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Abstract— Dedicated Nonintrusive Load Monitoring 

(NILM) datasets are needed to test any new NILM process. This, 

however, introduces limitation, since datasets can be lacking in 

terms of load diversity and multi-load signals. The first problem 

can be solved by acquiring data from other datasets. The second 

one requires real measurements of said signals. With the 

intention of solving the second limitation, we present a new 

method to create artificial multi-load signals using real 

individual load signals. The method is able to place the signals 

at any position relative to one another. Its performance is tested 

by comparing the resulting artificial signal with the real signal. 

The results shows strong similarities between the real and 

artificial signals. An application in ON-OFF transition counts is 

introduced showing the usefulness of the proposed artificial 

aggregation approach for any deep evaluation of event detectors 

in NILM. 

Keywords— NILM, multiple load detection, current signal 

mixing, dataset expansion, artificial aggregation 

I. INTRODUCTION 

Facing the ever-growing energy demand worldwide, 
countries are moving towards sustainable development, which 
translate to finding more efficient and conservative ways to 
consume energy. Buildings of different kinds (residential, 
commercial and public service) are a very big target for this 
new development, since they consumed around 49% of the 
world’s end-use electricity (2017) [1]. Additionally, the 
building’s energy consumption and greenhouse gas emissions 
may have doubled or tripled during the past decade [2].  

In the direction of this goal, the installation of smart grids 
and consequently that of the smart meters has seen a rise 
recently [3]. The smart meter is a counter installed at the level 
of the main breaker in the building or household that records 
the overall consumption, active and reactive power and sends 
this information to the central system and the consumer. This 
has benefits for the provider and the client. The provider 
accesses the real consumption and can charge the clients based 
on it. In addition, the provider can send different offers to the 
clients that best suits their consumption behaviors. The client 
benefits by having his awareness raised about his consumption 
and which is a drive to improve his energy management at the 
consumer’s side. However, [4] shows that pure consumption 
values do not automatically lead to better management. 
Instead, these data need to be transformed into practical easy 
to understand information that the consumer can exploit.  

Next comes the idea of adding an extra step to the smart 
meter: smart energy management. This will transfer to the 
client the detailed state and consumption of the different 

appliances individually in addition to different suggestions to 
optimize the usage of these appliances. For example, the smart 
management suggests to the client to delay the usage of the 
washing machine by one hour in order to start it at the off-peak 
hours instead of starting it at the peak-hours. To achieve this 
management, a hidden step must be performed: identification 
of the different active loads. Several approaches can be used.  
Two well-known approaches are: (a) installing a current 
sensor on each appliance or group of appliances [5] (b) 
installing one current sensor at the main breaker. The names 
intrusive and nonintrusive load monitoring (ILM and NILM) 
are associated to the two approaches respectively. 

The field of NILM was first introduced in 1980 by Hart 
[6]. Despite being three decades old, the interest in it had 
recently emerged. The process measures and analyzes the 
signal at the main breaker level (aggregated signal), in the 
interest of delivering a feedback to the consumer about the 
state of the different active and inactive loads.  

The NILM process generally follows three main steps. The 
first step is the event detection, which refers to the task of 
locating transitions (ON-OFF appliances, change in the 
operation mode …) in the aggregated signal. Kernel clustering 
[7], hidden Markov model [8], and goodness of fit are some 
examples of said methods. The second step extract specific 
signatures, also known as features, from the signal. Said 
features can be extracted from the transient phases, permanent 
phases, or both phases [9]. Finally, the last step separate the 
aggregated wave into individual load signals that describe the 
type and behavior of the corresponding appliance. A review 
of the different disaggregation algorithm can be found in [10] 
[11] [12] [13]. 

Two different algorithms can be seen in a general NILM 
process: the event detection and the identification algorithm. 
A large data pool is required to test the performance of these 
two. For that purpose, several datasets of aggregated and 
disaggregated load signals have been developed, each with 
different appliance variety, sampling frequency, signal 
duration…REDD [14], BLUED [15], PLAID [16], WHITED 
[17] and COOLL [18] are all examples of the available public 
NILM datasets. Although a large number of database exists, 
some with large appliance varieties, they mostly host 
individual load waveforms and in the case of multi-load 
signals, they focus on long duration measurements with 
random activation time instants of each appliance and often 
without having ON/OFF instants ground truth. As a result, two 
issues are present: 1) the shortage of multi-appliance 
waveforms 2) the inability to control the startup of one 
appliance relative to the others. 



It is possible to redeem this shortage of multi-appliance 
signals by performing manual measurements of these signals. 
However, the number of possible mixed signals increases with 
the number of loads: this includes the possible number of 
loads in one signal plus the number of possible usage 
scenarios. For these reasons, it is interesting to develop a 
program that “artificially” creates any possible scenario from 
a set of individual signals. The program should be able to 
create any desired scenario from the given individual load 
signals. 

We present in this paper a solution to this problem that 
allows combining a set of individual appliance current into 
one longer multi-appliance current signal. Furthermore, the 
method allows placing each appliance at any position relative 
to the others. The algorithm is fast, simple, and the artificially 
mixed signal strongly resembles the real mixed signal. In this 
paper, the word aggregate, mix and combine are 
interchangeable.  

The paper is divided into 5 sections: section 2 presents the 
algorithm with the different preparation needed to correctly 
use it. Section 3 compare and discusses the artificial results 
and the natural ones. The next section describes some 
application results of the algorithm. The last section draws the 
conclusion as well as opens the door to new perspectives. 

II. ARTICIAL AGGREGATION 

A. Aggregation algorithm 

The algorithm requires a minimum of two signals to do the 
mixing. It starts by assuming that one signal is fixed and the 
other signals will be added to it. Let ��be the fixed signal and 
��  be any of the other signals. The proposed algorithm is able 
to add the signals at any position in ��. 

For the sake of simplicity, we will assume the case of 
mixing two signals. Let ��, ��, �� and �� be the fixed signal 
voltage and current, and the second signal voltage and current 
respectively. The algorithm is as follow: 

1. Voltage synchronization: using a simple zero 
crossing detection program, we detect the 
descending zeros in �� and ��. Let �� and �� be the 
location of these zeros.  

2. Current offset compensation: calculate the offsets of 
the two current signals �� and ��. Let �� and �� be 
these two offsets. Then subtract each offset from its 
corresponding signal. 

3. Pick any position from ��   (position number 9 for 
instance) and pick the first position in ��. Then add 
the two signals in matrix form as follow (we assume 
the signals to be column vectors): 
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⎢
⎢
⎢
⎢
⎡ ���1: ������
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��������ℎ����: ����

 ⎦
⎥
⎥
⎥
⎥
⎤

 (1) 

B. Voltage synchronization 

The first step in the algorithm consists of locating similar 
positions in the voltages of the different signals. Then we 
ensure that the positions of the fixed signal, on which we will 
add the other signals, and those of the other signals are of 

similar nature (in the algorithm, the nature of these positions 
is “descending zeros”. However, they can be ascending zeros, 
maxima, minima …). 

This synchronization step is required to obtain an 
acceptable mixed signal. Otherwise, we risk of causing signal 
interference and consequently cause the signals to subtract 
from one another instead of adding up. 

Consider the two current signal in Fig. 1 .We shift the two 
signals in a way that the two corresponding voltage do not start 
at similar positions Fig. 2a. If we add the two currents we 
obtain the signals in Fig. 2c. We observe a very clear 
interference phenomenon. On the other hand, if we shift the 
two signals so that the two voltages start at similar positions 
(a maximum in this case) Fig. 2b, then the signals add up 
instead of interfering with one another Fig. 2d. 

C. Offset Compensation 

The miss calibration of the different measurement 
equipment introduce an offset in the measured current. If we 
follow (1), we see that �	
	��  is made from three parts: the first 
part comes from �� , the second part is the sum of a portion 
of �� and �� and the third part comes from ��. This implies that 
the offset of �	
	��  is inconsistent throughout the signal; it 
starts as the offset of ��  then the offset of  ��  is added and 
finally we return to that of  ��.  

We consider the two current signals in Fig. 3. The offset 
of the two signals is 0.15 A. We will add   �� to �� around the 
instant � = 3$.  The signal �� ends at � = 6$ and the signal �� 
remains until � = 9$. 

 

Fig. 1. Waveform of the two current signals 

 
Fig. 2. (a) Unsynchronized Voltage signals (b) Synchronized voltage signals 
(c) Resultant current with unsynchronized voltage (d) Resultant current with 
synchronized voltage. 



Without removing the offsets from the signals we have 
two sudden transitions, the first around � = 3$ and the second 
at � = 6$ which corresponds to the instant of adding ��  and 
the instant of ending ��  respectively Fig. 4a and 4c. Such 
sudden jump could lead to errors in the event detection phase 
of the NILM. This is particularly apparent when we mix 
signals of small power consumption. On the other hand, the 
total current after removing the offsets (Fig. 4b and 4d) does 
not exhibit any of these sudden transitions.  

III. REAL AND ARTIFICIAL SIGNAL COMPARISON 

A. Setup 

Using the setup in [19], we measure the voltage and 
current of two appliances individually (Fig. 5) and when they 
are active at the same time. The two appliance are a drill and 
a jigsaw. Each signal is 7 seconds length; the active part of the 
signal starts at around 0.5s and ends around 6.5s. The signals 
are sampled at 10 kHz and they all scaled with the same scale 
factor. Using the two individual signals, we apply the 
algorithm to construct the artificial aggregated signal. 

B. Comparison procedure 

1) Visual comparison  

We plot the real and artificial aggregated signals in the 
following time intervals [0.5s; 0.55s] and [3.5s; 3.55s] (Fig. 
7). The choice of these two intervals is to represent the form 
of the two currents in the transient and permanent phase 
respectively. A quick observation of the form of the two 
signals shows a strong resemblance between the two signals. 

  

 
Fig. 3 Waveform of the two current signals with offset 

 
Fig. 4 (a) Instant of adding ��  without offset compensation (b) Instant of 
adding �� with offset compensation (c) Instant of ending ��  without offset 
compensation (d) Instant of ending �� with offset compensation 

 

Fig. 5. Drill and Jigsaw individual current waveform 

 
Fig. 6  Current waveform of the real and artificial aggregation  

 
Fig. 7 (a) Start of the transient phase of the real and artificial mixed signals 
(b) the permanent phase of the real and artificial signal in the time interval 
[3.5s, 3.55s]   

2) Numerical comparison 
For the real and artificial signal comparison, we compare 

the transient phases and permanent phases separately and then 
we compare the whole signals. We use two tests. In the first 
test, we calculate the Root Mean Square (RMS) of each signal 
and compute the percentage of the real and artificial RMS 
difference relative to the real RMS.  

The second test goes by computing the Fourier coefficients 
for each period in each signal, then comparing the group of 
coefficients of the real signals with those of the artificial one. 
For the second test, we apply the discrete fast Fourier 
transform on each period of the signal. We choose to consider 



the first five harmonics with the DC component. The 
fundamental frequency of the signals is 50Hz, the sampling 
frequency is 10 kHz and each signal has 7s duration. As a 
result, we obtain around 350 periods and, consequently, 
around 350 coefficients for each harmonic. We choose to 
calculate the Root Mean Square Error (RMSE) between the 
real and artificial coefficient, and then compute the percentage 
of the RMSE relative to the mean value of the harmonic of the 
real signal. 

The results of the first test are in TABLE I and the results of 
the second test are in TABLE II. The metrics ',( and ) refers 
to the RMSE expressed in A, the mean value of the harmonic 
in the real signal and the percentage respectively.  

From the results of the first test (TABLE I), we find that the 
RMS of the artificial signal is around that of the real signal 
with a variation margin of around 5%. The margin is different 
if we consider different part of the signal. However, the 
margin of the entire signal is around 4-5%. 

 In the second test, we computed, for each harmonic, 
the RMSE between the real and artificial harmonic. The 
RMSE describes the mean value of the deviation between the 
two, thus comparing this mean to the average of the real 
harmonic is capable of giving an estimate of how different the 
artificial harmonics form the real ones. In TABLE II  we note 
that the average of even Fourier coefficients is very small, 
almost near zero, average value, relative to the odd harmonics 
that hosts the majority of the signal’s power, which, explains 
the big percentage for each of these frequencies for every part 
of the signal. On the other hand, the percentage of the odd 
frequencies appears to fluctuate around 5-8% throughout the 
different parts of the signal, except for the 150Hz harmonics 
in the permanent part and whole signal that fluctuate around 
12% and 10% respectively 

TABLE I. THE COMPARISON RESULTS OF THE FIRST TEST  

Signal Part Transient Permanent Whole Signal 

RMS (artificial signal) 0.4669 0.2931 0.3126 

RMS ( real signal) 0.4527 0.2742 0.2996 

Percentage 3% 7% 4% 

TABLE II. THE RESULTS OF THE SECOND COMPARISON TEST 

Harmonic Metric 

Signal Part 

Transient 

Phase 

Permanent 

Phase 

Whole 

Signal 

0 Hz 

R 0.0035 0.0014 0.0019 

M 0.0069 0.0007 0.0019 

P 50% 172% 101% 

50 Hz 

R 0.0219 0.024 0.0232 

M 0.5704 0.3362 0.4053 

P 4% 6% 5% 

100 Hz 

R 0.0032 0.0012 0.0017 

M 0.007 0.0015 0.0025 

P 45% 80% 70% 

50 Hz 

R 0.0132 0.0141 0.0138 

M 0.1874 0.1185 0.1318 

P 7% 12% 10% 

200 Hz 

R 0.0017 0.0012 0.0013 

M 0.0031 0.0013 0.0017 

P 54% 90% 79% 

250 Hz 

R 0.0044 0.0021 0.0026 

M 0.0506 0.0405 0.0425 

P 8% 5% 6% 

. 

IV. APPLICATION 

The goal behind the algorithm is to first, extend the 
available datasets to fill the shortage of multi-appliance 
signals that exists in the current available NILM dataset. 

Second is to have control over the starting instants of the 
different loads relative to one another. A good usage of this 
control is the placement of the startup and/or shutdown 
instants of two or multiple loads in close proximity. This in 
return will enable us to test the effectiveness of the NILM 
algorithm in critical scenarios like when two loads start up 
and/or shut down in close time intervals. 

Lastly, the algorithm enable the user to mix appliance of 
different power consumption. With this type of mixing, it is 
possible to test the NILM when one load of high power 
consumption is operating with another load with significantly 
lower power consumption. The purpose is to note whether the 
NILM algorithm will detect two or one load. 

To illustrate the second and third goal of the algorithm we 
consider the following example by taking three loads from the 
COOLL dataset: a 350W jigsaw, a 500W drill and a 15W 
compact fluorescent light. First we combine the drill current 
with that of the jigsaw ten times, we start by placing the startup 
of jigsaw 10 periods in advance to that of the drill, then we 
repeat the process with 9 periods and so on until the startup of 
the two loads is at the same instant. Fig. 8 shows the first and 
last signal in the set. 

If we apply an event detection algorithm, then it should 
detect four events for each signal in the set: two startups and 
two shutdowns. We choose to apply the HAND algorithm 
described in [20]. We choose a threshold 0.5. The detection 
results are in TABLE III.  

 

Fig. 8 The Current waveform of the first and last signal in the set of Drill 
and jigsaw combination 

TABLE III. COUNTS OF THE TRANSITIONS IN THE DIFFERENT SIGNALS IN 

THE SET OF DRILL AND JIGSAW COMBINATION 

Transition 
Signal Number 

1 2 3 4 5 6 7 8 9 10 

Startup 1 1 1 1 1 1 1 1 1 1 

Shutdown 2 2 2 2 2 2 1 1 1 1 

Total 3 3 3 3 3 3 2 2 2 2 



The results shows that the HAND algorithm with the 0.5 
threshold did not succeed in detecting the correct number of 
events for each signal. This has multiple implications: 1) the 
parameters of the event detection algorithm needs changing 
when the startups and/or shutdowns are in close proximity to 
one another 2) There is a certain minimum distance between 
two consecutive events that we cannot go below, otherwise 
the algorithm will consider the two events as one. This 
distance changes with the algorithm and its parameters. 

Second, we combine the lamp signal with the drill signal. 
We place the startup of the lamp signal at 20 periods in 
advance to the shutdown of the drill and then repeat the same 
steps as before. Fig. 9 shows the first and last signal in the set. 
We apply the HAND algorithm with threshold 0.1 for 
achieving sufficient sensitivity required by the low power of 
the lamp. The result of the event detection are in TABLE IV. 

The HAND detected the shutdown transitions correctly. 
However, the startup transitions are all down by one. This 
implies that the change caused by the startup of the lamp did 
not have a strong impact. It was masked by the much stronger 
permanent phase of the drill. In other word, if two appliances 
are active, the ratio of power consumption between the two 
should not go below a certain minimum, otherwise the 
algorithm will fail to detect the appliance, which consumes the 
least power. 

 

 

Fig. 10 Current waveform of the first and last signal in the set of lamp and 
drill combination  

TABLE V. COUNT OF THE TRANSITIONS IN THE DIFFERENT SIGNALS IN THE 

SET OF LAMP AND DRILL COMBINATION  

Transition 
Signal Number 

1 2 3 4 5 6 7 8 9 10 

Startup 1 1 1 1 1 1 1 1 1 1 

Shutdown 2 2 2 2 2 2 2 2 2 1 

Total 3 3 3 3 3 3 3 3 3 2 

 

 

 

 

V. CONCLUSION 

In this paper, we describe a new algorithm to combine 
individual current signals into one multi-current signal. The 
algorithm requires the voltage signals as well as the current 
signals, and it requires the calculation of the offsets. The 
algorithm is fast and simple, and the results show similarities 
to the real combined signals.  

 In the future, we would tune the thresholds and improve 
detection algorithm for better transition count results and 
expand the algorithm to add more than two signals. In 
addition, to test how the algorithm fairs when we combine 
long signals. 
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