

PSL *

ASSESS THE TRANSITION TO A CIRCULAR ECONOMY FOR THE ENERGY SYSTEM: LONG-TERM ANALYSIS OF THE CASE OF THE SOUTH-EST REGION OF FRANCE

8 June 2021

Carlos ANDRADE, Sandrine Selosse, Nadia Maïzi

Context

- Objective: Analyze, through a prospective model, the options for low-carbon energy transition and circular economy in the SOUTH PACA region
- Main questions:
 - Integrate circular economy issues into the region's energy system long-term model
 - Evaluate the region's energy-climate policies
 - How to transform the various guiding documents into regional energy policies?
 - Where and how to develop renewable energy potentials?
 - How the region can contribute to national decarbonisation goals?

Model structure

Final energy production by department of the SUD PACA Region in 2017

- Low energy production compared to consumption (17% of the demand)
- Energy production mainly comes from fossil fuels (50%)
- Production concentrated in the BDR1 (54%)

PSL*

ParisTech

TIMES SUD PACA model

Circular economy

Can be defined as an **economic system** that seeks to contribute to sustainable development (cover current needs without compromising those of tomorrow), in particular to **dissociate economic growth from** environmental degradation and social inequality, by redesigning the way of consuming, of producing, and how the society relates with the environment and to itself, through the optimal application of the **4** R's namely "reduce, reuse, recycle and recover", always seeking to **minimize the consumption of resources**, and looking towards producing zero waste, with a systemic approach at the moment of its deployment at the micro (companies and households), meso (industrial synergies, regions), macro (country and global) and supply chain level (interaction between the previous levels).

A circular energy system

- Maximize the reuse of resources that otherwise would have been thrown away
- Prioritize the recovery of resources in order to increase the efficiency of the system
- Reduce emissions
- Reuse products by giving them a second life
- Integrate a shift in behavior in terms of how energy is consumed

Type of energy	Potentials (PJ)	Source
Heat recovery from waste water	2.36	Antea Group, 2011
Waste heat from industry	33.1	ADEME, 2017
Waste hydrogen	1.28	ADEME, 2018
Ground photovoltaic	54.81	Cerema Méditerranée, 2019
Roof photovoltaic	92.8	ADEME & Armines PERSEE, 2015
Wind	21.48	Valorem-Conexia Energy, 2010
Geothermal	136.79	BRGM, 2013
Hydraulic	14.73	CEREMA, 2015
Agricultural waste	9.71	
Green waste	1.36	Hélianthe 2015
Municipal solid waste	13.52	
Waste water sludge	1.52	
Wood	27.73	ADEME, 2018
Total	411.19	

The perspective of the circular energy system for the SUD PACA region

8

Technological characteristics

	Technologies	Inve	stment c	ost	Variable Cost	FOM	Source	
		2020	<u>2030</u>	<u>2050</u>	<u>2025</u>	<u>2025</u>		
	Proton Exchange membrane	1500	950	750		45 (M€/GW)		
	Alkaline large	625	377		0.06	41.5 (M€/GW)		
E = C = C = C = C = C = C = C = C = C =	Alkaline medium	1779	444		0.06	89.9 (M€/GW)	JRC, 2010	
	Alkaline small	1940	512		0.90	136.7 (M€/GW)		
	Hydrogen injection	963	933	467			Doudard, 2019	
Gasification -	Centralized - wood/CSR	2453			0.86	122.5182		
Prod. H2	Decentralized - wood/CSR	3814			1.70	76.2042	JRC, 2016	
(€/kW)	Biomass reforming	519	519		0.18	20.77 (M€/GW)		
Biogas (€/kW)	Methanization €/MWh				60.00			
	Purification	500	450	405				
	Biogas purification (€/t)				9.00			
	Pyrogasification - wood	3000		2500			Doudard,	
Biogas/Syngas	Pyrogasification - CSR (€/MWh)				40.00		2019/Ademe, 2018	
	Methaneur	1519.6741 8	447	263				
	Biomethane injection	354	267	193				
	H2 - Centralized underground	2.7				0.3 (€/kWh)		
	H2 - Centralized tank	13				0.8 (€/kWh)		
Energy storage	H2 - Decentralized tank	7.5				0.4 (€/kWh)		
(€/kWh)	Battery - Lead-Acid	176		135			JRC, 2010	
	Battery - Li-ion	660	224	216				
	Battery - NaNiCl ZEBRA	157		68				

Scenarios – the demand

Transport

/ Mt

Ъ

Scenarios - Reference scenario: assumptions for the production sector

This scenario aims to explore the evolution of the energy system according to trends, which take into account policies established in the region and France before the base year

- Production: Follows trends from past years
 Electricity from the French electricity grid is
 reduced by 15% in 2050 (electricity withdrawal
 trend -3% on average between 2010 and 2017)
- Gas from the gas network can increase by 10% in 2050 (gas consumption 7% higher in 2017 compared to 2007)
- The region can use 21 PJ (10% of gas consumption in 2017) of bio methane from the French gas network in 2050

PJ	Energy	2017	Annual growth	2050
	Biogas	0.84	1.00%	4.90
>	Biomass	1.41	0.50%	2.75
cit	Wind	0.42	0.00%	0.81
, tri	Hydro	28.65	0.10%	35.00
	Waste	1.53	0.00%	2.30
ш	Solar	5.51	8.00%	127.97
	Fossil	35.54	0.00%	35.54
	Biomass	9.92	1.00%	14.43
F	Heat pumps	17.00	5%	32.68
hermá	Heat Network	1.43	2.00%	5.22
F	Solar thermal	0.64	1.00%	0.88
	Fossil	2.32	0.00%	2.32
	Electrique			209.27
	Thermal			57.18

Reference scenario – demand side

- In 2050, building renovation will be developed in 40% for the residential sector, and 30% in the commercial sector
- The consumption of bio methane for the different sectors, in 2020 can rise to 1% of the consumption of natural gas in 2017 and 20% in 2050
- For the transport sector, natural gas can represent at least 10% of the energy consumption of freight vehicles and buses and 1% for private vehicles
- Personal mobility vehicles can cover 5% of private vehicles mobility demand
- In areas with low consumption, the share of electric vehicles can reach up to 20% of total vehicles in 2050 and it can reach up to 30% for areas with high consumption

P2G PROJECTS						
lupitor 1000	1 GW	2020	Electrolysers			
	0.02 PJ	2021	Methaners			
UVCDEEN	12 MW	2025	Electrolycore			
HIGKEEN	435 MW	2030	Electrolysers			
Valhydate	7500 t/an	2025	Waste hydrogen valorisation			
	7	2030	Hydrogen bus			
HynoVAR	404 kg/j	2030	Hydrogen production			
HyAMMED	8	2025	Hydrogen freight vehicles			

Scenarios – SRADDET: supply assumptions

Objective: Analyze the policies proposed by the SUD PACA region

Production:

- Electricity from the French electricity grid is reduced by 50% in 2050
- Gas from the gas network can increase by 10% in 2050
- The region can use 21 PJ (10% of gas consumption in 2017) of bio methane from the French gas network in 2050
- Development of P2G projects
- No new fossil power plants

Energy production

Produc	ction (PJ)	2017	2020	2025	2030	2050
	Biomass	1.41	2.88	4.42	4.42	4.42
	Wind	0.42	0.99	2.21	2.78	5.40
	Hydro	28.65	29.12	31.02	31.02	33.20
Electricity	Solar (ground)	5.51	6.27	8.90	6.57	29.47
	Solar (rooftop)	-	1.30	6.47	20.47	78.57
	Biomass	9.92	6.67	3.79	4.79	9.38
	Methanization	1.73	1.73	2.19	3.60	7.39
Thermal	Gasification	-	0.00	2.06	3.60	7.60
	Solar (thermal)	0.62	0.62	1.74	2.21	4.47
TOTAL		48.27	49.57	62.80	79.45	179.90

Scenarios – SRADDET: Demand

- In 2050, building renovation will be developed in 100%
- Personal mobility vehicles can cover up to 15% of cars mobility demand, and buses can cover up to 5% private vehicles mobility demand
- In areas with low energy consumption, the share of electric vehicles can reach up to 20% of total vehicles in 2050 and it can reach up to 30% for areas with high consumption
- People by private vehicle will increase to 1.35 from 2030

Regional hydrogen plan					
2027 2032					
Freight transport	units	100	630		
Utilitary vehicles	units	540	2280		
Buses	units	86	260		
H2 production	tH2/year	16000	28800		
Injection into the gas network	tH2/year	3000	5400		

Scenarios – Circular energy system

Objective : Evaluate how integrating a circular economy perspective can shift the development of the energy system of the SUD PACA region

Proposed objectives					
100%	In	dustrial waste heat			
100%	١	Naste water heat			
100%		Sludge			
100%		Municipal waste			
100%	Bu	uildings renovation			
15%		CCU			
Bus	7% Of particular vehicules mobilit demand				
Personnes par véhicule particulier	1.70	People by car			
Modal shift	Personal mobility vehicles can cover up to 17% of cars mobility demand and buses can cover up to 7% in 2050				
Air heat pumps	15% more than in the reference scenario				
Tidal energy	3 GW				
Wind 3 times the reference scenario					
No new fossil power plants Includes the regional hydrogen					

Results – Regional electricity production

■ Biogas ■ Coal ■ Hydraulic ■ Natural Gas ■ Ocean ■ Oil products ■ Other ■ Solar ground ■ Solar roof ■ Wind ■ Wood

- In 2050 the use of fossil fuels represent 22% of electricity production in the reference scenario, while they account for less than 1% in the SR and CE scenario
- Total power production in 2050 in the CE scenario is the lowest among the studied scenario as it presents a lower electricity demand
- The electricity production achieved in 2050 in the SR scenario complies with a little bit more than 50% of the objectives stablished in the SRADDET

Results – Electricity production by zone

- Electricity production is concentrated in the BDR1 in the reference and SR scenario while it is more distributed among the territories in the CE scenario
- Wind production is developed mainly in the BDR1, while tidal energy is mostly used in the VAR1 zone
- Hydroelectricity is developed mainly in the VAUC zone

Electricity storage

- Hydro storage and batteries have been used to store electricity
- Hydro storage has been developed mainly in the AHP zone
- Batteries have been used mostly in high consuming ares as they have been used to store electricity from roof photovoltaic panels

Hydrogen production

Hydrogen uses in 2050								
REF		SR		EC				
Transport	Injection	Transport	Injection	Transport	Injection			
34%	62%	74%	26%	48%	52%			

- The most important output of hydrogen is reached in the CE scenario due to the gasification of MSW, which is developed mainly in low consumption areas
- The AHP zone is the greatest producer of hydrogen in all scenarios due to the Hygreen project

Total CO2 emissions

	CE	SR	REF
Total			
discounted system cost	14,245,621	14,170,624	14,218,102

Conclusion

- The region is in the path towards the decarbonization of its energy system, with the decrease of fossil fuels consumption and the development of clean technologies
- The recovery of waste heat should be prioritize as it has proven to have a great potential to decarbonize the habitat sector, increasing also the efficiency of the whole system
- The use of batteries to store roof PV production is key to allow a greater development of the technology
- It is required higher efforts to allow the introduction of clean alternative energies into the transport sector. Supporting the development of an hydrogen market seems key to decarbonize this sector
- Implementing a CE perspective in the development of an energy system can allow greater environmental results, with a similar cost than in other scenarios

THANKS FOR YOUR ATTENTION

Carlos ANDRADE <u>carlos.andrade@mines-paristech.fr</u> PhD student *MINES ParisTech, PSL Research University, Center for Applied Mathematics Thesis co-financed by ADEME and the SUD Provence-Alpes-Côte d'Azur Region and in partnership with Schneider Electric*

Carlos ANDRADE

MINES ParisTech, PSL Research University Center for Applied Mathematics, Sophia Antipolis