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We propose a distributed control law that solves the tracking-in-formation problem for a group of underactuated autonomous marine vehicles interconnected over an undirected graph and subject to inter-agent collision-avoidance and connectivity constraints. The control approach is based on inputoutput feedback linearization using the so-called hand-position point as the output. Moreover, the control strategy is able to deal with limited knowledge on the target's state and dynamics as well as with disturbances in the form of unknown irrotational ocean currents. We establish almost-everywhere uniform asymptotic stability of the output dynamics with guaranteed respect of the inter-agent constraints. A numerical simulation illustrates the effectiveness of the proposed approach.

I. INTRODUCTION

Formations of autonomous surface vehicles (ASVs) and underwater vehicles (AUVs) are used in a variety of applications, including ocean survey, marine biology, and oil and gas production [START_REF] Nicholson | The present state of autonomous underwater vehicle (AUV) applications and technologies[END_REF]. In such applications, the vehicles typically follow a predefined trajectory while carrying sensor payloads to collect data from the environment. To accomplish their mission, the vehicles need to track the given trajectory while maintaining the desired formation shape.

Numerous methods have been proposed to solve the formation tracking problem. These methods include, among others, coordinated path-following [START_REF] Borhaug | Formation control of 6-DOF Euler-Lagrange systems with restricted inter-vehicle communication[END_REF], [START_REF] Ghabcheloo | Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures[END_REF], optimal control [START_REF] Zhang | Optimal multi-agent coordination under tree formation constraints[END_REF], and leader-follower schemes [START_REF] Cui | Leader-follower formation control of underactuated autonomous underwater vehicles[END_REF], [START_REF] Soorki | A robust dynamic leaderfollower formation control with active obstacle avoidance[END_REF]. A comprehensive overview of these methods is presented in [START_REF] Das | Cooperative formation control of autonomous underwater vehicles: An overview[END_REF].

Due to the communication challenges posed by the underwater environment, the vehicles need to keep a sufficiently close distance to make the communication reliable. At the same time, the vehicles should keep a sufficiently large distance to avoid collisions. However, most of the methods in the literature do not simultaneously guarantee connectivity preservation and collision avoidance. Collision avoidance is typically handled by a reactive supervisory controller that intervenes when the vessel reaches the boundary of the safe set given by the constraints. Numerous reactive control algorithms, such as virtual potential fields [START_REF] Roussos | 3D navigation and collision avoidance for a non-holonomic vehicle[END_REF], geometric guidance [START_REF] Mujumdar | Reactive collision avoidance using nonlinear geometric and differential geometric guidance[END_REF], and control barrier functions [START_REF] Basso | Safety-Critical Control of Autonomous Surface Vehicles in the Presence of Ocean Currents[END_REF], have been proposed.

In the recent years, the so-called edge-agreement representation was proposed to solve the formation-keeping problem in a distributed manner [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]. This representation combined E. Restrepo is with DTIS, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France. esteban.restrepo@onera.fr. J. Matouš and K. Y. Pettersen are with the Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. {Josef.Matous, Kristin.Y.Pettersen}@ntnu.no with barrier Lyapunov functions has been shown to achieve consensus under inter-agent constraints with guaranteed stability and robustness properties [START_REF] Restrepo | Stability and robustness of edge-agreement-based consensus protocols for undirected proximity graphs[END_REF]. However, the results in [START_REF] Restrepo | Stability and robustness of edge-agreement-based consensus protocols for undirected proximity graphs[END_REF] do not address the tracking and collision-avoidance problems. Moreover, the edge-agreement method cannot be directly applied to nonlinear nonholonomic dynamics. Hence, to make this method applicable to ASVs/AUVs, we use the hand-position transformation [START_REF] Paliotta | Trajectory tracking and path following for underactuated marine vehicles[END_REF] to make the dynamics of the vehicles holonomic.

In this paper, we propose an edge-agreement based distributed control law for the tracking-in-formation problem that guarantees both connectivity preservation and collision avoidance. Our proposed approach is applicable to multiple ASVs or AUVs moving in the horizontal plane. We establish almost everywhere uniform asymptotic stability of the tracking-in-formation objective with guaranteed respect of the connectivity and collision-avoidance constraints. Moreover, we show that the output error dynamics converge to the origin exponentially fast.

II. MODEL AND PROBLEM FORMULATION

A. Model of the vessel

We consider a 3-DOF model representing the motion of an ASV or an AUV moving in the horizontal plane, see [START_REF] Fossen | Handbook of marine craft hydrodynamics and motion control[END_REF] for more details. First, the following assumptions are made.

Assumption 1: The motion of each vehicle is described in three degrees of freedom, i.e., surge, sway, and yaw.

Assumption 2: The vehicles are port-starboard symmetric. Assumption 3: The hydrodynamic damping is linear. Assumption 4: The ocean current in the inertial frame

V = [V x V y ]
⊤ is constant, irrotational, and bounded, i.e.,

∃V max > 0 such that V 2 x + V 2 y ≤ V max . Under these assumptions, for each vehicle i, the model in component form is ẋi =u ri cos ψ i -v ri sin ψ i + V x (1a) ẏi =u ri sin ψ i + v ri cos ψ i + V y (1b) ψi =r i (1c) uri =F ur (v ri ) + τ ui (1d) vri =X(u ri )r i + Y (u ri )v ri (1e) uri =F r (u ri , v ri , r i ) + τ ri (1f)
where η i := [x i y i ψ i ] ⊤ is the pose of each vehicle in the North-East-Down (NED) frame, ν ri := [u ri v ri r i ] ⊤ are the relative (with respect to the ocean current) velocities in the body frame, surge velocity, sway velocity, and yaw rate, respectively, and τ ui , τ ri are the control inputs. The functions F ur , F r are given in Appendix I. Furthermore,

X(u ri ) = -X 1 u ri + X 2 , Y (u ri ) = -Y 1 u ri -Y 2 , where X 1 , X 2 , Y 1 ,
and Y 2 are given in Appendix I. Moreover, we make the following assumption: Assumption 5: The following bounds hold on Y 1 , Y 2 :

Y 1 > 0, Y 2 > 0. Remark 1: Note that Y 1 , Y 2 > 0 implies Y (u ri ) < 0.
This is a natural assumption since Y (u ri ) ≥ 0 corresponds to the situation of unstable sway dynamics. That is, a small perturbation applied along the sway direction would cause an undamped motion, which is unfeasible for commercial marine vehicles by design.

B. Hand-position transformation

The equations ( 1) are the dynamic model commonly used in the literature for the control of marine underactuated vehicles, where the output is normally chosen as the pivot point p i := [x i y i ] ⊤ (the origin of the body-fixed frame). In what follows, we choose a different output, the so-called hand-position point, h i := [ξ 1i ξ 2i ] ⊤ , introduced in [START_REF] Paliotta | Trajectory tracking and path following for underactuated marine vehicles[END_REF] for marine vehicles and defined as

ξ 1i := x i + l cos ψ i , ξ 2i := y i + l sin ψ i , (2) 
where l > 0 is a constant, see Fig. 1 for the ASV case. The use of the output h i allows us to use an input-output feedback linearization of the model [START_REF] Nicholson | The present state of autonomous underwater vehicle (AUV) applications and technologies[END_REF]. More precisely, we define the change of coordinates

y i x i ψ i r i h i y x p i u ri v ri V ξ 1i ξ 2i x b y b
ζ 1i = ψ i (3a) ζ 2i = r i (3b) ξ 1i = x i + l cos ψ i (3c) ξ 2i = y i + l sin ψ i (3d) ξ 3i = u ri cos ψ i -v ri sin ψ i -r i l sin ψ i (3e) ξ 4i = u ri sin ψ i + v ri cos ψ i + r i l cos ψ i . (3f) 
The model [START_REF] Nicholson | The present state of autonomous underwater vehicle (AUV) applications and technologies[END_REF] expressed in these new coordinates is then

ζ1i = ζ 2i (4a) ζ2i = F ζ2 (ζ 1i , ξ 3i , ξ 4i ) + τ ri (4b) ξ1i ξ2i = ξ 3i + V x ξ 4i + V y (4c) ξ3i ξ4i = F ξ3 (ζ 1i , ξ 3i , ξ 4i ) F ξ4 (ζ 1i , ξ 3i , ξ 4i ) + R(ζ 1i ) τ ui lτ ri (4d) 
where

F ζ2 (ζ 1i , ξ 3i , ξ 4i ) is obtained from F r (u ri , v ri , r i ) sub- stituting u ri = ξ 3i cos ζ 1i + ξ 4i sin ζ 1i , v ri = -ξ 3i sin ζ 1i + ξ 4i cos ζ 1i -ζ 2i l, r i = ζ 2i , F ξ3 (•) F ξ4 (•) = R(ψ i ) F ur (•) -v ri r i -lr 2 i u ri r i + X(•)r i + Y (•)v ri + F r (•)l , (5) 
and R(•) ∈ SO(2) denotes the rotation matrix. Now, in order to linearize the external dynamics, we apply the input transformation

τ ui lτ ri = R(ψ i ) ⊤ -F ξ3 (ζ 1i , ξ 3i , ξ 4i ) + µ 1i -F ξ4 (ζ 1i , ξ 3i , ξ 4i ) + µ 2i (6) 
where µ 1i , µ 2i are the new inputs to be designed. Applying the input transformation ( 6) into (4), we obtain

ζ1i = ζ 2i (7a) ζ2i = -Y 1 - X 1 -1 l U i cos(ζ 1i -ϕ i ) + Y 2 + X 2 l ζ 2i - Y 1 l U i cos(ζ 1i -ϕ i ) + Y 2 l U i sin(ζ 1i -ϕ i ) - sin ζ 1i l µ 1i + cos ζ 1i l µ 2i (7b) ξ1i = ξ 3i + V x (7c) ξ2i = ξ 4i + V y (7d) ξ3i = µ 1i (7e) ξ4i = µ 2i (7f) 
where

U i = ξ 2 3i + ξ 2 4i , ϕ i = arctan 2 ξ 4i ξ 3i . (8) 
The main advantage of choosing h i as the output is that the nonlinear system (1) is transformed into [START_REF] Das | Cooperative formation control of autonomous underwater vehicles: An overview[END_REF] with the linear external dynamics (7c)-(7f). Note, however, that the inputs µ 1i and µ 2i affect also the internal dynamics (7a)-(7b). Therefore, the internal stability properties of the states ζ 1i and ζ 2i have to be verified.

C. Control objectives

It is assumed that each agent has access only to local information from a limited number of neighbors. This is represented by a graph, denoted G = (V, E), where the set of nodes V := {1, 2, . . . , N } corresponds to the labels of the agents and the set of edges E ⊆ V 2 , of cardinality M , represents the communication between a pair of nodes. An edge e k , k ≤ M , is an ordered pair (i, j) ∈ E indicating that agent j has access to information from node i. In this paper we consider that the graph representing the interaction among the agents is undirected and connected, that is, there exists a path connecting each agent with every other agent.

We consider multi-agent systems that are subject to interagent constraints. For one part, these constraints come from the embedded relative-measurements devices, which are reliable only if used within a limited range. The vehicles must thus remain within a limited distance from their neighbors in order to maintain the connectivity of the graph. Moreover, to ensure the safety of the system, the agents must avoid collisions among themselves. These connectivity and collision-avoidance constraints may be defined as a set of restrictions on the system's output [START_REF] Borhaug | Formation control of 6-DOF Euler-Lagrange systems with restricted inter-vehicle communication[END_REF].

Define the relative-output state of a pair of interconnected agents as

z 1k := h i -h j ∀k ≤ M, (i, j) ∈ E. (9) 
For each k ≤ M , let δ k and ∆ k be, respectively, the minimal and maximal distances between agents i and j so that collisions are avoided and that the communication through edge e k is reliable. Then, the set of inter-agent output constraints is defined as

D k := z 1k ∈ R 2 : δ k < |z 1k | < ∆ k , ∀ k ≤ M. ( 10 
)
The control goal is for the agents to achieve a desired formation and track a target in the presence of the output constraints as given by the set D k in [START_REF] Basso | Safety-Critical Control of Autonomous Surface Vehicles in the Presence of Ocean Currents[END_REF]. The target is modeled as a second-order integrator

ḣo = ν ho , νho = µ o (t), (11) 
where

h o := [ξ 1o ξ 2o ] ⊤ ∈ R 2 and ν ho := [ξ 3o ξ 4o ] ⊤ ∈
R 2 are, respectively, the (hand-)position and velocity of the target, and µ o (t) is its acceleration. Moreover, we assume that the following holds. Assumption 6: For all t > 0 there exist positive constants ν ho , ν ho , and µ o such that

ν ho ≤ |ν ho (t)| ≤ ν ho , |µ o (t)| ≤ µ o .
(12) Mathematically, the tracking-in-formation problem translates into making ν hi (t) → ν ho (t) for all i ∈ V, where ν hi := [ξ 3i ξ 4i ] ⊤ , and making h i (t) → h o (t) and h i (t) -h j (t) → z d 1k , or equivalently, z 1k → z d 1k in the edge coordinates, where z d 1k ∈ R 2 denotes the desired relative position between a pair of neighboring agents i and j.

To address the formation part, instead of considering the states of each individual agent (the nodes of the graph), as is more common in the literature, we consider the variables defined in [START_REF] Mujumdar | Reactive collision avoidance using nonlinear geometric and differential geometric guidance[END_REF] which denote the states of the interconnection arcs in the graph. This corresponds to the so-called edgeagreement framework [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF] and it has the advantage of recasting the consensus objective as the stabilization of the origin in error coordinates.

Let us denote the so-called incidence matrix of a graph by E ∈ R N ×M , which is a matrix with rows indexed by the nodes and columns indexed by the edges. Its (i, k)th entry is defined as follows:

[E] ik := -1 if i is the terminal node of edge e k , [E] ik := 1 if i is the initial node of edge e k , and [E] ik := 0 otherwise. Let h ⊤ = h ⊤ 1 • • • h ⊤ N ∈ R 2N
be the collection of the hand-position points of all the agents of the system. Then, the edge states in (9) satisfy

z 1 := [E ⊤ ⊗ I 2 ]h (13) 
where

z ⊤ 1 = [z ⊤ 11 • • • z ⊤ 1M ] ⊤ ∈ R 2M
, '⊗' denotes the Kronecker product, and I 2 is the identity matrix. The formation error, in turn, is defined as

z1 = [E ⊤ ⊗ I 2 ]h -z d 1 , (14) 
where

z d⊤ 1 = [z d⊤ 11 • • • z d⊤ 1M ] ∈ R 2M . Similarly, let ν ⊤ h = ν ⊤ hi • • • ν ⊤ hN ∈ R 2N
be the collection of the hand-positionpoint velocities. Then, in the edge coordinates we define

z 2 := [E ⊤ ⊗ I 2 ]ν h . (15) 
For the tracking part of the problem, we consider the case that only one agent has access to the target's (hand-position) state, h o and ν ho , and knows an upper bound μo on the target's acceleration. Hence, without loss of generality, label the agent that has access to the target's information as "1" and let an additional edge states be defined as

z1o := h 1 -h o -z d 1o , z 2o := ν h1 -ν ho , (16) 
where

z d 1o ∈ R 2 is a desired displacement with respect to the target. Now, let µ i := [µ 1i µ 2i ] ⊤ and µ ⊤ = µ ⊤ 1 • • • µ ⊤ N ∈ R 2N
be the collection of the inputs of all the agents of the system. Then, the control objective is to design µ such that

lim t→∞ z1o (t) = 0 lim t→∞ z 2o (t) = 0 (17a) lim t→∞ z1 (t) = 0 lim t→∞ z 2 (t) = 0. ( 17b 
)
One advantage of considering the edge states rather than the node states is that it is possible to obtain an equivalent reduced system which is easier to analyze using stability theory. As observed in [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF], using an appropriate labeling of the edges, the incidence matrix can be expressed as

E = [ E t E c ] (18) 
where 1) denotes the full-column-rank incidence matrix corresponding to an arbitrary spanning tree G t ⊂ G and E c ∈ R N ×(M -N +1) represents the incidence matrix corresponding to the remaining edges not contained in G t . Moreover, defining

E t ∈ R N ×(N -
R := [ I N -1 T ] , T := E ⊤ t E t -1 E ⊤ t E c ( 19 
)
with I N -1 denoting the N -1 identity matrix, one obtains an alternative representation of the incidence matrix of the graph given by

E = E t R. (20) 
The identity ( 20) is useful to derive a reduced-order dynamic model, cf. [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]. Now, correspondingly, the error edges' states may be split as

z ι = z ⊤ ιt z ⊤ ιc ⊤ ι := {1, 2} (21) 
where z ιt ∈ R n(N -1) are the states corresponding to the edges of an arbitrary spanning tree G t and z ιc ∈ R n(M -N +1) denote the states of the remaining edges, G\G t . Thus, after (13), ( 14), [START_REF] Monzón | Local and global aspects of almost global stability[END_REF], and (21), denoting z d 1t ∈ R n(N -1) as the vector of desired relative displacements corresponding to G t , we obtain

z1 = R ⊤ ⊗ I 2 z1t , z 2 = R ⊤ ⊗ I 2 z 2t . (22) 
Now, the reduced-order external dynamics becomes

ż1o = z 2o + V (23a) ż1t = z 2t (23b)
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ż2o = µ 1 -µ o (t) (23c) ż2t = E ⊤ t ⊗ I 2 µ. (23d) 
In these coordinates, the control objective as defined in [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrained nonlinear systems[END_REF] is achieved if and only if the origin of the reduced-order system (23) is asymptotically stabilized. More precisely, we consider the following problem.

Tracking-in-formation with inter-agent constraints: Consider a system of N autonomous marine vehicles with dynamics given by (1), interacting over an initially connected undirected graph. Assume, in addition, that the agents are subject to inter-agent constraints that consist in the outputs (2) being restricted to remain in the set defined in [START_REF] Basso | Safety-Critical Control of Autonomous Surface Vehicles in the Presence of Ocean Currents[END_REF]. Under these conditions, find distributed controllers µ i , i ≤ N , that achieve the objective [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrained nonlinear systems[END_REF] and render the set (10) forward invariant, i.e., z 1k (0) ∈ D k implies that z 1k (t) ∈ D k , ∀k ≤ M and ∀t ≥ 0.

III. CONTROL DESIGN

In this section we will show how the tracking-in-formation problem, with the previously formulated output constraints, can be solved following a backstepping approach, which is well adapted to the normal form of the external dynamics (23). We start by defining a virtual control law for (23a)-(23b) with z 2o and z 2t as inputs. Now, in order to account for the output constraints, a good choice of control design for the virtual inputs consists in using the gradient of a barrier Lyapunov function [START_REF] Restrepo | Stability and robustness of edge-agreement-based consensus protocols for undirected proximity graphs[END_REF], [START_REF] Ji | Distributed coordination control of multiagent systems while preserving connectedness[END_REF], [START_REF] Boskos | Robustness and invariance of connectivity maintenance control for multiagent systems[END_REF].

Barrier Lyapunov functions (BLFs) are reminiscent of Lyapunov functions, so they are positive definite, but their domain of definition is restricted by design to open subsets of the Euclidean space. Furthermore, they grow unbounded as z 1k approaches the boundary of their domain. We define them as follows, cf. [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrained nonlinear systems[END_REF].

Definition 1 (BLF): Consider the system ẋ = f (x) and let M be an open set containing the origin. A BLF is a positive definite function

V : M → R ≥0 , x → V (x), that is C 1 , satisfies ∇V (x) ⊤ f (x) := ∂V (x) ∂x ⊤ f (x) ≤ 0,
and has the property that

V (x) → ∞ and |∇V (x)| → ∞ as x → ∂M.
Akin to [START_REF] Basso | Safety-Critical Control of Autonomous Surface Vehicles in the Presence of Ocean Currents[END_REF], the inter-agent constraints in terms of the formation error are given by the set

Dk := {z 1k ∈ R 2 : δ k < |z 1k + z d 1k | < ∆ k }, ∀k ≤ M.
(24) Then, for each k ≤ M , we define a candidate BLF W k : Dk → R ≥0 , of the form

W k (z 1k ) = 1 2 |z 1k | 2 + B k (z 1k + z d 1k ) , (25) 
where

B k (z 1k ) = κ 1k ln ∆ 2 k ∆ 2 k -|z 1k | 2 -ln ∆ 2 k ∆ 2 k -|z d 1k | 2 + κ 2k ln |z 1k | 2 |z 1k | 2 -δ 2 k -ln |z d 1k | 2 |z d 1k | 2 -δ 2 k , κ 1k := δ 2 k |z d 1k | 2 (|z d 1k | 2 -δ 2 k ) , κ 2k := 1 ∆ 2 k -|z d 1k | 2 . Note that B k is a non-negative function that satisfies: B k (z d 1k ) = 0, ∇B k (z d 1k ) = 0, and B k (z 1k + z d 1k ) → ∞ as either |z 1k + z d 1k | → ∆ k or |z 1k + z d 1k | → δ k . Therefore, the candidate BLF (25) satisfies: W k (z 1k ) → ∞ as either |z 1k + z d 1k | → ∆ k or |z 1k + z d 1k | → δ k . Remark 2:
The functions defined in (25) are reminiscent of scalar potential functions in constrained environments. Hence, the appearance of multiple critical points is inevitable [START_REF] Rimon | Exact robot navigation using artificial potential functions[END_REF]. Indeed, the gradient of the BLF (25), ∇W k (z 1k ), vanishes at the origin and at an isolated saddle point separated from the origin. Therefore, when using the gradient of ( 25), the closed-loop system has multiple equilibria. We will address such technical difficulties using tools tailored for so-called multi-stable systems, see [START_REF] Forni | Input-to-state stability for cascade systems with multiple invariant sets[END_REF], [START_REF] Monzón | Local and global aspects of almost global stability[END_REF]. Now, we define a BLF for the multi-agent system as

W (z 1t ) = k≤M W k (z 1k ) (26)
and, in light of Remark 2, let us denote by z * 1 ∈ R n(N -1) the vector containing the saddle points of the BLF for each edge (25). Moreover, let us define the disjoint set

W := {0} ∪ {z * 1 }, (27) 
which corresponds to the critical points of W in (25). Then,

W satisfies a 1 2 |z 1t | 2 W ≤ W (z 1t ) ≤ a 2 |∇W (z 1t )| 2 , ( 28 
)
where a 1 , a 2 > 0 and |z 1t | W := min |z 1t |, |z 1t -z * 1 | . In the edge-agreement framework, the BLF-based virtual controllers are then given by

z * 2t = [E ⊤ t ⊗ I 2 ]ν * h ν * h := -c 1 [E t ⊗ I 2 ]∇W (z 1t ) -c 1 [C ⊗ I 2 ]z 1o -V , (29 
) where c 1 is a positive gain, V is a vector of estimates of the ocean current for each agent, and C ⊤ := 1 0 ⊤ 1×(N -1) . Defining the error coordinates z2t := z 2t -z * 2t , z2o := z21z 2o , and using (29), (23a)-(23b) become

ż1o ż1t = -c 1 1 C ⊤ E t E ⊤ t C E ⊤ t E t ⊗ I 2 z1o ∇W (z 1t ) + C ⊤ E ⊤ t ⊗ I 2 Ṽ + z2o z2t ( 30 
)
where the estimation error Ṽ is defined as

Ṽ := I N ⊗ V x 0 0 V y 1 2N - V = V -V . ( 31 
)
With aim at making Ṽ → 0, we design the adaptation law

V = c v (h -φ) , c v > 0 (32a) φ = ν h + V . ( 32b 
)
Using ( 32) and ( 1c)-(1d), the derivative of (31) becomes

V = -c v ν h + V -ν h -V = -c v Ṽ . ( 33 
)
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Now, we rewrite (23c)-(23d) in the error coordinates, z2o and z2t :

ż2o = µ 1 -ν * h1 (34a) ż2t = E ⊤ t ⊗ I 2 µ -ż * 2t . (34b) 
The tracking-in-formation control law is chosen as

µ = -c 2 E t RR ⊤ ⊗ I 2 z2t -c 2 [C ⊗ I 2 ]z 2o + ν * h -γsign E t RR ⊤ ⊗ I 2 z2t + [C ⊗ I 2 ]z 2o ( 35 
)
where c 2 , γ > 0 and ν *

h = -c 1 [E t ⊗ I 2 ]∇W (z 1t ) -c 1 [C ⊗ I 2 ]z 1o .

IV. MAIN RESULT

First we assume that the following holds. Assumption 7: The total relative velocity of the target is such that

U o (t) = (ξ 3o (t) -V x ) 2 + (ξ 4o (t) -V y ) 2 > 0.
Remark 3: Note that Assumptions 4 and 6 imply that there exist constants

U o , U o , U * o , and U * o , such that U o ≤ U o (t) ≤ U o and U * o ≤ Uo (t) ≤ U *
o for all t > 0. Moreover, let us define the following variables:

a = Y 1 - X 1 -1 l U o , b =Y 2 + X 2 l (36) c = Y 1 U 2 o l , d = Y 2 U o l . (37) 
Note that from Remark 3 we have that a ≤ a ≤ a, c ≤ c ≤ c, and d ≤ d ≤ d, with a, a, c, c, d, d being positive constants. Then, our main result is stated as follows.

Proposition 1: Consider N ASVs/AUVs, each described by the model (1), and interconnected over an initially connected undirected graph. Consider the hand-position point

h i := [ξ 1i ξ 2i ] ⊤ = [x i + l cos ψ i y i + l sin ψ i ] ⊤
, where

[x i y i ]
⊤ is the position of the pivot point of the ith agent, l > 0 is a positive, and ψ i is the yaw angle of the ith vehicle. Let ϕ o (t) = arctan(ξ 4o (t) -V y /ξ 3o (t) -V x ) be the crab angle of the target. If Assumptions 1-7 are satisfied and if

0 < Ūo < Y 2 Y 1 , l > max m 22 m 33 , - X 2 Y 2 (38) γ ≥ √ 2N µ o (39) 
Ū * o ≤ 2 min{a(d -c), b} Y1 Ūo l + 2 Y 1 -X1-1 l , (40) 
the controller [START_REF] Soorki | A robust dynamic leaderfollower formation control with active obstacle avoidance[END_REF], where the new inputs µ 1i and µ 2i are given by (35), renders the constraints set (10) forward invariant and guarantees the achievement of the tracking-in-formation objective [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrained nonlinear systems[END_REF] for almost all initial conditions such that z 1k (0) ∈ D k , for all k ≤ M . □ Proof: We begin by rewriting the N systems (7) in closed loop with the new inputs (35) in a cascaded form. For that purpose let us define the error variables

ζ1i := ζ 1i -ϕ o (t), ζ2i := ζ 2i -φo (t). (41) 
Moreover, define the tracking errors

ξ3i := ξ 3i -(ξ 3o (t)-V x ), ξ4i := ξ 4i -(ξ 4o (t)-V y ). (42) 
Denote ζ⊤

1 := ζ11 • • • ζ1N , ζ⊤ 2 := ζ21 • • • ζ2N , ζ⊤ := ζ⊤ 1 ζ⊤ 2 , ν⊤ hi := ξ3i ξ4i , ν⊤ h := ν⊤ h1 • • • ν⊤ hN , Sin( ζ1 ) ⊤ := sin ζ11 • • • sin ζ1N .
Then, the internal dynamics for the whole multi-agent system in compact form can be rewritten as

ζ1 = ζ2 (43a) ζ2 = -A( ζ) ζ2 -B( ζ)Sin( ζ1 ) + Ā( ζ, νh )ν h + B(ζ 1 )µ -A( ζ)1 N φo (t) -1 N φo (t) (43b) 
where

A( ζ) := diag{a cos ζ1i +b}, B( ζ) := diag{c cos ζ1i +d} (44) 
Ā( ζ, νh ) := blockdiag α( ζi , ξ3i , ξ4i ) β( ζi , ξ3i , ξ4i ) (45) B(ζ 1 ) := blockdiag{[-sin ζ 1i cos ζ 1i ]}, (46) 
and α( ζi , ξ3i , ξ4i ), β( ζi , ξ3i , ξ4i ) given in Appendix I. Now, defining χ ⊤ := z1o z⊤ 1t ν⊤ h Ṽ ⊤ , the closed loop system takes the form

ζ = -H( ζ) ζs + Ψ(t, ζ) + G( ζ, χ) (47a) χ = F (t, χ), (47b) 
where

ζ⊤ s := Sin( ζ1 ) ⊤ ζ⊤ 2 , H( ζ) = 0 I N B( ζ) A( ζ) , F (t, χ) =     νh1 E ⊤ ⊗I 2 νh µ -1 N µ o (t) -c v Ṽ     (48) 
G( ζ, χ) = 0 Ā( ζ, νh )ν h + B(ζ 1 )µ (49) Ψ(t, ζ) = 0 -A( ζ) φo (t) -1 N φo (t) . ( 50 
)
The stability analysis of the closed-loop cascaded system (47) follows a similar reasoning as in [START_REF] Paliotta | Trajectory tracking and path following for underactuated marine vehicles[END_REF]. First, we show that the driving system (47b) is (almost-everywhere) uniformly asymptotically stable with domain of attraction corresponding to the set of constraints, and that its trajectories converge exponentially to the origin. Next, under the property that the trajectories of the external dynamics converge to the origin exponentially fast, it may be shown that the trajectories of the internal dynamics (47a) are uniformly globally ultimately bounded.

A. External dynamics

In order to analyze the stability properties of the subsystem (47b) we use the reduced-order edge-based system presented above. Let

ς ⊤ 1 = z1o ∇z ⊤ 1t , ς⊤ 1 = z1o ∇W (z 1t ) ⊤ , ς ⊤ 2 = z2o
z⊤ 2t , and

L = 1 C ⊤ E t E ⊤ t C E ⊤ t E t ⊗ I 2 (51) R 1 = C ⊤ E ⊤ t ⊗I 2 , R 2 = 1 0 ⊤ (N -1) 0 (N -1) RR ⊤ ⊗I 2 . ( 52 
)
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where G 1 , G 2 ∈ K. Then, under the conditions (38), ( 40), (67), and Lemma 1, uniform ultimate boundedness of the trajectories of the internal dynamics (47a)-(47b) follows from the same arguments as in the proof of [START_REF] Paliotta | Trajectory tracking and path following for underactuated marine vehicles[END_REF]Theorem 1]. This proof is omitted here due to space constraints.

V. NUMERICAL EXAMPLE

In this section we illustrate the performance of the controller [START_REF] Soorki | A robust dynamic leaderfollower formation control with active obstacle avoidance[END_REF], with (35), through a numerical example consisting of the tracking-in-formation problem for six ASVs subject to proximity and collision-avoidance constraints. It is only assumed that the vehicles are interconnected at the initial time, so the controller must preserve such connectivity. We consider that the agents interact over a connected undirected graph and that only the agent labeled "1" has knowledge of the (relative) state of the target (labeled "0"). The topology is illustrated in Fig. 2. Moreover, the ocean current velocity is set to

V = [V x V y ] ⊤ = [0.05 -0.08] ⊤ .
The initial conditions of the agents are presented in Table I. The desired formation corresponds to a hexagon determined by the relative position vector z d 1k = (z d 1k,x , z d 1k,y ), for each k ≤ 5, set to (1, 0.5), (-1, -1.5), (-1, 0.5), (-2, 1), (-1, 0.5). The target is modeled as a second-order integrator [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF] Fig. 3-6 present the results of the simulation scenario. We see from Fig. 3 that the ASVs successfully reach the desired formation while following the target, as is also evidenced from the formation and tracking errors in Fig. 5 and the velocity errors in Fig. 6. Furthermore, note that the connectivity and collision avoidance constraints, shown as dashed red lines in Fig. 4, are always respected. Thus, the simulation results successfully verify Theorem 1 and illustrate the performance of the proposed controller. 

VI. CONCLUSIONS AND FUTURE WORK

We presented a solution to the tracking-in-formation control problem of cooperative autonomous marine vehicles under inter-agent output constraints. Building upon an inputoutput feedback transformation we proposed a distributed controller, using the gradient of a BLF and a backstepping design, that achieves the desired formation and target Manuscript 125 submitted to 2022 European Control Conference (ECC).

Received October 31, 2021. tracking with guaranteed connectivity maintenance and interagent collision avoidance even in the presence of constant disturbances and with limited knowledge of the target. We established almost-everywhere uniform asymptotic stability with exponential convergence of the output dynamics. Current research focuses on extending these results to AUVs moving in 3D and considering input and velocity constraints. 

APPENDIX I EQUATIONS

Fig. 1 .

 1 Fig. 1. Diagram of an ASV.

Fig. 2 .

 2 Fig. 2. Interaction topology: connected undirected graph.The six ASVs are considered identical and correspond to the model of CybershipII[START_REF] Fredriksen | Global κ-exponential way-point maneuvering of ships: Theory and experiments[END_REF], which is a scale model of an offshore supply vessel with mass 15 kg, length of 1.255 m, and whose mass and damping matrices are given by

  following a circular trajectory with the input µ o (t) = [-0.018 cos(0.06t) -0.018 sin(0.06t)] ⊤ , and initial conditions h o (0) = [15 0] ⊤ m and ν ho (0) = [0 0.3] ⊤ m/s. The maximal and minimal distance parameters are ∆ k = 4.4m and δ k = 0.4m. The hand position point is chosen at l = 1m, and the control gains are set to c 1 = 1, c 2 = 0.5, γ = 0.15, and c v = 0.2. All the parameters and control gains are chosen so that the conditions (38)-(40) are satisfied. Furthermore, in order to avoid discontinuities in the control, the non-smooth term in (35) is replaced by the smooth approximation -γ tanh (c a s), c a ≫ 1.

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. Paths followed by the agents.

Fig. 6 .

 6 Fig. 6. Norms of the velocity errors.

m 11 m 33 -m 2 23 m 22 m 33 -m 2 23; X 2 = 2 23 11 - 2 23; Y 2 = 2 23F

 222211222 Assumptions 1-3 the ASVs may be represented by a mass and a damping matrix of the form d 33 m 23 -d 23 m 33 m 22 m 33 -m m 22 )m 23 m 22 m 33 -m d 22 m 33 -d 32 m 23 m 22 m 33 -m ur (v r , r) = 1 m 11 (m 22 v r + m23r)r -d 11 m 11 u r (70) F r (u r , v r , r) = m 23 d 22 -m 22 (d 32 + (m 22 -m 11 )u r ) m 22 m 33 -m 2 23 v r + m 23 (d 23 + m 11 u r ) -m 22 (d 33 + m 23 u r ) m 22 m 33 -m 2 23 r (71)ζi ξ3i , ξ4i ) =-Y 1 l ( ξ3i cos( ζ1i +ϕ o ) + ξ4i sin( ζ1i +ϕ o )) +U o cos ζ1i + Y 2 l sin( ζ1i +ϕ o ) -Y 1 l U o sin ζ1i

Then, from (30), (34), and (35), the compact external dynamics in the edge-based perspective becomes

Remark 4:

The matrix E ⊤ t E t represents the edge Laplacian of a spanning tree, therefore it is symmetric positive definite [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]. Then, taking the Schur complement of E ⊤ t E t in (51), from the structure of C, we have that

Hence, from the positive-definiteness of E ⊤ t E t and (54), the matrix L in (51) is positive definite.

For system (53) we state the following. Lemma 1: The origin of the edge-based closed-loop system (53) is almost-everywhere uniformly asymptotically stable with domain of attraction

, with D := k≤M Dk , where Dk is defined in (24). Furthermore, for almost all initial conditions, the trajectories of the closed-loop external dynamics (53) converge to the origin exponentially. □ Proof: First define the function

where z1t → W (z 1t ) is defined in (26). The derivative of (55) along the trajectories of (53a) yields

and since L is positive definite, see Remark 4, (56) satisfies

where

We proceed by calculating the derivative of (58) along the trajectories of (53b), which is defined by the differential inclusion ς 2 ∈ F 2 (t, ς 2 ), where

and λ ∈ [-1, 1]. Thus, using condition (39) and

where

From ( 57), (60), and (53c), we have

Setting κ 1 , κ 2 large enough, we obtain

Now, recalling Remark 2, let

where W is defined in (27), be the set containing the equilibria of the closed-loop system (53). Then, from (28) the derivative of (61) satisfies

Thus, the closed-loop system (53) is uniformly asymptotically multi-stable at W ς , cf. [START_REF] Forni | Input-to-state stability for cascade systems with multiple invariant sets[END_REF]. Furthermore, since the critical point z * 1 of the barrier Lyapunov function is a saddle point, after [START_REF] Monzón | Local and global aspects of almost global stability[END_REF]Prop. 1], it follows that the region of attraction of the unstable equilibrium z * 1 has zero Lebesgue measure. Therefore, we conclude that the origin of ( 53) is almost-everywhere uniformly asymptotically stable in D, except for a zero-measure set of initial conditions.

In order to establish forward invariance of the set D we proceed by contradiction. Assume that there exists T > 0 such that for all t ∈ [0, T ), z1k (t) ∈ Dk and z 1k (T ) / ∈ Dk , for at least one k ≤ M . More precisely, we have |z 1k (t)| → ∆ k or |z 1k (t)| → δ k as t → T for at least one k ≤ M . From the definition of z1t → W (z 1t ) in (26) and z1k → W k (z 1k ) in (25), this implies that W ς (ς(t)) → ∞ as t → T which is in contradiction with (63). We conclude that W ς (ς(t)) is bounded for all initial conditions such that z1 (0) ∈ D, therefore, W ς (ς(t)) ≤ W ς (ς(0)) < ∞ for all ς(0) ∈ D and all t ≥ 0. The respect of the inter-agent constraints follows from the forward invariance of D.

Since (53) is asymptotically stable at the origin, with domain of attraction D, it follows that for (almost) all initial conditions ς(0) ∈ D there exist small positive constants ϵ(ς(0)) and ϵ(ς(0)) such that z1k (t) ∈ Dϵk , where

Moreover, for any z1 ∈ Dϵ , with Dϵ := k≤M Dϵk , we have that the BLF W in (26) satisfies

Therefore, from (66) and (63), we conclude that for almost all initial conditions ς(0) ∈ D, the trajectories ς(t) of the external dynamics converge to the origin exponentially.

B. Boundedness of the internal dynamics

The interconnection term G in (47a) satisfies the bound