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Pascal Préa François Brucker
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Abstract

Given a triadic distance [6, 7] D on a n-set S, we consider the following two recognition problems:
(i) determining if D is a perimeter, i.e. if there exists a (ordinary) dissimilarity d such that ∀x, y, z ∈ S,
D(x, y, z) = d(x, y) + d(y, z) + d(x, z) and (ii) determining if D is a diameter, i.e. if there exists a
dissimilarity d such that ∀x, y, z ∈ S, D(x, y, z) = max{d(x, y), d(y, z), d(x, z)}.

In this note, we give optimal O(n3) algorithms for these problems. Algorithms for Problem (i) can
be extended, with the same complexity, to problems like determining if there exist a dissimilarity d
such that (iii) ∀x, y, z ∈ S,D(x, y, z) = p

√
d(x, y)p + d(y, z)p + d(x, z)p or (iv) ∀x, y, z ∈ S,D(x, y, z) =√

d(x, y) · d(y, z) · d(x, z). In addition, all these algorithms can be extended to k-way dissimilarities, with
complexity O(nk).

From the algorithm for Problem (ii), we derive algorithms to approximate a dissimilarity into a dis-
tance, an ultrametric or a Robinson dissimilarity. The general frame of these algorithms is the following:
if the dissimilarity is closed to a distance (resp. an ultrametric, resp. a Robinson dissimilarity), return
a solution to the approximation problem, otherwise return None.

keywords : triadic distances, k-way dissimilarities, dissimilarities, diameter, perimeter, approximation,
ultrametrics, Robinson dissimilarities.

1 Introduction

A dissimilarity on a finite set S is a symmetric function d : S × S → R+ such that d(x, y) = 0 if x = y.
Dissimilarities can be seen as a generalization of distances; they are equivalent to symmetric matrices with
null diagonal.

Triadic distances or cubes were introduced in [6, 7] as a generalization of dissimilarities. A triadic distance,
three-way distance or (dissimilarity) cube on a n-set S = {x1, . . . , xn} is function D : S × S × S → R+ such
that, if we denote D(xi, xj , xk) by bi,j,k:

bijk = bikj = bjik = bjki = bkij = bkji
biji = bijj

∗This work was supported in part by ANR project DISTANCIA (ANR-17-CE40-0015).
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biii = 0
The two first conditions are a generalization to a 3-dimensional array of the symmetry condition for dissim-
ilarities (d(x, y) = d(y, z)). The equivalent of rows and columns in a matrix are, for a cube, rows, columns
and tubes: for i, j ∈ {1, . . . , n}, the (i, j)-th row (resp. column, resp. tube) is the set {bijk, k ∈ {1, . . . , n}}
(resp. {bikj , k ∈ {1, . . . , n}}, resp. {bkij , k ∈ {1, . . . , n}}).

In this note, we will only consider values D(x, y, z) with x 6= y 6= z 6= x, so the first condition is
the only one which will interest us. Similarly, for k > 3, we define a k-way dissimilarity as a func-
tion D : Sk → R+ such that, for every {x1, x2, . . . , xk} ⊂ S and every permutation σ on {1, . . . , k},
D(xσ(1), xσ(2), . . . , xσ(k)) = D(x1, x2, . . . , xk).

Our first goal in this note is to determinate if a triadic distance D can be “linked” with an (ordinary)
dissimilarity d. The two most natural links are:

• D is the diameter of d, i.e. ∀x, y, z ∈ S, D(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

• D is the perimeter of d, i.e. ∀x, y, z ∈ S, D(x, y, z) = d(x, y) + d(y, z) + d(x, z)

In Section 2, we give two O(n3) algorithms for the Perimeter problem and, in Section 3, an O(n3)
algorithm to solve the Diameter problem. Since the size of the data (a triadic distance on a n-set) is
≈ n3, these three algorithms are optimal. These algorithms can be extended, with complexity O(nk), to
k-way dissimilarities. In Section 4, we derive, from the algorithm of Section 3, algorithms to approximate a
dissimilarity into a distance, an ultrametric or a Robinson dissimilarity [8].

2 Optimal Algorithms for the Perimeter Problem

2.1 An analytic algorithm

In this section, we will see that if a triadic distance D is the perimeter of a dissimilarity d, then d can be
analytically expressed from D.

Given a triadic distance D on a n-set S, perimeter of a dissimilarity d. We define:

D(·, ·, ·) :=
∑

{x,y,z}⊂S

D(x, y, z) =
∑

{x,y,z}⊂S

d(x, y) + d(y, z) + d(x, z) (1)

∀x ∈ S:
D(x, ·, ·) :=

∑
{y,z}⊂S\{x}

D(x, y, z) =
∑

{y,z}⊂S\{x}

d(x, y) + d(y, z) + d(x, z) (2)

∀x, y ∈ S:

D(x, y, ·) :=
∑

z∈S\{x,y}

D(x, y, z) =
∑

z∈S\{x,y}

d(x, y) + d(y, z) + d(x, z) (3)

Similarly:

d(·, ·) :=
∑

{x,y}⊂S

d(x, y) (4)

∀x ∈ S:
d(x, ·) :=

∑
y∈S\{x}

d(x, y) (5)

In equation (1), each d(x, y) appears n− 2 times (one for each z 6= x, y), so:

D(·, ·, ·) = (n− 2) · d(·, ·) (6)
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In Equation 2, each d(x, y) appears n− 2 times. So:

D(x, ·, ·) = (n− 2) · d(x, ·) +
∑
y,z 6=x

d(y, z) (7)

As
∑
y,z 6=x d(y, z) = d(·, ·)− d(x, ·), we have:

d(x, ·) =
D(x, ·, ·)− d(·, ·)

n− 3
(8)

In Equation 3, d(x, y) appears n− 2 times. In addition,
∑
z 6=x,y d(x, z) = d(x, ·)− d(x, y). So, we have:

d(x, y) =
D(x, y, ·)− d(x, ·)− d(y, ·)

n− 4
(9)

If D is the perimeter of a dissimilarity d, Equations (6-8-9) yield an analytic expression of d as a function of
D (Equation 10) which yields to an O(n3) Algorithm.

d(x, y) =
D(x, y, ·)− D(x,·,·)+D(y,·,·)−2D(·,·,·)

n−2

n−3
n− 4

(10)

2.2 A recursive algorithm

We now present another algorithm for this problem, based on the fact that the perimeter problem can be
settled as a system of n(n − 1)(n − 2)/6 linear equations (each equation corresponds to a value D(x, y, z))
on n(n− 1)/2 unknowns (each unknown corresponds with a value d(x, y)), namely all the equations

d(x, y) + d(y, z) + d(x, z) = D(x, y, z) (11)

Solving this system would not yield to an efficient algorithm, but it can help to design one.
For S′ ⊂ S, we define S(S′) as the system of all equations (11) built on the elements of S′. If |S′| = 5,

S(S′) is a system of 10 equations on 10 unknowns; if |S′| < 5, S(S′) has more unknowns than equations and
if |S′| > 5, S(S′) has more equations than unknowns.

The following Algorithm Perimeter Inversion first partition S into n/5 sets of 5 points and solves S
on each of these subsets. Then it merges these subsets. The values of D are not all used to compute d, so
there is a final step of verification (Function Is Perimeter).

Algorithm 1: Perimeter Inversion

Input: A 3-way dissimilarity D on a n-set S = {x1, x2, . . . , xn}
Output: A dissimilarity d on S such that D is the perimeter of d, or None if such a dissimilarity

does not exist
begin

forall xi ∈ S do
d(xi, xi)← 0 ;
χi ← {xi} ;

Θ← {χ1, χ2, . . . , χn} ;
while |Θ| > 1 do

(Θ, d)← Zone Fusion(S,D,Θ, d) ;

if Is Perimeter(d,D) then
return d

It is possible, in Algorithm Zone Fusion, that |Idk/5e| = a < 5; In this case, in order to have a system
S({pi : i ∈ Ij}) with as many unknowns that equations, we complete {pi} with 5− a other points.
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Algorithm 2: Zone Fusion

Input: A 3-way dissimilarity D on a n-set S
A partition Θ = {θ1, θ2, . . . , θk} of S
A dissimilarity d on S such that ∀θi ∈ Θ,∀x, y ∈ θi, d(x, y) is known
(the other values are yet undetermined)

Output: A partition Ω = {ω1, . . . , ωdk/5e} of S // The dissimilarity d is now known ∀x, y ∈ ωi,
∀ωi ∈ Ω

begin
forall θi ∈ Θ do

Chose pi ∈ θi ;

forall j ∈ {1, . . . dk/5e} do
Ij ← {j, j + 1, j + 2, j + 3, j + 4} ;
ωj ← ∪i∈Ijθi ;
Solve S({pi : i ∈ Ij}) ;
forall {l, l′} ⊂ Ij do

forall x ∈ θl do
if x 6= pl then

d(x, pl′)← D(x, pl, pl′)− d(x, pl)− d(pl, pl′) ;

forall y ∈ θl′ \ {pl′} do
d(x, y)← D(x, y, pl′)− d(x, pl′)− d(y, pl′) ;

return (Ω := {ω1, ω2, . . . , ωdk/5e}, d) ;

Property 1. Algorithm Perimeter Inversion solves the perimeter problem.

Property 2. Algorithm Perimeter Inversion runs in O(n3).

Proof. Each resolution of S({pi : i ∈ Ij}) takes a constant time. There is less than
∑
i≥1 n/5

i such systems.
So, the resolution of all systems S({pi : i ∈ Ij}) takes O(n) time.

Each value which is not determined by a system S({pi : i ∈ Ij}) takes O(1) time to be computed. So
the computation of all these values takes O(n2) time.

Finally, the verification runs in O(n3).

We remark that the O(n3) complexity of Algorithm 2 is entirely due to the verification step. The
construction of d takes only O(n2).

2.3 Extensions

Given two functions f, g: R −→ R, such that f−1 exists, we say that a triadic distance D is a fg-perimeter
of a dissimilarity d if g(D(x, y, z)) = f(d(x, y)) + f(d(x, y)) + f(d(x, y)). Algorithm Perimeter Inversion
can be adapted to determine, with the same O(n3) complexity, if D is a fg-perimeter of a a dissimilarity d.
This extension of the Perimeter problem covers many links between triadic distance and dissimilarities. For
instance:

• The harmonic mean D(x, y, y) =
√
d(x, y) · d(y, z) · d(x, z), with f(a) = log(a) and g(a) = log2(a).

• The Lp-norm D(x, y, z) = p
√
d(x, y)p + d(y, z)p + d(x, z)p with f(a) = g(a) = ap.

In addition, all these algorithms can be extended to k-way dissimilarities with complexity O(nk).
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3 The Diameter Problem

In this section, we first give an optimal algorithm for the Diameter problem.

Algorithm 3: Diameter Inversion

Input: A 3-way dissimilarity D on a n-set S
Output: A dissimilarity d on S such that D is the diameter of d, or None if such a dissimilarity

does not exist
begin

forall x, y ∈ S do
d(x, y)←∞ ;

forall x, y, z ∈ S do
d(x, y)← min(d(x, y), D(x, y, z)) ;
d(x, z)← min(d(x, z), D(x, y, z)) ;
d(z, y)← min(d(z, y), D(x, y, z)) ;

forall x, y, z ∈ S do
if max(d(x, y), d(y, z), d(x, z)) 6= D(x, y, z) then

return None ;

return d ;

Property 3. Algorithm Diameter Inversion runs in O(n3).

Property 4. The output of Algorithm Diameter Inversion is None if and only if D is not the diameter
of a dissimilarity.

Different dissimilarities may have the same diameter, even when structurally different. For instance, the
dissimilarities d, defined by ∀x, y ∈ S, d(x, y) = 3, and d′, defined by ∀x, y ∈ S, d′(x, y) = 3 except d′(x1, x2) =
d′(x1, x3) = 1, have the same diameter although d is an ultrametric (∀x, y, z, d(x, y) ≤ max(d(x, z), d(y, z)))
and d′ is not a distance.

Given a dissimilarity d, we define the 3-smoothing of d by d[3] = Diameter Inversion(Diameter(d)),
i.e.:

∀x, y ∈ S, d[3](x, y) := min
z 6=x,y

max(d(x, y), d(y, z), d(x, z))

As for the Perimeter problem, Algorithm 3 can be generalized to k-way dissimilarities with complexity O(nk)
and similarly, we define, for k ∈ {2, . . . , n} the k-smoothing d[k] by:

∀x, y ∈ S, d[k](x, y) := min
{x,y}⊂K⊂S
|K|=k

max{d(a, b) : a, b ∈ K}

Note that d[2] = d and that d[n] is a constant.

Claim 1. Let d be a dissimilarity on S and k < k′ ∈ {2, . . . , n}, then, ∀x, y ∈ S, d[k](x, y) ≤ d[k′](x, y).

Property 5. Let d be a dissimilarity on S and k ∈ {2, . . . , n − 1} such that d[k] is a distance. Then, for
k′ ∈ {k + 1, . . . , n}, d[k′] is a distance.

Proof. Let x, y, z be three elements of S, and K be a set of cardinality k+1, containing x and z and such that
its diameter is d[k+1](x, z). For all t ∈ K, d(y, t) ≤ d[k](y, t) ≤ d[k](y, z)+d[k](z, t) ≤ d[k+1](y, z)+d[k+1](x, z).
The set K ∪ {y} contains x and y, its cardinality is ≥ k + 1 and its diameter is ≤ d[k+1](y, z) + d[k+1](x, z).
Thus d[k+1](x, y) ≤ d[k+1](y, z) + d[k+1](x, z) and so d[k+1] is a distance.
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A dissimilarity d on S is Robinson [8] if there exists a order (which is said to be compatible) σ on S such
that, when S is sorted along σ, if x < y < z, then d(x, y) ≤ d(x, z) and d(y, z) ≤ d(x, z).

Property 6. Let d be a dissimilarity on S, σ a permutation of S and k ∈ {2, . . . , n − 1} such that d[k] is
Robinson with σ as a compatible order. Then, for k′ ∈ {k + 1, . . . , n}, d[k′] is Robinson and admits σ as a
compatible order.

Proof. We suppose that S is sorted along σ, and let x <σ y <σ z be three elements of S. Let K be a set of
cardinality k+1, containing x and z and of diameter d[k+1](x, z). For any t ∈ S, we have d(y, t) ≤ d[k](y, t) ≤
d[k](x, t) (if t ≥σ y) or d(y, t) ≤ d[k](z, t) (if t ≤σ y). So the diameter of K ∪ {y} is ≤ d[k+1](x, z) and thus
we have d[k+1](x, y) ≤ d[k+1](x, z) and d[k+1](y, z) ≤ d[k+1](x, z).

Property 7. Let d be a dissimilarity and k ∈ {2 . . . , n − 1} such that d[k] is an ultrametric. Then d[k
′] is

an ultrametric for every k′ ∈ {k + 1, . . . , n}.

Proof. Let x, y, z ∈ S; we suppose, with no loss of generality, that d[k](x, y) ≤ d[k](x, z) = d[k](y, z). The
dissimilarity d[k] is Robinson [5]. Moreover, d[k] (as a Robinson dissimilarity) admits two compatible orders
σ1 and σ2 such that x <σ1

y <σ1
z and y <σ2

x <σ2
z. By Property 6, d[k+1] is Robinson and admits σ1 and

σ2 as compatible orders. So, max(d[k+1](x, y), d[k+1](y, z)) ≤ d[k+1](x, z) and max(d[k+1](x, y), d[k+1](x, z)) ≤
d[k+1](y, z), i.e. d[k+1](x, y) ≤ d[k+1](x, z) = d[k+1](y, z).

Properties as 5, 6, 7 do not exist for any type of distances. For instance, there is no such properties for
tree-distances1 or quasi-ultrametrics2, as shown in the example of Figure 1.

•
tk−3

•
zk−3

•
t2

•
t1

•
t0

•
x

•
y

•
z0

•
z1

•
z2

Figure 1: A dissimilarity d which is a tree-distance and a quasi-ultrametric (for all a, b, Bd(a, b) is the
interval[a, b]), although d[k] is neither a tree-distance nor a quasi-ultrametric: d[k](x, y) = d[k](x, tk−3) =
d[k](y, tk−3) = d[k](x, zk−3) = d[k](y, zk−3) = k − 1 and d[k](zk−3, tk−3) = 2k − 3.

4 Approximation algorithms

The k-smoothing yields to a natural way to approximate a dissimilarity into a distance, an ultrametric or a
Robinson dissimilarity is the following Algorithm 4, where the “desired property” can be be a distance, an
ultramatric, a Robinson dissimilarity, or any property which is verified by the constant dissimilarity.

Algorithm 4 may have an exponential complexity. Its variant Algorithm 5 is of complexity O(n3).
Algorithm 5 gives a solution only if the 3-smoothing of the input has the desired property. We can

interpret this as “the input is closed to have the desired property”. The interest of such an algorithm is
that it has a good complexity and, if the input d is “far” from having the property, it is not pertinent to
approximate it.

The problem is that this notion of “far” actually means “far for the algorithm”. Does this notion
correspond with a natural one? We have tested that for Robinson dissimilarities. We have generated points
in a p× q rectangle and taken for d the distance between points. If p = 0, then d is Robinson. So, if p� q,

1A dissimilarity d on S is a tree-distance [1] if there exists a valuated tree T = (V,E) such that S ⊂ V and for all
x, y ∈ S, d(x, y) is the length of the shortest path of T between x and y. Equivalently, for all x, y, z, t ∈ S the two greatest of
d(x, y) + d(z, t), d(x, z) + d(y, t) and d(x, t) + d(y, z) are equal.

2Let d be a dissimilarity on S. For x, y ∈ S, the two-ball Bd(x, y) is the set {z ∈ S : d(z, x), d(z, y) ≤ d(x, y)}. The
dissimilarity d is a quasi-ultrametric [3, 4] if every two-ball of d is a clique, i.e. if:

∀x, y, z, t ∈ S, d(z, x), d(z, y), d(t, x), d(t, y) ≤ d(x, y) =⇒ d(z, t) ≤ d(x, y)
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Algorithm 4: Näıve Approximation

Input: A dissimilarity d on a n-set S
Output: A dissimilarity d′ on S which has the desired property
begin

d′ ← d ;
k ← 2 ;
while d′ has not the desired property do

k ← k + 1 ;

d′ ← d[k] ;

return d′ ;

Algorithm 5: Partial Approximation

Input: A dissimilarity d on a n-set S
Output: A dissimilarity d′ on S which has the desired property, or None if d is far from having

this property
begin

if d has the desired property then
return d ;

if d[3] has the desired property then
return d[3] ;

return None ;

d is close to a Robinson dissimilarity and if p = q, d is “absolutely not” Robinson. Results of this test are
shown in Figure 2.
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Figure 2: Results of tests for Robinson: sets of points (of size 20, 50 or 100) with integer coordinates have
been generated into rectangles of length 108 and we considered the Euclidean distance between these points.
On the abscissas, we have indicated the proportion of the rectangle (“5” indicates that the breadth of the
rectangle is 5% of its length); on the ordinate, we have indicated the percent of Robinson dissimilarities. The
lower curve is for dissimilarities before 3-smoothing, and the upper one for dissimilarities after 3-smoothing.
Each point on the curves correspond with the average value on 1000 trials. For instance, on 1000 sets of 20
points generated in a rectangle of size 108× 5 · 106, the Euclidean distance between these points is Robinson
for 134 sets before 3-smoothing and for 288 sets after 3-smoothing. The time taken by our algorithm on a
laptop is 1.7 ms for a 20× 20 matrix, 25 ms for a 50× 50 matrix and 200 ms for a 100× 100 matrix.
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As expected, we can see the the proportion of Robinson dissimilarities after 3-smoothing decreases with
the breadth of the rectangles.
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