad w centered at a point (0, 0) ∈ X \ P F 1 .

If p ∈ F 1 then in a neighborhood U p of p, we have that Ω 1 X | Up Ω 1 X (log(F 1 ))| Up , moreover by hypothesis, F is regular at p thus there is nothing to prove.

If p ∈ F i \ j =i F j and p is regular for the foliation, then we may suppose that, in a neighborhood U p of p, the equation of

F i is w = 0, Ω 1 X (log(F 1 ))| Up = Odz ⊕ O dw w and the foliation F | Up is generated by ∂ z . Thus N * F | Up = Odw. Consequently, we have that N * F (log(F 1 )| Up = O dw w and Ω 1 X (log(F 1 ))/N * F (log(F 1 ))| Up = Odz, thus it is free of rank one. If p ∈ F i \ j =i F j
is not regular for the foliation, then again we may suppose that, in a neighborhood U p of p, the equation of X (log(F 1 ))/N * F (log(F 1 ))| Up is free of rank one. We observe that, as corollary of the proof we find: Corollary 3.18. In the hypothesis above, we have

F i is w = 0, Ω 1 X (log(F 1 ))| Up = Odz ⊕ O dw w and
(3.62) N * F (log(F 1 )) = N * F (F 1 )
. Moreover, as a consequence of the corollary and formula 3.26 we find Corollary 3.19. In the hypothesis above, we have an exact sequence

(3.63) 0 -→ N * F (F 1 ) -→ Ω 1 X (log(F 1 ) -→ I Z K F -→ 0 
where I Z is the ideal sheaf of the set of points P F 1 with reduced structure.

3.10. Intersection with the canonical bundle of the foliation. We suppose that (X, F ) is a foliated surface of general type and that all the singular points are reduced linear. Let f : C → X be a leaf of the foliation which is "parametrized by C" and which is Zariski dense.

In this section we would like to prove Theorem 3.20. If T f is the Ahlfors current associated to f then

(3.64) T f (K F ) ≤ 0.
Proof. Let P be the set of singular points for the foliation. By hypothesis, through each p ∈ P there are two leaves of the foliation which are smooth at p and meet transversally. By property (c L ), taking a blow up of X if necessary, we may suppose that one of the leaves through p is an algebraic curve. We will say that p ∈ P is a small singular point for F is both leaves through it are algebraic. Otherwise we say that p is a a big singular point. Let P B := {p 1 . . . , p N } be the set of big singular points of F .

Taking a blow up of X if necessary, we may suppose that each algebraic leaf of F is smooth and, if it contains a big singular point of the foliation, then it contains at most two singular points of the foliation. Moreover, by Jouanoulou theorem 2.7, there are only finitely many algebraic leaves.

Let h : X → X be the blow up of X at all the big singular points of P . For each big singular point p i let E i ⊂ X be the exceptional divisor such that h(E i ) = p i . Denote by F the foliation h * (F ).

The following properties hold:

-Property (c L ) implies that the cardinality of the set of big singular points of h * (F ) is the same then the cardinality of the set of big singular points of F .

-Since F is with only reduced singularities, we have

K F = h * (K F ).
-The map f lifts to a map f : C → X and we denote by T f the Ahlfors current associated to f and such that h * (T f ) = T f . -Since T f and T f are closed currents of type (1, 1) we may consider their class in H 1,1 (X)

and H 1,1 ( X) respectively. We can find real numbers ρ i such that

T f = h * (T f ) + i ρ i E i .
As classes in cohomology, we may consider the self intersection of the Ahlfors classes and we find the relation

(3.65) T 2 f = T 2 f - n i ρ 2 i
Since T f is a class which intersects every effective divisor positively, we have that T 2 f ≥ 0, consequently

(3.66) n i ρ 2 i ≤ T 2 f .
Moreover, remark that T 2 f ≤ T 2 f . The couple ( X, F ) will be again a foliated surface with only reduced linear singularities equipped with a leaf f : C → X. Observe that the number of singular points of the foliation F will be equal to the number of small singular points of F plus twice the number of big singular points of F . Never the less, the number of big singular points of F will be N .

We can iterate the process and obtain then a sequence of foliated surfaces (3.67)

• • • -→ (X k ; F k ) h k-1 -→ (X k-1 ; F k-1 ) h k-2 -→ • • • h 1 -→ (X 1 ; F 1 ) = ( X; F 1 ) h 0 =h -→ (X 0 ; F 0 ) = (X; F ) Such that:
1) Each of the h k : X k+1 → X k is the blow up of X k in the big singular points of the foliation F k .

2) The foliation

F k is h * k-1 (F k-1
). Consequently each F k has only linear reduced singularities and

K F k = h * k-1 (K F k-1 ). 3) The map f : C → X lifts to maps f k : C → X k . Thus we have positive Ahlfors currents T f k on X k such that (h k-1 ) * (T f k ) = T f k-1 .
Observe that property (3) uses in an essential way the fact that the image of the f k are Zariski dense. Indeed, if one make the analogous construction with an algebraic curve, the class associated to the strict transform of it in X k will not be positive for k big enough.

4) The number of big singular points of the foliation F k is N . Denote the set of big singular points of X k by {p k 1 , . . . , p k N }. For each

j k = 1, . . . , N denote by E k j k the exceptional divisor of X k such that h k-1 (E k j k ) = p k-1 j k . 5) We can find real numbers ρ k j k such that, in H 1,1 (X k ), we have T f k = h * k-1 (T f k-1 ) + N j k =1 ρ k j k E k j k .
The same computation as before gives

(3.68) 0 ≤ T 2 f k = T 2 f k-1 - N j k =1 (ρ k j k ) 2
which, by induction gives

(3.69) ∞ k=1 N j k =1 (ρ k j k ) 2 ≤ T 2 f .
Which, in particular, implies that

(3.70) lim k→∞ N j k =1 ρ k j k = 0
Definition of small and big singular points can be given for each of the foliation F k on X k . Let S F k be the set of algebraic leaves of F k which contain only small singular points of F k . and

F F k = F ∈S F k
F . By construction, the divisor F F k is simple normal crossing and every small singular point of F k is contained in it.

Denote by g k :

P k := P(Ω 1 X k (log(F F k ))
) → X k the projective bundle of differentials on X k with logarithmc poles on (F F ) k and by O k (1) the tautological line bundle on it. Moreover, since f k (C) is a leaf of F k which do not pass through the singular points contained in

F F k , we have f k (C) ∩ F F k = ∅.
By Corollary 3.19, the morphism h k : X k+1 → X k factorise through a morphism h k :

X k+1 → P k and we have (h k ) * (O k (1)) = h * k (K F k )(-j k E k+1 j k+1 ). Since f k (C) is a leaf of the foliation F k , the morphism f lifts to a morphism f F F k : C → P k such that (h k ) • f k+1 = f F F k
. Moreover, we can choose Ahlfors currents for f k+1 and f F F k (on X k+1 and P k respectively) in such a way that

(h k ) * (T f F F k ) = T f k . Since h * k-1 (K F k-1 ) = K F k , by induction we obtain that (3.71) T f k+1 (h * k (K F k )) = T f (K F ).
And on the other side we have

(3.72) T f k+1 (h k ) * (O k (1)) = T f k+1 (h * k (K F k ) - j k+1 E k+1 j k+1 )
The tautological inequality in the logarithmic case 3.9 and

f k (C) ∩ F F k = ∅ imply that (3.73) T f k+1 (h * k (K F k )) - j k+1 T f k+1 (E k+1 j k+1 ) ≤ 0. In H 1,1 (X k+1 ) we have T f k+1 = h * k (T f k ) + j k+1 ρ k+1 j k+1 E k+1 j k+1 . Consequently (3.74) - j k+1 T f k+1 (E k+1 j k+1 ) = (h * k (T f k ) + j k+1 ρ k+1 j k+1 E k+1 j k+1 ; - j k+1 E k+1 j k+1 ) = N j k+1 =1 ρ k+1 j k+1 .
Since the last sum converges to zero, the conclusion of the theorem follows.

We would like to remark that, if instead of working with logarithmic foliations we try to run the argument above just with the standard foliation (thus blowing up all the singular points at each step), the growth of the number of singular points at each step prevent the argument to work.

Intersection with the conormal bundle of the foliation. Let N *

F be the conormal sheaf of the foliation. We want now give an upper bound for the real number T f (c 1 (N * F )). The aim of this section is to prove Theorem 3.21. Under the hypotheses above we have that

(3.75) T f (c 1 (N * F ))
≤ 0. This is definitely the hardest part of the proof. Here the restrictive hypothesis simplify the proof. In order to remove the restrictive hypothesis, it would be necessary to analyze more in details the dynamic of the foliation. In any case, the main ideas of the proof are already visible under the restrictive hypothesis which we assume here.

Before we start the proof, we recall the following facts:

Fact 1: (Siu decomposition of currents): If T is a closed positive current of type (1, 1) on a smooth projective surface X, then there exist (at most countable many) projective curves C i ⊂ X, positive numbers λ i and a closed positive current R such that

(3.76) T = i λ i δ C i + R where: a) δ C i is the current of integration along C i ; b) R is a current such that dim{z ∈ X / ν(R, z) > 0} = 0; where ν(R, z) is the Lelong number of R at z. Cf. [3]
Fact 2: (Intersection of the conormal bundle with algebraic leaves): Let C be an algebraic leaf of the foliation. Let Z C be the number of singular points of the foliation which are on C. Under the restrictive hypothesis for the foliation, the following equality holds:

(3.77) (N * F ; C) = -C 2 -Z C .
By property (e) of section 3, the current T f is nef, thus we can consider its Siu decomposition: Let (3.78)

T f = i λ i δ C i + R f
be the Siu decomposition of the Ahlfors current T f . The first step toward the proof of Theorem 3.21 is the following which tells us that we can concentrate only on the "non algebraic part" of the Ahlfors current T f : Proposition 3.22. Let D be the simple normal crossing divisor of algebraic leaves of the foliation F . The following inequality holds:

(3.79) T f (N * F ) ≤ R f (N * F (D)).
Proof. Since, the divisors C j intersect properly and only on singular points of the foliation, we have, by Fact 2,

(3.80) (N * F ; C j ) ≤ -C 2 j - i =j (C i ; C j ).
From this we obtain that

(3.81) (N * F (D); j λ j C j ) ≤ 0. But since, T f is a nef class we have that T f (D) = j λ j (C j ; D) + R f (D) ≥ 0. Thus j λ j (C j ; D) ≥ -R f (D). Consequently T f (N * F ) = j λ j (C j ; N * F ) + R f (N * F ) ≤ -j λ j (C j , D) + R f (N * F ) ≤ R f (N * F (D)).
Let's analize the structure of the current R f . By definition of Siu decomposition, the current R f will have positive Lelong number only on a discrete (thus finite) set of points of X.

The foliation F is defined by a global section

(3.82) α ∈ H 0 (X; Ω(N F ))
and it induces a logarithmic foliation

(3.83) 0 -→ N * F (D) -→ Ω 1 X (log(D)) -→ I Z K F -→ 0 
Where I Z is the ideal of the Ideal sheaf of the big singular points of the foliation (cf. the proof of Theorem 3.20). Remark that small singular points are smooth for the logarithmic foliation.

Similarly, the logarithmic foliation 3.83 induces a global section (3.84) ω ∈ H 0 (X; Ω 1 X (log(D))(N F (-D)). Let's analyze the structure of the differential forms α and ω: Cover X by open sets U i biholomorphic to two dimensional disks with coordinates (z 1 , w i ) such that: a) Each singular point is contained in only one of these disks which is centered on it. b) If the divisor D intersects U i and the restriction of the foliation to U i is smooth, then the equation of D| U i is z i = 0. c) If the divisor D intersects U i , and the restriction of the foliation to U i is singular (thus in this case, the only singular point of the foliation is (0, 0)) and (0, 0) is a big singular point for the foliation, then the equation of D| U i is z i = 0. d) If the divisor D intersects U i , and the restriction of the foliation to U i is singular (thus in this case, the only singular point of the foliation is (0, 0)) and (0, 0) is a small singular point for the foliation, then the equation of

D| U i is z i w i = 0.
The local description of the form α is the following: Denote by α i the restriction of α to U i . On U ij := U i ∩ U j we have (3.85)

α i = h ij α j
where h ij ∈ O * U ij and {h ij } is a cocycle representing N F . Moreover: a.1) When U i do not contain a singular point of the foliation, there is an holomorphic

function k i ∈ O * U i such that α i = k i dz i .
b.1) When U i contains a singular point of the foliation, then there is a holomorphic function

k i ∈ O * U i such that α i = k i (λ i w i dz i -z i dw i ).
The local description of the form ω is the following: Denote by ω i the restriction of ω to U i . On U ij := U i ∩ U j we have (3.86)

ω i = g ij ω j
where

g ij ∈ O * U ij and {g ij } is a cocycle representing N F (-D). Moreover: a.2) When D ∩ U i = ∅, there is a holomorphic function f i ∈ O * U i such that ω i = f i dz i . b.2) In the case (b) there is a holomorphic function f i ∈ O * U i such that ω i = f i dz i z i . c.2) In the case (c) there is a holomorphic function f i ∈ O * U i such that ω i = f i (λ i w i dz i z i -dw i ). d.2) In the case (d) there is an holomorphic function f i ∈ O * U i such that ω i = f i (λ i dz i z i -dw i w i ).
The second step is about the structure of the current R f . Definition 3.23. A current T is said to be invariant under the foliation, if for every (local) section α ∈ A 1,1 (N * F ) we have T (α) = 0. Since the image of f is invariant under the foliation, one easily sees that the curves C i must be leaves of the foliation and the current R also must be invariant under the foliation.

We recall that, by Jouanoulou theorem 2.7, there are only finitely many leaves C j of the foliation which are algebraic curves and by Seidenberg theorem 3.16 the divisor D := j C j of the invariant curves may be supposed simple normal crossing. Remark that we can also suppose that each algebraic leaf contains at most 2 singular points for the foliation and at most one of which can be big. Proposition 3.24. We can find a local positive measure τ f such that

(3.87) R f = τ f • α ∧ α Proof.
As explained before, it suffices to prove the result when X is replaced by U (the smooth locus of the foliation). When the foliation is smooth, the statement is local on X so we may suppose that the foliation is generated by dz.

The current R f can be written as

τ 1 • dz ∧ dz + τ 2 • dz ∧ dw + τ 3 • dw ∧ dz + τ 4 • dw ∧ dw
, where τ i are measures. Since R f is invariant under the foliation we must have τ i = 0 for i = 1.

We now begin the computation of the "intersection" between the class R f and the normal bundle of the foliation. The reader should compare this with the "heuristic section" 3.6.

We first show that the Lelong number of R f on a big singular point of the foliation vanishes:

Theorem 3.25. Let p be a big singular point of the foliation. Then ν(R f , p) = 0.

Proof. The computation is local near p, so we may suppose that X is a two dimensional disk with coordinates (z, w) and R f is τ f • α ∧ α where α = λwdz -zdw and τ f is a positive measure.

We recall that ν(R f , p) = lim r→0 

ν(R f , p) ≤ lim r→0 C r 2 • |z| 2 +|λ| 2 |w| 2 ≤r 2 R f ∧ dd c (|z| 2 + |w| 2 )
A straightforward computation gives

(3.89) (|z| 2 d c |w| 2 -|λ| 2 • |w| 2 d c |z 2 |) ∧ α ∧ α = 0
and the existence of a smooth form β such that

(3.90) α ∧ α ∧ d c |z| 2 = |z| 2 • β.
We apply now Stokes Theorem (cf. the Lemma after) where (by a slight abuse of notation) we denote the measure on the ball again by R f :

|z| 2 +|λ| 2 |w| 2 ≤r 2 R f ∧ dd c (|z| 2 + |w| 2 ) = |z| 2 +|λ| 2 |w| 2 =r 2 R f ∧ d c (|z| 2 + |w| 2 ) = |z| 2 +|λ| 2 |w| 2 =r 2 τ f • α ∧ α • (|z| 2 + |λ| 2 |w| 2 ) d c |z| 2 |z| 2 = r 2 • |z| 2 +|λ| 2 |w| 2 =r 2 τ f • α ∧ α ∧ β.
The conclusion of the Theorem follows.

In the Theorem above, and in what follows, we applied Stokes theorem to currents, this is possible because of the following version of it: Theorem 3.26. Let T be a closed positive current of type (p, p) over a smooth projective variety Y . Let f be a R-valued smooth function on Y . Then, for almost all in the codomain of f , we can find a closed positive current T on the level variety X := {z ∈ X / f (z) = } such that, for every smooth form ω the following equality holds:

(3.91) {f ≤ } T ∧ d(ω) = X T ∧ ω.
Proof. (Sketch) Take a sequence T n of smooth positive currents which converge to T . By Fubini Theorem we can find real constants a and b such that

(3.92) X T ∧ df ∧ d c f = lim n X T n ∧ df ∧ d c f = lim n b a dt Xt T n ∧ d c (f ).
Consequently, for almost all the values t, the integrals b a dt Xt T n ∧ d c (f ) are uniformly bounded. This implies, on the corresponding X t 's, that the currents T n ∧ d c (f ) uniformly converge to a current T t .

If is outside the "bad set", the standard Stokes Theorem applied to the T n gives

(3.93) {f ≤ } T ∧ d(ω) = lim n {f ≤ } T n ∧ d(ω) = lim n X T n ∧ ω = X T ∧ ω.
Theorem 3.27. Under the hypotheses above, we have

(3.94) R f (N * F (D)) ≤ 0. Proof.
We fix a covering U = {U i } of X as before and a partition of unity {ρ i } submitted to it. If p ∈ X is a singular point of the foliation, we denote by U p the only open set of U containing it and by (z p .w p ) the corresponding coordinates on it.

Using the notation as before, when U i is a open set of type (a), (b) and (d) denote by β i the holomorphic differential form df i f i . When U i is of type (c) (thus U i contains a big singular point), we pose (3.95)

β i = df i f i + γ i where (3.96) γ i := 1 |z i | 2 + |w i | 2 (λz i dz i + w i dw i ).
Observe that, in this case, the form β i 's are not holomorphic a priori, but only C ∞ in the complementary of the big singular points.

We eventually pose (3.97)

τ i = k ρ k (β i -β k - dg ik g ik ).
It is easy to verify that, for every i, we have (3.98)

dω i = β i ∧ ω i
and that, over

U ij := U i ∩ U j , (3.99) (β i -τ i ) -(β j -τ j ) = dg ij g ij . The first Chern class of N * F (D) is represented by 1 2πi • ∂∂g ij g i j = - dd c g ij g i j .
Consequently, the equation 3.99 above tells us that the (1, 1) form .

(3.100)

β := 1 2πi • ∂(β i -τ i ) represents the first Chern class of N F (-D).
Observe that β is a (1, 1) form which is smooth only on X 0 := X \ S where S is the set of the big singular points of the foliation. Nevertheless, β is a form with coefficients in L 1 (X).

An explicit computation gives τ i ∧ ω i = 0, thus we obtain ∂τ i ∧ ω i = 0 and from 3.98 we obtain ∂β i ∧ ω i = 0. By the considerations above, the first Chern Class of N F (-D) is represented, over X 0 , by the smooth form β which belongs to A 1,1 (N F (D). Consequently, if we denote by R 0 f the restriction of the current R f to X 0 , we have R 0 f (c 1 (N F (D)) = 0 (cf. the "heuristic case").

Consequently, in order to estimate R f (N F (-D)), it suffices to localize the computation near the big singular points.

Fix a big singular point p and U be a small disk around it with coordinates (z, w). Denote by z 2 the norm (|z p | 2 + |w p | 2 ) 2 , by α, β and τ the corresponding forms on the open set U . On U we denote by U r the disk of radius r and by S r its border.

In order to conclude, it suffices to prove that

(3.101) lim r→0 Ur τ f • α ∧ α • 1 2πi • ∂(β -τ ) = 0.
An explicit computation gives the existence of a smooth form δ such that α

∧ α ∧ (λ • zdz - dw) = (|z| 2 + |w| 2 ) • δ. Consequently α ∧ α ∧ β extends to a smooth form δ on U .
Remark that τ can be supposed to be zero on U . Stokes theorem gives (for suitable choices of the r's)

(3.102) Ur τ f • α ∧ α ∧ ∂(β) = Sr τ f • δ.
The conclusion follows from the fact that δ is smooth and the Lelong number of R f is zero at the origin.

3.12. Conclusion of the proof of Theorem 3.11. We can now conclude the proof of the Green Griffiths conjecture for surfaces with big cotangent bundle. In order to prove it, it suffices to prove Theorem 3.13.

Suppose that f : C → X is an entire curve satisfying the hypotheses of Theorem 3.13, and whose image is Zariski dense. We may suppose that the involved foliation F has only reduced singularities and we will suppose that they are reduced and linear. Denote by K F the canonical line bundle of the foliation and by N * F its conormal sheaf. Let T f be the Ahlfors current associated to f . By Theorem 3.20, we have T f (K F ) ≤ 0. By Theorem 3.21, we have T f (N * F ) ≤ 0. Thus, since K X = K F + N * F , we deduce that T f (K X ) ≤ 0. But, by hypothesis, X is of general type, which means that K X is big. Thus, there is an ample line bundle L and an effective divisor D such that, for a positive integer m we have mK X = L + D. By construction we may suppose that T f (L) > 0 and, since T f is nef, T f (D) ≥ 0. Thus T f (K X ) > 0 and a contradiction follows.

We would like to remark that the restrictive hypothesis do not play an important role in the proof of 3.20. Only properties of reduced foliations are used and this hypothesis is not restrictive because of Seidenberg Theorem 3.16.

On the other side, the restrictive hypothesis (the singularities are linear reduced) plays a crucial role when we estimate the intersection of the Ahlfors current with the conormal bundle. Even if the main ideas of the proof are already described here, the general case, when we suppose only that the singularities are reduced, requires a deeper analysis of the Ahlfors current (and of its Lelong numbers) and of the local structure of reduced singularities of foliations.

4. An approach to the general case of Green-Griffiths conjecture for surfaces

In this section we briefly explain some ideas, due to McQuillan, which may yield to the proof of the Green-Griffiths conjecture for an arbitrary surface of general type.

Roughly speaking, the strategy follows the proof of Theorem 3.11. But in order to realize it, very delicate and unsolved difficulties should be unfolded.

We recall now the principal properties of the Jet bundles of a surface. Let X be a complex surface. We can construct a sequence of varieties (4.1)

• • • -→ X k h k-1 -→ X k-1 h k-2 -→ • • • h 1 -→ X 1 h 0 -→ X 0
Where: a) X 0 = X and X 1 = P(Ω 1 X ). b) h k-1 : X k → X k-1 is a projective bundle; X k = P(E k ) where E k is a vector bundle of rank two over X k-1 . Denote by O k (1) the tautological line bundle on X k . c) Over X k we have the following exact sequences: 2. e) For every j ≤ k, we will denote by O k (n j ) the line bundle obtained by pull back from X j to X k of the line bundle O j (n). Moreover, we will denote by O(j 1 , j 2 , . . . , j k ) the line bundle

O k (j 1 ) ⊗ O k (j 2 ) ⊗ • • • ⊗ O k (j k ).
Observe that, by construction, dim(X k ) = 2 + k. If f : C → X is an analytic map, then, we can construct inductively Ahlfors currents T k on X k with the properties that (h k-1 ) * (T k ) = T k-1 and T 0 = T f . Because property (c) above, and by the tautological inequality 3.7, we will have that (4.5) T k (O k (j 1 , . . . , j k )) ≤ 0.

Consequently we get the following Proposition 4.1. Fix an ample line bundle L on X. Let f : C → X be an analytic map. Then, for every (j 1 , . . . , j k ) ∈ N k and every non vanishing section s ∈ H 0 (X k , O k (j 1 , . . . , j k )⊗ L -1 ) we have that f * k (s) = 0. This means that f k (C) lies in the base locus of all the O k (j 1 , . . . , j k ) ⊗ L -1 (for all choice of (j 1 , . . . , j k ) ∈ N k ).

Proof. indeed, if f * k (s) = 0, then we would have T k (O k (j 1 , . . . , j k ) ⊗ L -1 ) ≥ 0. But, by the tautological inequality 4.5, we have T k (O k (j 1 , . . . , j k ) ⊗ L -1 ) < 0.

The main consequence of Proposition 4.1 is that, if, for some k and some choice of (j 1 , . . . , j k ), the base locus of O k (j 1 , . . . , j k ) ⊗ L -1 do not dominate X, then the Green Griffiths conjecture holds for X.

Unfortunately, there are examples of surfaces where, for every choice of k and (j 1 , . . . , j k ), the base locus of O k (j 1 , . . . , j k ) ⊗ L -1 dominates X.

On the other side, one can prove: Proposition 4.2. For every surface of general type X, there is a choice of k and of (j 1 , . . . , j k ) for which the stable base locus of O k (j 1 , . . . , j k ) ⊗ L -1 is strictly smaller then X k .

In this case, the map f k will factorize through this base locus. If j < k, denote by h j k : X k → X j the projection map. Observe that, by property (c) above, over X k we have an exact sequence (4.6) 0 -→ B j k -→ (h j k ) * (Ω 1 X j ) -→ M j k -→ 0 Where M j k is a line bundle (which is (h j+1 k ) * (O j+1 (1))). Moreover, by property (d), if f : Y → X is an analytic map (where Y is a Riemann surface), then the induced map f * k (M j k ) → h * j (Ω 1 X j ) → Ω 1 Y is the zero map. By the considerations above we obtain an analogous of Theorem 3.13 in this situation: Theorem 4.3. Let X be a surface of general type and let f : C → X be an entire curve. Then there is a smooth variety Z equipped with a foliation F and a projection h Z : Z → X for which the following properties hold:

-The map f lifts to a map f Z :

C → Z such that h Z • f Z = f .
-The image of f Z is a leaf of the foliation F .

We observe that the main definitions of foliation we gave above easily translate to foliations on arbitrary varieties.

Proof. Let W 0 be an irreducible component of the stable base locus of O(j 1 , . . . , j k ) on X k . Suppose that dim(W 0 ) = 2 + j 0 . Remark that, by Proposition 4.2, we must have j 0 < k. Since, by hypothesis, W 0 dominates X, we must have that the morphism W 0 → X j 0 is generically finite (and surjective). Indeed, the morphism B → X is dominant of generic relative dimension j 0 thus the morphism W 0 → X j 0 is dominant of generic relative dimension zero.

Let W 1 be a desingularization of W 0 and f : C → W 1 a lift of f k (if the image of f k is contained in the singular locus of W 0 we change W 0 by its singular locus).

The pullback of B j 0 k is included in a sub sheaf of Ω 1 W 1 (it is included in the pull back of Ω 1

X k which is included in Ω 1 W 1 ). Let N F be the saturation of it inside Ω 1 W 1 . The quotient Q := Ω 1 W 1 /N is a torsion free sheaf of generic rank one. Thus the exact sequence

(4.7) 0 -→ N -→ Ω 1 W 1 -→ Q -→ 0
defines a foliation on W 1 . By construction the image of f is a leaf of this foliation.

Consequently, to prove the general Green Griffiths conjecture "it suffices to prove" an analogous of Theorem 3.13 in arbitrary dimension. This task does not seems easy to achieve. We list here a list of difficulties: 1) In general we cannot suppose that W 0 is of general type (property which is used in the final step of the proof in the case of surfaces).

2) In the case of surfaces, we used a "resolution of singularities" for foliations, the so called reduction to reduced singularities (Seidenberg Theorem 3.16) which at the moment is not available in any dimension.

3) The computations of the intersection of the Ahlfors current with the cotangent and conormal bundles used some special properties of reduced singularities (in particular the invariance of the cotangent bundle of the foliation by blow up). These properties will not be available even in the best solution of the problem (2) above.

Never the less, a generalization of reduced singularities for foliations is given by a class of foliations called "foliations with canonical singularities". In a long list of papers, cf. [6],

McQuillan announced that problems (1), ( 2) and (3) can be overwhelmed if we assume that the foliation constructed in Theorem 4.3 are canonical.

It is conjectured that every foliation can be "resolved" to a canonical foliation (but not in the category of varieties).
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  and • sing L on M H and L H respectively. Denote by c 1 (M) sing and c 1 (L) sing their singular first Chern forms. Remark that the restriction of the metrics • sing M and • sing L to f H (C) are smooth because f (C) do not intersect H.

  , since the foliation is linear reduced, the foliation F | Up is generated by λ 1 z∂ z + λ 2 w∂ w . In this case N * F | Up = O(λ 2 wdz -λ 1 zdw) and N * F (log(F 1 )| Up = O(λ 2 dz -λ 1 z dw w ). Thus Ω 1 X (log(F 1 ))/N * F (log(F 1 ))| Up is free of rank one. If p ∈ F i ∩ F j then we may suppose that in a neighborhood U p of p, the equation of the divisor F 1 is zw = 0, Ω 1 X (log(F 1 ))| Up = O dz z ⊕ O dw w and again the foliation F | Up is generated by ∂ = λ 1 z∂ z + λ 2 w∂ w . Thus N * F | Up = O(λ 2 wdz -λ 1 zdw). In this case, N * F (log(F 1 )| Up = (λ 2 dz z + λ 1 dw w )O and thus Ω 1

  B k -→ h * k-1 (Ω 1 X k-1 ) -→ O k (1)-→ 0 where B k is a vector bundle.

  B k -→ Ω 1 X k -→ E k -→ 0; and (4.4) 0 -→ O k (1) -→ E k -→ Ω 1 X k /X k-1 -→ 0. d) If Y is a Riemann surface and f : Y → X is an analytic map, then we can lift it to maps f k : Y → X k with the property that f k-1 = h k-1 • f k . Moreover we have an inclusion f * k (O k (1)) → Ω 1Y which coincides with the restriction to f k (C) of the exact sequence 4.

  1 r 2 • |z| 2 +|w| 2 ≤r 2 R f ∧ dd c (|z| 2 + |w| 2 ). Moreover, for every smooth (1, 1) form β we have lim r→0 |z| 2 +|w| 2 ≤r 2 R f ∧ β = 0. The function 1 r 2 • |z| 2 +|w| 2 ≤r 2 R f ∧ dd c (|z| 2 + |w| 2) is an increasing function of r.

	Thus we
	can find a positive constant C such that
	(3.88)