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An Homogeneous Unbalanced Regularized Optimal Transport model with applications to Optimal Transport with Boundary

This work studies how the introduction of the entropic regularization term in unbalanced Optimal Transport (OT) models may alter their homogeneity with respect to the input measures. We observe that in common settings (including balanced OT and unbalanced OT with Kullback-Leibler divergence to the marginals), although the optimal transport cost itself is not homogeneous, optimal transport plans and the so-called Sinkhorn divergences are indeed homogeneous. However, homogeneity does not hold in more general Unbalanced Regularized Optimal Transport (UROT) models, for instance those using the Total Variation as divergence to the marginals. We propose to modify the entropic regularization term to retrieve an UROT model that is homogeneous while preserving most properties of the standard UROT model. We showcase the importance of using our Homogeneous UROT (HUROT) model when it comes to regularize Optimal Transport with Boundary, a transportation model involving a spatially varying divergence to the marginals for which the standard (inhomogeneous) UROT model would yield inappropriate behavior.

Introduction

Optimal Transport (OT) literature can be traced back to the seminal work of Monge [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], where Monge proposes a way to interpolate between two distributions of mass, represented by two probabilities measures α, β supported on some space Ω, while minimizing a cost representing the total effort spent to move each element of mass in α to a corresponding one in β. In its modern formulation due to Kantorovich [START_REF] Kantorovich | On the translocation of masses[END_REF], the OT problem is introduced as a linear program OT(α, β) := min π c(x, y)dπ(x, y) over transport plans π ∈ Π(α, β) that correspond to measures supported on Ω × Ω whose marginals are exactly α and β. Here, c(x, y) denotes the cost of transporting some mass located at x to y. When Ω ⊂ R d is convex and c(x, y) = x -y p , the infimum value reached (to the power 1/p) defines a metric between probability measures supported on Ω called the Wasserstein distance. In addition, any optimal π ∈ Π(α, β) induces an interpolation between α and β by setting µ t := A t #π := π(A -1 t (X)) where A t (x, y) := (1 -t)x + ty that turns out to be a geodesic between α and β for the Wasserstein distance and can also be understood as the solution of the so-called continuity equation (see for instance [START_REF] Villani | Optimal transport: old and new[END_REF]Thm. 7.21] and [22, §5.4]). More generally, gradient flows induced by transportation problems are closely related to evolutionary equations [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF].

Naturally, this physical interpretation suggests that optimal transport models should be homogeneous with respect to the input measures α and β: loosely speaking, encoding the mass of α and β in grams or in kilograms should not change the structure of the solutions we obtain to describe the behavior of a physical system. Formally, it means that if π is an optimal transport plan between α and β, we expect λπ (or, at least, some scaled version of π) to be an optimal transport plan between λα and λβ, for some scaling factor λ > 0. Fortunately, this clearly holds in the standard formulation of OT (the objective function and the constraints are linear). While this formulation is restricted to measures with the same total masses (and, by homogeneity, boils down to probability measures), models of Unbalanced OT (UOT) have been proposed to handle measures with possibly different total 1 masses by relaxing the marginal constraints (see [START_REF] Chizat | Unbalanced optimal transport: geometry and kantorovich formulation[END_REF][START_REF] Liero | Optimal entropy-transport problems and a new hellingerkantorovich distance between positive measures[END_REF] and Section 2.3). Of interest in this work and developed in Section 5 is the framework of Optimal Transport with Boundary (OTB) proposed by Figalli and Gigli [START_REF] Figalli | A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions[END_REF] to model heat diffusion process with Dirichlet boundary conditions. Their model enables the comparison of measures with different total masses by allowing the transportation of any amount of mass to, and from, the boundary ∂Ω of the domain Ω provided we pay the corresponding cost c(•, ∂Ω). Here as well, all these models of UOT are homogeneous.

A parallel line of development-mainly popularized by the work of Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]-proposes to regularize the standard OT model between probability measures by adding an entropic regularization term +εKL(π|α ⊗ β) where ε > 0 is a regularization parameter, and KL(µ|ν) = log dµ dν dµ denotes the Kullback-Leibler divergence (here, between probability measures). This approach was initially motivated by computational aspects: the resulting problem becomes strictly convex and can be solved efficiently using the Sinkhorn algorithm: a fixed-point algorithm that only involves matrix manipulations (hence usable efficiently on modern hardware as GPUs). Nonetheless, this model appears to be supported by strong theoretical properties, in particular through the introduction of an "unbiased" version called the Sinkhorn divergences [START_REF] Ramdas | On wasserstein two-sample testing and related families of nonparametric tests[END_REF][START_REF] Feydy | Interpolating between optimal transport and mmd using sinkhorn divergences[END_REF], presented in Section 2.3. Unbalanced and Regularized OT have been mixed together in the works [START_REF] Chizat | Scaling algorithms for unbalanced optimal transport problems[END_REF][START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF] in a setting that covers most UOT models (though not directly the OTB one). However, the resulting Unbalanced Regularized OT model (UROT) may fail to be homogeneous, mostly because of the introduction of the (non-linear) term α ⊗ β. In particular, naive adaptations of [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF] to introduce an entropic regularization in the OTB model will suffer with heavy inhomogeneity, hindering its use in practice and calling for the development of an entropic regularization term that would preserve homogeneity.

Outline and Contributions

This paper is organized in the following way:

• Section 2 presents the background on OT theory on which this work relies, including its regularized and unbalanced variants.

• Section 3 studies the (in)homogeneity properties of Unbalanced Regularized OT in its standard formulation. We prove in particular that in the natural settings of balanced OT and KL-penalized marginals, although the transport cost itself is not homogeneous, the corresponding Sinkhorn divergence appears to be homogeneous thanks to the addition of a "mass bias" proposed by Séjourné et al. It gives a new perspective in favor of the use of this "unbiased" formulation of entropic OT in these contexts. We show that, however, in a more general setting (for instance when using the Total Variation as the marginal penalty), homogeneity does not hold in the standard UROT model.

• Section 4 introduces a model of Homogeneous Unbalanced Regularized OT (HUROT). This models enjoys most of the properties of the standard one (UROT): it is solved by applying the Sinkhorn algorithm to renormalized measures, is continuous with respect to the weak convergence of measures, and the corresponding Sinkhorn divergence is positive without the need to introduce a mass bias term.

• Eventually, Section 5 introduces a model of Regularized OT with Boundary (ROTB). We showcase the importance of enforcing homogeneity in this model using the approach developed in Section 4. Of importance, we prove that the resulting ROTB model, in addition to the properties it shares with the HUROT model (continuity, positivity of the Sinkhorn divergence, etc.), implies the same notion of convergence as its unregularized counterpart, which legitimates our approach as a consistent way to regularize this spatially varying UOT model.

Our code is publicly available at https://github.com/tlacombe/homogeneousUROT.

Background

Preliminary definitions and notation

In this work, Ω denotes a compact subset of R d , c : Ω × Ω → R + is a cost function that is assumed to satisfy c(x, x) = 0, to be symmetric, and Lipschitz continuous on Ω, typically c(x, y) = x -y 2 . The set M(Ω) denotes the space of (non-negative) Radon measures supported on Ω, and P(Ω) = {α ∈ M(Ω), m(α) = 1} denotes the subset of probability measures, that is measures of total mass m(α) := α(Ω) = 1. With the exception of Section 5, we also assume that the total masses of the measures are finite. Given a measure α ∈ M(Ω) and a function f ∈ C(Ω), we use the notation •, • to denote the duality product, that is

f, α := Ω f (x)dα(x).
(2.1)

Given a function K : Ω × Ω → R + and µ, ν ∈ M(Ω), we also introduce the notations

µ, ν K := K(x, y)dµ(x)dν(y), µ -ν 2 K := µ -ν, µ -ν K .
We say that K defines a positive definite kernel when µ -ν K ≥ 0, with equality if and only if µ = ν.

In the following, we assume that K ε : (x, y) → e -c(x,y) ε defines a positive definite kernel for any ε > 0 (which holds if, for instance, c(x, y) = x -y or x -y 2 ). We say that a sequence of measures

(α n ) n ∈ M(Ω) N converges weakly toward some β ∈ M(Ω), denoted by α n w -→ β, if for any continuous (bounded) map f one has f, α n → f, β . Note that this implies m(α n ) → m(β).
A function ϕ : [0, +∞) → [0, +∞] is said to be an entropy function if it is convex, lower-semicontinuous and satisfies ϕ(1) = 0. We also set the convention ϕ(p) = +∞ whenever p < 0 and, in this work, we will only consider entropy functions that satisfy ϕ(0) < ∞. Of interest is its Legendre transform, defined by ϕ * : q → sup p≥0 pq -ϕ(p).

For any two measures α, β ∈ M(Ω) satisfying α β (that is, ∀X ⊂ Ω, β(X) = 0 ⇒ α(X) = 0), one can define the Radon-Nikodym derivative dα dβ : Ω → R + which is characterized by the relation α = dα dβ β. From this, an entropy function ϕ can be used to define the ϕ-divergence:

D ϕ (α|β) := ϕ • dα dβ , β = Ω ϕ dα dβ (x) dβ(x). (2.2)
Among the notorious choices to define a ϕ-divergence, one has ϕ(p) = p log(p) -p + 1, whose Legendre transform is ϕ * (q) = e q -1, and which defines the so-called Kullback-Leibler divergence D ϕ = KL. As another example that will play an important role in this work, the Total Variation between measures can also be retrieved as a ϕ-divergence by taking

ϕ(p) = |1 -p|, yielding D ϕ (α|β) = Ω |dα(x) -dβ(x)| =: TV(α -β).
Finally, the convex indicator function is defined by ı c (p) = 0 if p = 1, and +∞ otherwise, so that D ıc (α|β) = 0 if α = β, and +∞ otherwise. Note that ı * c = id, the identity map.

Finally, a function F : X → Y (for some Banach spaces X , Y) is said to be h-homogeneous if there exists a constant h > 0 such that for any (λ, x) ∈ R × X we have F (λx) = λ h F (x). When h = 1, we will simply say that F is homogeneous.

Balanced regularized Optimal Transport

Let α, β ∈ P(Ω) denote two probability measures. We denote by Π(α, β) := {π ∈ M(Ω × Ω), π(•, Ω) = α, π(Ω, •) = β} the corresponding set of transport plans between α and β, that is the measures π supported on Ω × Ω whose marginals π 1 , π 2 are equal to α, β, respectively. The optimal transport cost between α and β is defined as OT(α,

β) := inf π∈Π(α,β) π, c , (2.3) 
and any minimizer of this problem is said to be an optimal transport plan between the two measures. Though widely studied during the second-half of the 20 th century-we refer the interested reader to [START_REF] Villani | Optimal transport: old and new[END_REF] for a thorough presentation-its use in real-life applications remained limited mostly due to its computational burden: in practical settings (where α, β are discrete probability measures supported on ∼ n points), (2.3) requires O(n 3 log(n)) operations to be solved.

In 2013, Cuturi significantly contributed to popularize the practical use of OT (in particular in the machine learning community) by observing that its entropic regularized version can be solved efficiently on modern hardware [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], see [START_REF] Peyré | Computational Optimal Transport[END_REF] for an extensive overview of the computational aspects of OT. In its modern form, this regularized problem reads, for a parameter ε > 0,

OT ε (α, β) := inf π∈Π(α,β) π, c + εKL(π|α ⊗ β), (2.4) = sup f,g∈C(Ω) f, α + g, β -ε e f ⊕g-c ε -1, α ⊗ β , ( 2.5) 
where (2.4) is referred to as the primal problem and (2.5) as its dual. It is worth noting that despite its appealing computational properties, OT ε does not define a proper divergence between probability measures. In particular, α → OT ε (α, β) is not minimized for α = β. This phenomenon, called the entropic bias [START_REF] Janati | Debiased sinkhorn barycenters[END_REF], can be corrected by introducing the associated Sinkhorn divergence [START_REF] Ramdas | On wasserstein two-sample testing and related families of nonparametric tests[END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF], defined by

Sk ε (α, β) := OT ε (α, β) - 1 2 OT ε (α, α) - 1 2 OT ε (β, β). ( 2.6) 
Deeply studied in [START_REF] Feydy | Interpolating between optimal transport and mmd using sinkhorn divergences[END_REF], it can be proved that Sk ε (α, β) ≥ 0, with equality if, and only if, α = β. In addition, while Sk ε (α, β) → OT(α, β) when ε → 0, one also has that Sk ε (α, β) → c(x, y)d(αβ)(x)d(α -β)(y) =: MMD(α, β) in the regime ε → ∞, the later quantity being referred to as the Maximum Mean Discrepancy (MMD) between α and β [START_REF] Gretton | A kernel two-sample test[END_REF], another type of divergence between probability measures (note that this does not hold if the total masses of the measures is not precisely equal to 1). This observation sheds a new light on the role of the regularization parameter ε as a way to interpolate between two kind of distances between probability measures inducing a natural trade-off between computational efficiency (MMD) and geometric accuracy (OT).

Unbalanced Sinkhorn Divergences

The problems introduced in Section 2.2 are restricted to probability measures or, slightly more generally, to measures α, β with the same total masses m(α) = m(β). Indeed, Π(α, β) is otherwise empty, making the problem infeasible. This setting is referred to as balanced OT. One way to extend (2.3) to measures of different total masses is to relax the marginal constraints using a ϕ-divergence. The unbalanced OT problem reads, for a given entropy function ϕ:

OT ϕ (α, β) = inf π∈M(Ω×Ω) c, π + D ϕ (π 1 |α) + D ϕ (π 2 |β). (2.7) 
Following [START_REF] Chizat | Scaling algorithms for unbalanced optimal transport problems[END_REF], unbalanced and regularized OT can be mixed together yielding the following problems, dual of each other:

OT ε,ϕ (α, β) := inf π∈M(Ω×Ω) π, c + D ϕ (π 1 |α) + D ϕ (π 2 |β) + εKL(π|α ⊗ β) (2.8) = sup f,g∈C(Ω) -ϕ * (-f ), α + -ϕ * (-g), β -ε e f ⊕g-c ε -1, α ⊗ β (2.9)
In the following, we will refer to this formulation as the standard Unbalanced Regularized OT (UROT) model. Note that setting ϕ = ı c retrieves (2.4) (balanced regularized OT) and setting ε = 0 retrieves (2.7) (unbalanced OT). This model has been deeply studied in [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]. In particular, authors prove that the dual problem (2.9) can be solved by iterating an adapted version of the Sinkhorn algorithm that reads [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]Def. 3] which consists of building a sequence (f t , g t ) t defined by Lemmas 8,[START_REF] Figalli | The optimal partial transport problem[END_REF]). Eventually, if (f, g) is optimal for the dual problem (2.9), then

f t+1 (x) = -aprox ε,ϕ * ε log e g t -c(x,•) ε , β , g t+1 (y) = -aprox ε,ϕ * ε log e f t+1 -c(•,y) ε , α , ( 2 
π := exp f ⊕ g -c ε α ⊗ β (2.12)
is optimal for the primal problem (2.8). Finally, the authors introduce the unbalanced Sinkhorn divergence between α and β:

Sk ε,ϕ (α, β) := OT ε,ϕ (α, β) - 1 2 OT ε,ϕ (α, α) - 1 2 OT ε,ϕ (β, β) + ε 2 (m(α) -m(β)) 2 .
(2.13) They prove that this formulation enjoys most of the properties of its balanced counterpart (2.6), in particular it is continuous with respect to the weak convergence, non-negative, satisfies Sk ε,ϕ (α, β) = 0 ⇔ α = β, is convex with respect to each of its entries, and induces the same topology as weak convergence on the set M ≤m (Ω) of Radon measures with total mass uniformly bounded by m > 0, that is Sk ε,ϕ (α n , α) → 0 ⇔ α n w -→ α. Note however that contrary to the balanced case, it does not converge to some sort of distance between α and β when ε → ∞ [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]Proposition 17].

Remark 2.1. The presence of the term + ε 2 (m(α)-m(β)) 2 in (2.13), called the mass bias, is required to make the unbalanced Sinkhorn divergence non-negative (and convex). Intuitively, this term arises from the constant term -ε -1, α ⊗ β = εm(α)m(β) in (2.9): while in the balanced case (m(α) = m(β)), these terms cancel each other when computing the Sinkhorn divergence (2.6), in the unbalanced case, they yield a constant term 2 that must be compensated by the mass bias term to ensure the good behavior of the model, in particular its nonnegativity.

ε(m(α)m(β) -1 2 m(α) 2 -1 2 m(β) 2 ) = -ε 2 (m(α) -m(β))

Homogeneity and inhomogeneity in the standard model

In this section, we study the homogeneity properties of the standard model (2.8) presented in Section 2.3 with respect to the couple of input measures (α, β).

First, let us stress that non-regularized OT, should it be balanced

(2.3) or not (2.7), is homogeneous in (α, β), that is OT ε=0,ϕ (λα, λβ) = λ • OT ε=0,ϕ (α, β)
for any λ ≥ 0. Furthermore, if π is an optimal transport plan between α and β, then λπ is an optimal transport plan between λα and λβ. As mentioned in the introduction, this behavior is desirable as an optimal transport plan may be used as a way to interpolate between α and β, and it would be surprising that a change of scale in the masses of the measures induces a structural change in the interpolation between the two measures. However, the addition of the entropic regularization term which, in the dual (2.9), reads -ε e f ⊕g-c ε -1, α ⊗ β induces a seemingly peculiar behavior in terms of homogeneity. Namely, if we let

J (α,β) (f, g) := -ϕ * (-f ), α + -ϕ * (-g), β -ε e f ⊕g-c ε -1, α ⊗ β , ( 3.1) 
one has

J (λα,λβ) (f, g) = λ -ϕ * (-f ), α + λ -ϕ * (-g), β -λ 2 ε e f ⊕g-c ε -1, α ⊗ β ,
inducing a quadratic term in λ that may hinder homogeneity. The goal of this section is to investigate the impact of this apparent inhomogeneity in the standard UROT model (2.8).

The balanced case

We first consider the case of regularized balanced optimal transport (2.4); where ϕ = ı c . The following lemma describes the effect of a scaling of the measures on the sequence of potentials produced by the Sinkhorn algorithm (2.10).

Lemma 3.1. Let α, β ∈ M(Ω) be two measures of total mass m(α) = m(β) = m. Fix (f 0 , g 0 ) ∈ C(Ω)
and let (f t , g t ) t≥1 denote the sequence of dual potentials produced iterating (2.10) starting from (f 0 , g 0 ) for the couple (α, β). Let (f

(λ) t , g (λ)
t ) t denote the sequence produced starting from (f 0 , g 0 ) for the couple (λα, λβ). Then, for all t ≥ 1, (f

(λ) t , g (λ) t ) = (f t -ε log(λ), g t ).
Hence, scaling the measures by a factor λ reflects as a shift of -ε log(λ) in the first potential of the sequence produced by the Sinkhorn algorithm, yielding a series of results summarized in the following corollary.

Corollary 3.2. Let α, β ∈ M(Ω) be two measures of total mass

m(α) = m(β) = m.
1. If (f, g) is a couple of optimal potentials for the dual problem for the couple (α, β), then (fε log(λ), g) is optimal for (λα, λβ).

2. If π is an optimal transport plan for the couple (α, β), then λπ is optimal for the couple (λα, λβ).

We have

OT ε (λα, λβ) = λ • OT ε (α, β) + ελ(λ -1)m 2 -ε log(λ)λm, (3.2)
that is, the optimal transport cost is not homogeneous.

We have

Sk ε (λα, λβ) = λ • Sk ε (α, β), (3.3)
that is, the Sinkhorn divergence is homogeneous in the balanced case.

Overall, the quantities of interest behave in a reasonable way, in particular the solutions of the primal problem are homogeneous. Interestingly, the Sinkhorn divergence cancels the inhomogeneous behavior appearing in OT ε , giving an additional argument in favor of using this debiased (and homogenized) quantity to compare probability measures using regularized OT. Remark 3.3. We warn the reader interested in computational OT that the inhomogeneity appearing in OT ε may lead to ill-behavior in numerical applications. Indeed, in practice, the Sinkhorn algorithm (2.10) does not exactly reach a fixed point and is instead run until some stopping criterion is reached. For instance, one may stop the iterations when the relative change in the objective value v t := J (α,β) (f t , g t ) is smaller than some τ > 0, that is when vt+1-vt vt < τ . However, the inhomogeneous behavior in v t implies that for a given τ , the number of iterations needed to reach the criterion when comparing α and β may differ from the one needed when comparing λα and λβ. Thus, even though in theory the (optimal) transportation plans of both couples should be the same (up to the scaling factor λ), the numerical outputs (transport plan, Sinkhorn divergence, etc.) provided by the Sinkhorn algorithm may not satisfy this property.

Proof of Lemma 3.1. In this context, ϕ * = id and subsequently, aprox ε,ϕ * = id, hence the Sinkhorn iterations (2.10) simply read

f t+1 = -ε log e g t -c ε , β , g t+1 = -ε log e f t+1 -c ε , α .
We observe that f

(λ) 1 = -ε log e g 0 -c ε , λβ = f 1 -ε log(λ). Therefore, g (λ) 1 = -ε log e f 1 -ε log(λ)-c ε , λα = g 1 , and thus f (λ) 2 = -ε log e g 1 -c ε , λα = -ε log e g 1 -c ε , α -ε log(λ) = f 2 -ε log(λ).
A simple induction gives the conclusion.

Proof of Corollary 3.2.

1. Since the sequence of potentials (f t , g t ) t converges to (f, g) which are optimal for (α, β), it follows from Lemma 3.1 that (f

(λ) t , g (λ) 
t ) → (f -ε log(λ), g) which must also be a fixed point of the Sinkhorn loop, hence a pair of optimal potentials for the couple (λα, λβ).

2. Using the primal-dual relation (2.12), we know that π = e f ⊕g-c ε dα ⊗ β is optimal for the couple (α, β). Therefore, from the previous point,

exp f ⊕ g -ε log(λ) -c ε d(λα ⊗ λβ) = λ exp f ⊕ g -c ε dα ⊗ β = λπ
is optimal for the couple (λα, λβ).

3. Using (f -ε log(λ), g) in the dual relation (2.9), we have

OT ε (λα, λβ) = λ f, α -ε log(λ)λm(α) + λ g, β -λε e f ⊕g-c ε -λ, α ⊗ β , = λ f, α + g, β -ε e f ⊕g-c ε -1 + (1 -λ), α ⊗ β -ε log(λ)λm(α) = λOT ε (α, β) + ελ(λ -1)m(α)m(β) -ε log(λ)λm(α) = λOT ε (α, β) + ελ(λ -1)m 2 -ε log(λ)λm.
4. The homogeneity of Sk ε follows from the fact that the "inhomogeneous terms" +ελ(λ -1)m 2ε log(λ)λm cancel in the definition of the balanced Sinkhorn divergence.

The KL case

We now propose to derive the same study as the one of Section 3.1 using ϕ(p) = p log(p) -p + 1, that is D ϕ = KL, a common choice in unbalanced optimal transport to penalize the violation of the marginal constraints. In this context, ϕ * (q) = e q -1, and aprox ε,ϕ * (p) = 1 1+ε p. The following proposition summarizes the important properties of this model as far as homogeneity is concerned.

Proposition 3.4. Let α, β ∈ M(Ω). Then, 1. If (f, g) is a pair of optimal potentials for the couple (α, β), then f - ε 2 (1+ε) 2 -1 log(λ), g - ε 2 (1+ε) 2 -1 log(λ) is optimal for the couple (λα, λβ).
2. If π is an optimal transport plan for (α, β), then λ h π is optimal for (λα, λβ), where

h = 2 -2 2+ε . 3. The Sinkhorn divergence Sk ε,ϕ is h-homogeneous (while OT ε,ϕ is not h-homogeneous).
As in the balanced case, the conclusions here are mostly positive: though the optimization problem (2.9) itself is not (h-)homogeneous, the optimal transport plans are h-homogeneous, and so is the Sinkhorn divergence (thanks to the addition of the mass bias term!).

Proof. As in the balanced case, we first investigate the behavior of the Sinkhorn algorithm under rescaling of the measures. Let (f 0 , g 0 ) ∈ C(Ω), let (f t , g t ) t denote the sequence obtained when iterating the Sinkhorn loop for the couple (α, β) initialized at (f 0 , g 0 ), and let (f

(λ) t , g (λ)
t ) t be the one obtained for the couple (λα, λβ) with the same initialization. We prove the following by induction:

f (λ) t = f t -εu t log(λ) g (λ) t = g t -εv t log(λ), where (u t , v t ) ∈ R × R are real sequences following the relations u t+1 = T (v t ) and v t+1 = T (u t+1 ) with T (x) = 1-x 1+ε , with u 0 , v 0 = 0. Indeed, f (λ) t+1 = - ε 1 + ε log e g (λ) t -c ε dλβ = - ε 1 + ε log e g t -c ε λ 1-vt dβ = f t -ε 1 -v t 1 + ε log(λ).
A similar computation holds for the second potentials (g t ) t . The sequences (u t ) t and (v t ) t converge to the fixed point of T • T , given by

x = T • T (x) ⇔ x = x + ε (1 + ε) 2 ⇔ x = ε (1 + ε) 2 -1 = 1 2 + ε ,
proving the result linking (f

(λ) t , g (λ)
t ) and (f t , g t ). From this, simple computations prove the claims:

1. Follows from the fact that (f t , g t ) t converges to a couple of optimal dual potentials for (α, β).

Follows from the fact that

exp f ⊕ g -2 ε 2+ε log(λ) -c ε λ 2 dα ⊗ β = exp f ⊕ g -c ε λ -2 2+ε λ 2 dα ⊗ β = λ h π
is an optimal transport plan for the couple (λα, λβ) (see (2.12)).

3. The shift in the potentials induces a change in the objective value J (λα,λβ) reading

1 -e -f + ε 2+ε log(λ) , λα + 1 -e -g+ ε 2+ε log(λ) , λβ -ε e f ⊕g-c-2 ε 2+ε log(λ) ε -1, λ 2 α ⊗ β =λ h 1 -e -f , α + (λ -λ h )m(α) + λ h 1 -e -g , β + (λ -λ h )m(β) -ελ h e f ⊕g-c ε -1, α ⊗ β -ε(λ h -λ 2 )m(α)m(β) =λ h OT ε (α, β) + (λ -λ h )(m(α) + m(β)) -ε(λ h -λ 2 )m(α)m(β).
Here as well, the non-homogeneous part cancels when considering the Sinkhorn divergence. Note that the linear term involving (m(α) + m(β)) disappears when adding -1 2 OT ε,ϕ (α, α) -

1 2 OT ε,ϕ (β, β
), but adding the mass bias term ε 2 λ 2 (m(α)-m(β)) 2 is required to cancel the product term that involves m(α)m(β). Remark 3.5. Proposition 3.4 can be slightly generalized: whenever the anisotropic proximal operator is linear-aprox ε,ϕ * (p) = κp for some κ ∈ (0, 1]-, the optimal transport plans and the Sinkhorn divergence are h = 2 1+κ -homogeneous. Note that this leads to ϕ * (q) = ε

( 1 κ -1) e q ε ( 1 κ -1) -1 , that is equivalent to use ρKL as the marginal penalty with ρ = ε ( 1 κ -1)
. We believe that this condition may be necessary as well: a non-linearity in the aprox operator prevents h-homogeneity to occur and the family of divergences (ρKL) ρ∈[0,+∞] is the only one that makes the UROT problem homogeneous.

Inhomogeneity in general: the TV case

The two previous case studies, which fall in the setting "aprox is linear" (see Remark 3.5), may suggest that the apparent inhomogeneity in the formulation of the unbalanced regularized OT problem does not have much practical aftermaths: the structure of optimal transport plans is preserved and the Sinkhorn divergence is h-homogeneous. As this encompasses both balanced regularized OT (2.4) and unbalanced OT using a KL-relaxation of the marginal constraints-arguably covering most applications of regularized OT in practice-this may explain why behaviors related to (in)homogeneity did not receive much attention in the OT community so far.

In this subsection, we give an example for which inhomogeneity (in particular, of the optimal transport plan) occurs: the case of Total Variation (TV). This setting corresponds to taking

ϕ(p) = |1 -p|, yielding D ϕ (π 1 |α) = TV(π 1 -α), ϕ * (q) = max(-1, q) and aprox ε,ϕ * (p) = max(-1, min(p, 1)).
The resulting optimization problem is known as Optimal Partial Transport [START_REF] Figalli | The optimal partial transport problem[END_REF], a particular case of Unbalanced OT where only a fraction of the total mass of the two measures is transported, and we pay a price proportional to the amount of mass in α, β that is not transported.

The Sinkhorn updates used to produce a sequence (f

(λ) t , g (λ)
t ) t for the couple of measures (λα, λβ) read

f (λ) t+1 = min max -1, -ε log e g (λ) t -c ε , β -ε log(λ) , 1 , g (λ) t+1 = min max -1, -ε log e f (λ) t+1 -c ε , α -ε log(λ) , 1 . (3.4)
Here, aprox ε,ϕ * exhibits sharp changes of behavior when its argument get higher than 1 (or lower than -1). This is the source of an inhomogeneous behavior: when the scaling factor λ → ∞ (or → 0), this affects the Sinkhorn updates and by consequence the returned (optimal) potentials, transport plan, and Sinkhorn divergence.

Numerical illustration. To empirically illustrate the possible inhomogeneous behavior of Sk ε,TV , we propose the following experiment. We randomly sample two measures α, β with n = 5 and m = 7 points, respectively and random (non-negative) weights on their support distributed uniformly between 0 and 1. We then compute the Sinkhorn divergence Sk ε,TV (λα, λβ) for λ ∈ [1, 100] from the optimal dual potentials obtained by iterating (3.4) and the corresponding transport plans through the relation (2.12). Figure 1 showcases the dependence of the result on λ. The plot (a) shows that Sk ε,TV cannot be 1-homogeneous. If Sk ε,TV was h-homogeneous for some h, one would expect that log(Sk ε,TV (λα, λβ)) = h log(λ) + log(Sk ε,TV (α, β)), that would yield a line of slope h in log-log scale. Plot (b) in Figure 1 shows that this does not hold overall: a slope break occurs around log(λ) ∼ 2.5, as a consequence of 

R(π|α, β) := 1 2 KL π| α m(α) ⊗ β + KL π|α ⊗ β m(β) . ( 4 

.1)

The homogeneous unbalanced regularized optimal transport (HUROT) problem between α and β is defined as

OT [H] ε,ϕ (α, β) := inf π c, π + D ϕ (π 1 |α) + D ϕ (π 2 |β) + εR(π|α, β). (4.2)
Interpretation. As detailed in Section 3, the standard entropic regularization term εKL(π|α ⊗ β) introduces an inhomogeneous behavior in the (unbalanced) OT problem. When α, β are probability measures, using this regularization term is motivated by the fact that the reference measures α ⊗ β belongs to Π(α, β), so that the solution of the regularized (balanced) problem (2.4) interpolates between the exact optimal transport plan (ε = 0) and this "trivial" one (ε → ∞). However, when α and β are not probability measures (even if they have the same total masses), α ⊗ β ∈ Π(α, β) (its first and second marginals are m(β)α and m(α)β, respectively) and actually, if m(α) = m(β), there is no measures with α, β as marginals. The regularization term (4.1) can be seen as the average of two entropic regularization terms, one whose reference measure has β as second marginal, and one whose reference measure has α as first marginal.

Proposition 4.2 (Dual formulation). One has:

OT

[H] ε,ϕ (α, β) = sup f,g∈C(Ω) -ϕ * (-f ), α + -ϕ * (-g), β -ε e f ⊕g-c ε m g - 1 m h , α ⊗ β . (4.3)
Furthermore, if f, g is optimal for (4.3), then

π := exp f ⊕ g -c ε α ⊗ β m g (α, β) (4.4)
is an optimal transport plan for the problem (4.2).

The proof is essentially a variation of the standard proofs of duality in regularized optimal transport which rely on an application of the Fenchel-Rockafellar theorem, see for instance We now state the homogeneity of the HUROT model.

Proposition 4.3. OT [H]

ε,ϕ is 1-homogeneous. Furthermore, if (f, g) is a pair of optimal dual potentials for the couple (α, β), then it is also optimal for the couple (λα, λβ).

Proof. The proof simply follows from introducing

J [H] (α,β) (f, g) := -ϕ * (-f ), α + -ϕ * (-g), β -ε e f ⊕g-c ε m g (α, β) - 1 m h (α, β) , α ⊗ β
and observing that for any λ > 0, since m g (λα, λβ) = λm g (α, β) and m h (λα, λβ) = λm h (α, β), we have

J [H] (λα,λβ) (f, g) = λ • J [H]
(α,β) (f, g), yielding the conclusion. Corollary 4.4. If π is an optimal transport plan for the HUROT model (4.2) for the couple of measures (α, β), then λπ is optimal for the couple (λα, λβ).

Proof. This follows from the primal-dual relationship (4.4) and the fact that λα⊗λβ mg(λα,λβ) = λ α⊗β mg(α,β) . As for the standard model, we can derive first order conditions on the dual that read

f (x) = -aprox ε,ϕ * ε log e g-c(x,•) ε , α m g (α, β) , α -a.e. g(y) = -aprox ε,ϕ * ε log e f -c(•,y) ε , β m g (α, β) , β -a.e., (4.5) 
yielding the Homogeneous Sinkhorn algorithm:

f t+1 = -aprox ε,ϕ * ε log e g t -c ε , α m g (α, β) , g t+1 = -aprox ε,ϕ * ε log e f t+1 -c ε , β m g (α, β) . (4.6)
This iterative algorithm can be seen as the standard Sinkhorn algorithm (2.10) applied to the renormalized measures α mg(α,β) , β mg(α,β) , and benefits from all the properties proved in [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]. In particular, it converges toward a fixed point (f, g) that is an optimal couple of potentials for the HUROT model. Numerically, optimal potentials can thus be directly obtained using dedicated software such as POT [START_REF] Flamary | Pot: Python optimal transport[END_REF] without requiring further development, and can be re-injected in the objective function J

[H] (α,β) to get the corresponding homogeneous transport cost OT [H] ε,ϕ (α, β).

Proposition 4.5. Let (f 0 , g 0 ) ∈ C(Ω), α, β be two non-zero measures, and λ > 0. The sequence (f

(λ) t , g (λ)
t ) t produced by (4.6) for the couple of measures (λα, λβ) initialized at (f 0 , g 0 ) is independent of λ.

Proof. It is an immediate consequence of (4.6) and the fact that Then

OT [H] ε,ϕ (α n , β n ) → OT [H] ε,ϕ (α, β).
Proof. We know that (f n , g n ) is optimal for the HUROT model for the couple (α n , β n ) if and only if it is optimal for the standard model for the couple αn mg(αn,βn) , βn mg(αn,βn) which converges (as

α n , β n , α, β = 0) to α mg(α,β) , β mg(α,β) .
Using [23, Prop. 10 and Thm. 2], it implies in the settings considered in this work (ϕ = ı c , KL or TV) that (f n , g n ) n converges (uniformly) toward a pair (f, g) that is optimal (in the HUROT model) for the couple (α, β) and, by continuity of the objective functional in (α, β, f, g) it follows that OT [H] ε,ϕ (α n , β n ) → OT [H] ε,ϕ (α, β). We can now introduce the corresponding notion of (homogeneous) Sinkhorn divergence.

Definition 4.7. Let α, β ∈ M(Ω) with m(α), m(β) > 0. The homogeneous Sinkhorn divergence between α and β is defined as

Sk [H] ε,ϕ (α, β) := OT [H] ε,ϕ * (α, β) - 1 2 OT [H] ε,ϕ * (α, α) - 1 2 OT [H] ε,ϕ * (β, β). ( 4.7) 
By construction, Sk

[H]
ε,ϕ * is homogeneous. Interestingly, it is also non-negative under standard assumptions, without needing a "mass bias" term (see Remark 2.1). Proposition 4.8. Let K ε (x, y) = e -c(x,y) ε , and assume that K ε is a positive definite kernel. Then,

Sk [H] ε,ϕ * (α, β) ≥ 0,

with equality if, and only if, α = β.

The proof of this proposition rely on the following result, adapted from [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]Prop. 14]. For the sake of concision, its proof has been deferred to the appendix. Lemma 4.9. One has

OT [H] ε,ϕ (α, α) = sup f ∈C(Ω) 2 -ϕ * (-f ), α -ε e f ⊕f -c ε -1, α ⊗ α m(α) (4.8)
Proof of Proposition 4.8. Let f α and g β be the minimizers of OT [H] ε,ϕ (α, α) and OT [H] ε,ϕ (β, β), respectively. Note the relation

OT [H] ε,ϕ (α, α) = 2 -ϕ * (-f α ), α -ε e fα ε α m(α) 2 Kε + εm(α)
and symmetrically in β.

As f α and g β are sub-optimal for the dual problem corresponding to OT [H] ε,ϕ (α, β), we have:

OT [H] ε,ϕ (α, β) ≥ -ϕ * (-f α ), α + -ϕ * (-g β ), β -ε e fα⊕g β -c ε , α ⊗ β m(α)m(β) + ε 2 (m(α) + m(β)) ≥ -ϕ * (-f α ), α + -ϕ * (-g β ), β -ε e fα ε α m(α) , e g β ε β m(β) Kε + ε 2 (m(α) + m(β)) ≥ 1 2 OT [H] ε,ϕ (α, α) + 1 2 OT [H] ε,ϕ (β, β) + ε 2 e fα ε α m(α) 2 Kε + ε 2 e g β ε β m(β) 2 Kε -ε e fα ε α m(α) , e g β ε β m(β) Kε so that OT [H] ε,ϕ (α, β) - 1 2 OT [H] ε,ϕ (α, α) - 1 2 OT [H] ε,ϕ (β, β) ≥ e fα ε α m(α) -e g β β m(β) Kε ≥ 0 (4.9)
which proves the non-negativity. Furthermore, the equality case reads e

fα ε α √ m(α) = e g β ε β √ m(β)
. By the characterization of f α and g β as fixed point of their respective Sinkhorn algorithms, we have

f α = -aprox ε,ϕ * ε log e fα-c ε , α m(α) , g β = -aprox ε,ϕ * ε log e g β -c ε , β m(β) .
Using the equality case aforementioned, we have

f α = -aprox ε,ϕ * ε log e g β -c ε , β m g (α, β) , g β = -aprox ε,ϕ * ε log e fα-c ε , α m g (α, β) .
Therefore, (f α , g β ) is actually an optimal couple for the HUROT problem between α and β, as a fixed point of the corresponding Sinkhorn map.

From this, we can write the optimal transport plans π αβ , π αα , π ββ between the corresponding couple of measures as

π αβ = e fα⊕g β -c ε dα ⊗ β m g (α, β) , π αα = e fα ⊕fα-c ε dα ⊗ α m(α) , π ββ = e g β ⊕g β -c ε dβ ⊗ β m(β) ,
which actually reads

π αβ = π αα = π ββ .
Let π denote this common transportation plan. Since Sk [H] ε,ϕ (α, β) = 0, and observing that the terms c, π , D ϕ (π 1 |α) and D ϕ (π 2 |β) in the primal problems cancel each other, and using the relations

2KL(π|α ⊗ β) -KL(π|α ⊗ α) -KL(π|β ⊗ β) = 0, 1 2 KL π| α ⊗ β m(α) + KL π| α ⊗ β m(β) = KL(π|α ⊗ β) + m(π) log(m g (α, β)) + m a (α, β) -m(α)m(β), we can write 0 = 1 2 KL π| α ⊗ β m(α) + KL π| α ⊗ β m(β) - 1 2 KL π| α ⊗ α m(α) - 1 2 KL π| β ⊗ β m(β) , =m(π) log(m g ) + m a -m(α)m(β) - 1 2 m(π) log(m(α)) - 1 2 m(α) + 1 2 m(α) 2 - 1 2 m(π) log(m(β)) - 1 2 m(β) + 1 2 m(β) 2 = 1 2 (m(α) -m(β)) 2
which implies that m(α) = m(β) =: m. From this, it follows that

f α = -aprox ε,ϕ * ε log e fα -c ε , α m = -aprox ε,ϕ * ε log e g β -c ε , β m = g β , hence α = β.
Remark 4.10. It may be appealing to replace the entropic regularization term (4.1) by εKL π| α⊗β mg(α,β) . This indeed leads to an homogeneous problem that shares most of the properties of the proposed OT [H] ε,ϕ . Actually, the dual formulation would read

sup f,g∈C(Ω) -ϕ * (-f ), α + -ϕ * (-g), β -ε e f ⊕g-c ε m g - 1 m g , α ⊗ β ,
so that the two quantities only differ from a constant term and are substantially equivalent. Note also

that π → ε 2 KL π| α m(α) ⊗ β + KL π|α ⊗ β m(β)
is minimized for π = α⊗β mg(α,β) , so both entropic terms play morally the same role.

The one we propose presents the advantage of leading to a Sinkhorn divergence that does not need the introduction of a mass bias term: using εKL π| α⊗β mg(α,β) would require to add +ε( m(α) -m(β)) 2 to the corresponding Sinkhorn divergence to make it positive. Interestingly, this mass bias correspond to a sort of Hellinger distance between the masses of the two measures.

Continuity around the null measure. Previously in this section, we only considered the HUROT model whenever α, β = 0. As in the standard case [23, §4.6], assessing continuity of our model around the null measure requires specific care. Recall that we assume ϕ(0) < ∞. Proposition 4.11 (Continuity around the null measure).

• Let β ∈ M(Ω)\{0}. Define OT [H] ε,ϕ (0, β) := ϕ(0) + ε 2 m(β).
Let (α n ) n be a sequence of non-null measures that weakly converges toward the null measure:

α n w -→ 0. Then OT [H] ε,ϕ (α n , β) → OT [H] ε,ϕ (0, β). • Furthermore, if we set
OT [H] ε,ϕ (0, 0) := 0, then for any sequences (α n ) n , (β n ) n that both weakly converge toward the null measure, one has OT [H] ε,ϕ (α n , β n ) → 0.

Remark 4.12. Contrary to the standard UROT model, OT [H] ε,ϕ (0, β) depends on ε (the result is simply ϕ(0)m(β) in the standard model). This can be seen as an artifact of the fact that our model directly encompasses the "mass bias" in the functional OT [H] ε,ϕ .

Proof of Proposition 4.11. The proof where only α n → 0 follows the spirit of the one of [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]Prop. 18], though requiring specific adaptation related to our regularization term. When both measures go to 0, we can leverage the homogeneity of our model to prove the claim easily.

• Using that α n ⊗ β is a suboptimal transport plan for (4.2), we have

OT [H] ε,ϕ (α n , β) ≤ c, α n ⊗ β + D ϕ (m(β)α n |α n ) + D ϕ (m(α n )β|β) + εR(α n ⊗ β|α n , β) ≤ c, α n ⊗ β + m(α n )ϕ(m(β)) + m(β)ϕ(m(α n )) + ε m(α n )m(β) log(m g (α n , β)) + 1 2 (m(α n ) + m(β)) -m(α n )m(β) →ϕ(0)m(β) + ε 2 m(β).
On the other hand, Jensen inequality applied to D ϕ allows us to write

OT [H] ε,ϕ (α n , β) ≥ inf π c, π + m(α n )ϕ(m(π)) + m(β)ϕ(m(π)) + εR(π|α n , β) =: F n (π).
We observe that

lim n→∞ F n (π) ≥ c, π + m(β)ϕ(m(π)) + ε 2 KL(π|0) = +∞ if π = 0, = m(β)ϕ(0) + ε 2 m(β) if π = 0,
where the second equality follows from the relation

R(π|α n , β) = KL(π|α n ⊗ β) -m(π) log(m g (α n , β)) + m a (α n , β) -m(α n )m(β)
which evaluates to 1 2 m(β) for π = 0 and α n → 0. As F n is lower-semicontinuous, it follows that lim n OT [H] ε,ϕ (α n , β) ≥ ϕ(0)m(β) + ε 2 m(β), and finally

lim n→∞ OT [H] ε,ϕ (α n , β) = ϕ(0) + ε 2 m(β),
proving the continuity of OT [H] ε,ϕ around couple of the form (0, β) when β = 0.

• We now consider two sequences α n , β n w -→ 0. Define M n = max(m(α n ), m(β n )).
Using the homogeneity of our model, we can write

OT [H] ε,ϕ (α n , β n ) = M n • OT [H] ε,ϕ α n M n , β n M n .
Using αn Mn ⊗ βn Mn as a suboptimal transport plan, we have (note that the two measures have total masses ≤ 1)

OT [H] ε,ϕ

α n M n , β n M n ≤ c ∞ + ϕ α n M n + ϕ β n M n + 1.
As ϕ is bounded over [0, 1], it follows that OT [H] ε,ϕ αn Mn , βn Mn n is bounded as well, hence since

M n → 0, lim n→∞ OT [H] ε,ϕ (α n , β n ) = 0,
proving the continuity in this case as well.

Application to Optimal Transport with boundary

Definition and motivation

Optimal Transport with Boundary (OTB) was introduced by Figalli and Gigli in [START_REF] Figalli | A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions[END_REF] as a way to model heat diffusion equations with specific boundary conditions. We first give a brief introduction to this model as introduced by the authors in their seminal paper.

We consider an open bounded domain Ω ⊂ R d . Let Ω be its closure and ∂Ω denote its boundary. For the sake of simplicity, we assume that the cost function c : Ω × Ω → R + is given by c(x, y) = x -y 2 , though most of the approach developed in the following would adapt to more general symmetric Lipschitz continuous cost functions. To alleviate notations, we introduce c ∂Ω (x) := c(x, ∂Ω) = c(∂Ω, x) = inf y∈∂Ω c(x, y). We also assume that the boundary ∂Ω is regular enough so that there exist a measurable map P : Ω → ∂Ω such that c(x, P (x)) = c ∂Ω (x). Now, let α, β be two locally finite Radon measures supported on Ω which can be thought as representing an initial and a final distribution of heat. The idea is the following: during the diffusion process, mass (heat) can either move inside the domain (Ω → Ω) or it may happen that the boundary of the domain ∂Ω absorbs some mass (Ω → ∂Ω) or redistributes mass to the domain (∂Ω → Ω).

Formally, we introduce the set of admissible plans

Adm(α, β) := π ∈ M(Ω × Ω), ∀A ⊂ Ω, π(A × Ω) = α(A), ∀B ⊂ Ω, π(Ω × B) = β(B) . ( 5.1) 
Now, consider the following optimization problem:

FG(α, β) = inf π∈Adm(α,β) Ω×Ω c(x, y)dπ(x, y). ( 5.2) 
To guarantee that FG(α, β) < +∞, we restrict to measures α, β that have finite total persistence, where the total persistence of a measure µ ∈ M(Ω) is defined as

Pers(µ) := FG(µ, 0) = Ω c ∂Ω (x)dµ(x). (5.3) 
We will note by M c (Ω) the set of such measures.

The key idea in the definition of admissible plans (5.1) is that π is not constrained on ∂Ω × ∂Ω, in contrast with standard (balanced, non-regularized) OT (2.3). This degree of freedom allows ∂Ω to play the role of a reservoir that can store and redistribute any amount of mass, provided we pay the corresponding cost c ∂Ω (•), enabling in particular the comparison of measures with different (and even possibly infinite) total masses. Note also that when c(x, y) = x -y 2 , (FG(•, •))1/2 defines a metric over M c (Ω), and the resulting metric space is Polish (complete, separable) provided we allow for measures with infinite total masses. Remark 5.1 (Links with Topological Data Analysis.). This transportation model has not been widely used in OT literature to the best of our knowledge 1 . However, it has been recently shown in [START_REF] Divol | Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport[END_REF] that the metric FG does exactly coincide with the metrics used by the Topological Data Analysis (TDA) community to compare Persistence diagrams (PDs), a type of descriptor routinely used to compare objects with respect to their topological properties, see [START_REF] Edelsbrunner | Computational topology: an introduction[END_REF][START_REF] Chazal | An introduction to topological data analysis: fundamental and practical aspects for data scientists[END_REF] for an overview. This connection appeared to be fruitful and enabled the adaptation of various tools-both theoretical and computational onesexisting in the OT literature to the context of TDA. In a related work [START_REF] Lacombe | Large scale computation of means and clusters for persistence diagrams using optimal transport[END_REF], still in the context of TDA, authors proposed a regularized version of (5.2) by (substantially) adding a term +εKL(π|L), where L denotes the Lebesgue measure on Ω × Ω. However, using the Lebesgue measure (or even α ⊗ β) as reference measure (aside from non-homogeneity) has several drawbacks. It is only properly defined for measures with finite total masses, indicating possible problems when the masses of the measures get large in practice-even though the exact distances could be mostly unchanged if the additional mass is close to the boundary ∂Ω. In the same vein, it does not follow the spirit of OT with boundary, which tells that points near ∂Ω have a lesser importance.

Reformulation as a (spatially varying) unbalanced OT problem

The first step to propose a relevant entropic regularization is to rephrase it in a formalism much closer to the standard UROT model. For a given measure µ ∈ M c (Ω), define the renormalized measure μ by

∀A ⊂ Ω Borel, μ(A) := A c ∂Ω (x)dµ(x).
Note in particular the relation m(μ) = Pers(µ) < ∞. From this, we observe that π ∈ Adm(α, β) induces a plan π = π |Ω×Ω ∈ M(Ω × Ω) which implies that

FG(α, β) ≥ inf π ∈M(Ω×Ω) c, π + Ω ϕ x, dπ 1 dα dα + Ω ϕ x, dπ 2 d β d β =: F (π ).
Conversely, consider π ∈ M(Ω × Ω). Let π 1 , π 2 denote its marginals. Observe that if π 1 ≤ α or π 2 ≤ β, the choice of ϕ implies that F (π ) = +∞, so we can restrict to such plans. They naturally induce an element π ∈ Adm(α, β) defined by π = π on Ω × Ω, and ∀A ⊂ Ω, B ⊂ ∂Ω, π(A × B) = (α -π 1 )(P -1 (B) ∩ A) (and symmetrically in β, π 2 ), and Ω×Ω cdπ = F (π ), proving the claim by taking the infimum.

This proposition allows us to express FG(α, β) in a formalism much closer to standard (nonregularized) unbalanced OT (2.7): it only involves measures with finite total masses and turns the cost of transporting mass to the boundary ∂Ω into a penalty between the marginals of π and (α, β).

Remark 5.3. The key (and essentially sole) difference between (5.4) and (2.7) is the dependence of the divergence ϕ on the location x, a situation referred to as "spatially varying divergence" in [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF]Remark 3]. This formalism is substantially equivalent to the standard one and most computations adapt seamlessly with the choice of ϕ used in this section. The HUROT model could have been presented directly in the more general context of spatially varying divergences in Section 4, but this would have required several additional assumptions on ϕ and would have hinder the use of many results of [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF] directly. For the sake of simplicity, we prefer to deal with spatially varying divergences only in this section and for the particular choice (5.5) of ϕ that allows us to retrieve (when ε = 0) the model of Figalli and Gigli (5.2).

Regularized OT with boundary (ROTB)

Definition 5.4. Let α, β ∈ M c (Ω)\{0} and ε > 0 be a regularization parameter. The corresponding Homogeneous Regularized Optimal Transport with Boundary (ROTB) problem is given by

FG ε (α, β) := inf π∈M(Ω×Ω) c, π + Ω ϕ x, dπ 1 dα dα + Ω ϕ x, dπ 2 d β d β + εR(π|α, β), (5.6)
where ϕ is the divergence defined in (5.5) and R is defined in (4.1).

Remark 5.5. The formulation (5.4) shows that OT with boundary can be recast as a (spatially varying) UOT problem involving the couple of renormalized measures (α, β), justifying to use this couple as reference measure in the entropic reference measure in (5.6). Intuitively, it makes the entropic regularization term sensitive to the geometry of the problem, downweighting the points close to the boundary ∂Ω. Formally, the choice of (α, β) as reference is theoretically supported by the fact that the Sinkhorn divergence corresponding to FG ε induces the same convergence as the non-regularized problem (5.2), as detailed below.

Dual and Sinkhorn algorithm. We now give the dual formulation corresponding to Equation (5.6).

A key observation is that despite the primal involves a spatially varying divergence, the dual essentially boils down to a standard problem applied to the renormalized measures α and β in this particular setting, allowing us to adapt the results of Section 4 seamlessly.

Proposition 5.6. Let α, β ∈ M c (Ω)\{0}. One has

FG ε (α, β) = sup f,g∈C(Ω) min(1, f /c ∂Ω ), α + min(1, g/c ∂Ω ), β -ε e f ⊕g-c ε m g (α, β) - 1 m h ( α, β) , α ⊗ β .
(5.7)

Furthermore, if (f, g) is optimal for (5.7), then

π := exp f ⊕ g -c ε α ⊗ β m g (α, β)
is optimal for the primal problem (5.6).

From this dual formulation, we can derive the optimality conditions on dual potentials:

f (x) = min c ∂Ω (x), -ε log c ∂Ω (x) e g-c(x,•) ε , β m g (α, β) , α-ae g(y) = min c ∂Ω (y), -ε log c ∂Ω (y) e f -c(•,y) ε , α m g (α, β) , β-ae, (5.8) 
and thus define the corresponding Sinkhorn algorithm

f t+1 (x) := min c ∂Ω (x), -ε log c ∂Ω (x) e g-c(x,•) ε , β m g (α, β) g t+1 (y) := min c ∂Ω (y), -ε log c ∂Ω (y) e f -c(•,y) ε , β m g (α, β) , ( 5.9) 
Finally, we introduce the corresponding notion of Sinkhorn divergence:

SkFG ε (α, β) := FG ε (α, β) - 1 2 FG ε (α, α) - 1 2 FG ε (β, β). (5.10)
This problem enjoys the same properties as the HUROT model introduced in Section 4, as summarized in the following proposition. 1. FG ε and SkFG ε are 1-homogeneous. The sequence of potentials produced by (5.9) for the couple of measures (λα, λβ) is independent of λ, so are the optimal potentials. If π is an optimal plan for (α, β), λπ is optimal for the couple (λα, λβ).

2. FG ε is continuous with respect to the weak convergence of the renormalized measures: The proof directly adapts from the corresponding ones in Section 4.

α n w -→ α ⇒ FG ε (α n , β) → FG ε (α, β).
Proposition 5.8. FG ε induces the same notion of convergence as FG, that is, for any sequence

(α n ) n ∈ M c (Ω) N and any α ∈ M c (Ω), SkFG ε (α n , α) → 0 ⇔ α n w -→ α ⇔ SkFG(α n , α) → 0. Proof of Proposition 5.8. The fact that α n w -→ α ⇔ SkFG(α n , α) → 0 is already known [6, Cor. 3.2]. Therefore, it remains to show that SkFG ε (α n , α) → 0 ⇔ α n w -→ α.
The converse implication is given by the continuity of SkFG ε with respect to the weak convergence of the normalized measures (Proposition 5.7). Now, assume that SkFG ε (α n , α) → 0. If the sequence ( α n ) n has uniformly bounded mass (i.e. (α n ) n has uniformly bounded total persistence), we know that it must be compact with respect to the weak convergence (as Ω is bounded). If so, extracting a converging subsequence converging to some limit α ∞ yields by continuity SkFG ε (α ∞ , α) = 0 and thus α ∞ = α. This makes ( α n ) n a compact sequence with α as unique limit, implying α n w -→ α. Therefore, it remains to show that SkFG ε (α n , α) → 0 ⇒ sup n Pers(α n ) = sup n m( α n ) < +∞. Let f n denotes the optimal symmetric potential for the dual problem (5.7) corresponding to the couple (α n , α n ), and f α be the one corresponding to the couple (α, α). The optimality condition on f n gives f n ≥ -c ∂Ω ≥ -L, where L = diam(Ω). Assume first that α n , α = 0. One has Numerical illustration. To showcase the importance of using an homogeneous model in the context of OT with boundary, we propose the following experiment. Inspired by the context of Topological Data Analysis (see Remark 5.1), we consider the half-plane Ω = {(t 1 , t 2 ), t 1 < t 2 } ⊂ R2 hence ∂Ω = {(t, t), t ∈ R}. 2 We then sample two measures α, β with n = 5 and m = 10 points respectively, and with weight 1 on each point. We then compute the OTB Sinkhorn divergence SkFG ε (λα, λβ) for λ ∈ [0.01, 100] using our homogeneous model and the Sinkhorn divergence one would obtain using the standard UROT model (via the iterations (2.10)). Figure 2 showcases the dependence of the result on λ. As expected, our model exhibits 1-homogeneity. In contrast, the standard model yields a highly inhomogeneous behavior which reflects in many structural changes in the resulting transport plans as showcased in Figure 3. Computations are run with ε = 1. 

SkFG ε (α n , α) ≥ ε 2 e fn ε α n m( α n ) -e f α ε α m( α) Kε . Since SkFG ε (α n , α) → 0,

Discussion

We believe that the homogeneous UROT model we propose can provide a good alternative to the standard model of Unbalanced Regularized Optimal Transport proposed by Séjourné et al., especially when (i) the marginal divergence induces a "cut-off" as do the Total Variation or spatially varying divergences involved in OT with boundary and when (ii) the masses of the measures considered may be ill-defined (e.g. depend on the choice of a unit of measurement) or may largely vary on the considered sample.

It is worth noting that enforcing homogeneity in the regularization term comes with some price as well. In particular, in contrast with the standard UROT model, at fixed β, the map α → OT [H] ε,ϕ (α, β) is a priori not convex with respect to linear interpolation of measures (1-t)α +tα . Since the resulting homogeneous Sinkhorn divergence still shares key properties with the standard one, wondering whether there exist a convex reparametrization of OT [H] ε,ϕ is an important question. Other type of convexity properties, for instance along the interpolation curves described by the optimal transport plans, may also be investigated.

Finally, the development of different numerical tools in the context of OT with boundary, in particular regularized Fréchet means, is a natural follow-up of this work. Note that in the context of topological data analysis (which is related to OT with boundary, see Remark 5.1), regularized barycenters for persistence diagrams have been developed [START_REF] Lacombe | Large scale computation of means and clusters for persistence diagrams using optimal transport[END_REF]. However, the proposed approach uses the Lebesgue measure as reference measure in their entropic regularization term. This yields points near the boundary of the space, which tend to outnumber farther points in applications, to outweigh them as well. Using instead the reweighted measures α, β and our homogeneous formulation is likely to improve the quality of the numerical results that can be obtained.

A Delayed proofs

Proof of Proposition 4.2. The only computations that differ from the proof of duality appearing in [START_REF] Séjourné | Sinkhorn divergences for unbalanced optimal transport[END_REF] are those corresponding to our slightly modified entropic regularization term.

Introduce ξ := dπ dα⊗β to alleviate notations. 

= f ⊕ f -c, π -ε e f ⊕f -c ε -1, α ⊗ α m(α) = 2 f, π 1 -c, π -ε e f ⊕f -c ε -1, α ⊗ α m(α) .
Summing the terms together yields the result.

Figure 1 : 1 mDefinition 4 . 1 .

 1141 Figure 1: Inhomogeneity when using TV as marginal divergence. (a) The Sinkhorn divergence between λα and λβ for λ ∈ [1, 100] for the standard UROT model. Dashed line correspond to the homogeneous behavior λ•Sk ε,TV (α, β). (b) The same curve in log-log scale. (c,d) The optimal transport plans for λ = 1 and λ = 100, respectively. Width of the lines linking x in α to y in β are proportional to dπ(x, y). The transport plans are not proportional to each other, showcasing the structural change in the interpolation when rescaling the measures.

  [23, §3.1],[START_REF] Genevay | Entropy-regularized optimal transport for machine learning[END_REF] Prop. 4],[START_REF] Chizat | Scaling algorithms for unbalanced optimal transport problems[END_REF] Thm. 1]. The computations that change (due to the modified entropic regularization term) are detailed in the appendix.
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 46 Continuity of the HUROT model). Let α, β ∈ M(Ω)\{0}. Consider two sequences (α n ) n , (β n ) n in M(Ω)\{0} that weakly converge toward α and β, respectively.

Proposition 5 . 2 .FG

 52 Let α, β ∈ M c (Ω). Then, , z) = |1 -c ∂Ω (x) • z| if z ∈ 0, 1 c ∂Ω (x)+∞otherwise.(5.5)Proof. Let α, β ∈ M c (Ω) and π ∈ Adm(α, β). Without loss of generality, we can assume that π(∂Ω × ∂Ω) = 0 [10, Eq. (4)] and that∀A ⊂ Ω, π(A × ∂Ω) = π(A × P (A)). Let also π 1 = π(• × Ω) and π 2 = π(Ωו),that are the marginals of the restricted plan π |Ω×Ω . Note the constraints π 1 ≤ α, π 2 ≤ β. It allows us to write Ω×Ω c(x, y)dπ(x, y) = Ω×Ω c(x, y)dπ + Ω×∂Ω c ∂Ω (x)dπ + ∂Ω×Ω c ∂Ω (y)dπ = Ω×Ω c(x, y)dπ + Ω×∂Ω c ∂Ω (x)d(α -π 1 ) + ∂Ω×Ω c ∂Ω (y)d(β -π 2 ) = Ω×Ω c(x, y)dπ + Ω×∂Ω d(α -c ∂Ω (x)π 1 ) + ∂Ω×Ω d( β -c ∂Ω (y)π 2 )
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 57 Properties of ROTB).

  one has sup n e fn ε αn m( αn) Kε < ∞, and since (f n ) n is (uniformly) lower bounded, necessarily, (m( α n )) n is bounded, proving the claim. If α = 0, the same reasoning yields e thus sup n m( α n ) < ∞ and α n w -→ 0.

Figure 2 :HUROTFigure 3 :

 23 Figure 2: Importance of homogeneity for the OTB model. (a) The evolution of FG ε (λα, λβ) for λ ∈ [0.01, 100] using either our homogeneous regularization term (4.1) (HUROT) or the standard one +εKL(π|α ⊗ β) (UROT). As expected, the HUROT model yields a straight line of slope 1. (b)Same curve in log scale. If the standard model was h-homogeneous for some h (it is clearly not 1homogeneous from the plot (a)), one would expect to observe a line of slope h here. The various slope breaks, due to the non-linearity in the Sinkhorn iterations in this setting, illustrate a highly non-homogeneous behavior.

2 (that the term ε 2 Proof of Lemma 4 . 9 . 1 .

 22491 ξ log(ξ) -ξ + log(m(α))ξ + 1 m(α) , α ⊗ β + ξ log(ξ) -ξ + log(m(β))ξ + 1 m(β) , α ⊗ β ) =ε ξ log(ξ) -ξ + log( m(α)m(β)β =ε ξ log(ξ) -ξ + log(m g )ξ + 1 m h , α ⊗ β .In order to obtain the primal-dual relationship, we writesup π f ⊕ g, π -c, π -ε 2 (KL(π| α m(α) ⊗ β) + KL(π|α ⊗ β m(β) )) = inf ξ -(f ⊕ g -c)ξ, α ⊗ β + ε ξ log(ξ) -ξ + log(m g )ξ + 1 m h , α ⊗ β = inf ξ -(f ⊕ g -c)ξ + ε(ξ log(ξ) -ξ + log(m g )ξ + 1 m h , α ⊗ β .This optimization problem in ξ yields the primal-dual relation(4.4). KLπ| α m(α) ⊗ β + KL π|α ⊗ β m(β)is equal to-(f ⊕ g -c) e f ⊕g-c ε m g + e f ⊕g-c ε m g (f ⊕ g -c) -ε log(m g ) e α, β) = sup f,g -ϕ * (-f ), α + -ϕ * (-g), β -Let f ∈ C(Ω) be optimal in (4.8). Using the couple (f, f ) in (4.3), we get OT [H] ε,ϕ (α, α) ≥ sup f ∈C(Ω) 2 -ϕ * (-f ), α -ε e π = exp f ⊕f -c ε dα⊗α m(α). By the symmetry of c, its marginals are given byπ 1 = π 2 = e f -c ε , α m(α) e f /ε α. As π is suboptimal in (4.2), we getOT [H] ε,ϕ (α, α) ≤ π, c + 2D ϕ (π 1 |α) + εKL π| α ⊗ α m(α) .Now, observe that for i ∈ {1, e f /ε ∈ ∂ϕ * (-f ), and since ϕ * (q) = sup p pq -ϕ(p), we have that ∀x ∈ Ω, ϕ * (-f (x)) = -f (x) dπ1 dα -ϕ dπ1 dα . Therefore,D ϕ (π 1 |α) = ϕ dπ 1 dα , α = -f dπ 1 dα -ϕ * (-f ), α = -f, π 1 + -ϕ * (-f ), πOn the other hand, denoting ζ = exp f ⊕f -c ε , we haveεKL π| α ⊗ α m(α) = ε log(ζ)ζ -ζ + 1, α ⊗ α m(α)

  This holds in particular around the null measure by setting FG ε (0, β) := 1 + ε 2 Pers(β) and FG ε (0, 0) = 0. 3. Under the same assumptions as in Proposition 4.8, SkFG ε (α, β) ≥ 0, with equality if and only if α = β.

In comparison, for instance, to the UROT model presented in Section

2.3. 

Note that Ω is not bounded here, but in practice the measures of interest (the so-called persistence diagrams or persistence measures) are usually supported on a bounded subset of Ω.
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