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Abstract: The present paper proposes the design of a sleep monitoring platform. It consists of an
entire sleep monitoring system based on a smart glove sensor called UpNEA worn during the night
for signals acquisition, a mobile application, and a remote server called AeneA for cloud computing.
UpNEA acquires a 3-axis accelerometer signal, a photoplethysmography (PPG), and a peripheral
oxygen saturation (SpO2) signal from the index finger. Overnight recordings are sent from the
hardware to a mobile application and then transferred to AeneA. After cloud computing, the results
are shown in a web application, accessible for the user and the clinician. The AeneA sleep monitoring
activity performs different tasks: sleep stages classification and oxygen desaturation assessment;
heart rate and respiration rate estimation; tachycardia, bradycardia, atrial fibrillation, and premature
ventricular contraction detection; and apnea and hypopnea identification and classification. The PPG
breathing rate estimation algorithm showed an absolute median error of 0.5 breaths per minute for
the 32 s window and 0.2 for the 64 s window. The apnea and hypopnea detection algorithm showed
an accuracy (Acc) of 75.1%, by windowing the PPG in one-minute segments. The classification
task revealed 92.6% Acc in separating central from obstructive apnea, 83.7% in separating central
apnea from central hypopnea and 82.7% in separating obstructive apnea from obstructive hypopnea.
The novelty of the integrated algorithms and the top-notch cloud computing products deployed,
encourage the production of the proposed solution for home sleep monitoring.

Keywords: sleep monitoring; apnea; heart rate variability; breathing rate; medical of things;
smart glove

1. Introduction

Sleep is a physiological activity that influences daily life in different ways, and its
measurement allows one to evaluate how well a person is sleeping. According to the U.S.A.
National Sleep Foundation, sleep quality assesses if the sleep is restful and restorative [1].
It is fundamental for the health and well-being of people at all stages of life [2]. The U.S.A.
National Institutes of Health (NIH) recognizes that chronic sleep deficiency and circadian
disruption are emerging characteristics of modern urban lifestyles and are associated
with public safety and increased disease risk, through multiple complex pathways in all
age groups [3]. In children, sleep disordered breathing is associated with cardiovascular
and metabolic risk factors, attention-related behavioral problems, and poor academic
performance [4]. In the U.S.A., the Congress and the Department of Health and Human
Services put sleep and circadian disturbances disorders as high priority targets for basic
and clinical scientific investigation [4] to improve prevention, diagnosis, and treatment of
such disturbances.
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In the present paper, the authors attempted to answer two questions: which factors
participate to sleep quality, and how sleep quality could be improved? Then, after a brief
state-of-the-art introduction, a monitoring solution is proposed.

Sleep quality is mainly affected by a person’s habits and physio-pathological condition.
Accordingly, monitoring vital signs during sleep can help to prevent, diagnose, and treat
eventual sleep disorders.

The clinically acceptable sleep stages are majorly determined by reading the recorded
EEG based on the R&K criteria. These criteria were standardized in 1968 by Rechtschaffen
and Kales [5] and further developed by the American Academy of Sleep Medicine in 2007
(AASM 2007) [6]. Various features of the electroencephalogram (EEG) signals have been
proposed to study the sleep dynamics, among those are time-domain summary statistics,
spectral analysis, coherence, time-frequency analysis, and entropy, to name a few [7–10].

Polysomnography (PSG) is the gold standard procedure used to identify any sleep
disorder. It consists of an overnight recording of different electrophysiological signals such
as EEG, electromyogram, electrooculogram, electrocardiogram (ECG), airflow, peripheral
capillary oxygen saturation (SpO2), and photoplethysmogram (PPG). The acquisition and
analysis of these signals require human expertise and specialized equipment; for this
reason, it is mostly performed in medical clinics. As it is a very uncomfortable and costly
procedure, sleep disorders are often underdiagnosed.

Polygraphy, instead, is a less restrictive examination conducted at home, for the
simplest cases to diagnose. Usually, it requires the use of a nasal cannula to detect the
nasal pressure airflow, which is not comfortable to wear and, in many cases, interferes with
natural sleep. However, it does not record EEG and thus is not useful for sleep staging.

In the present manuscript, the authors proposed a novel sleep monitoring platform
based on a smart glove device called UpNEA, a smartphone application, and a remote
server called AeneA. The system intends to propose a less invasive alternative to the PSG
and polygraphy sleep monitoring solutions. The solution aims to keep track of two main
vital parameters: respiration and heartbeat using PPG and SpO2 sensors. In addition, the
proposed system integrates some already validated algorithms for detecting abnormalities
in the heart rate and breathing rhythm.

The choice of surveilling only these two physiological variables is dictated by the less
incommodious equipment needed to record such signals, and the research effort is focused
on attempting to retrieve as much information as possible from the acquired records to
compensate for the lack of other PSG sensors.

Breathing rate (BR) is an important physiological indicator to diagnose a variety
of chronic diseases such as pneumonia and, eventually, cardiac arrest [11]. The gold
standard measurement technique for BR is capnography, but it requires cumbersome
equipment that is uncomfortable for long-term monitoring. To reduce the discomfort,
recent publications have explored the way of deriving the respiration signal from the
electrocardiogram (ECG) and PPG signals [12–14]. Respiration activity modulates both
ECG and PPG signals [15]. The heart rate increases during inspiration and decreases
during expiration: this phenomenon is known as respiratory sinus arrhythmia [16,17]. The
decreased stroke volume in cardiac output, due to ventricular filling, causes respiration-
induced amplitude variation in the PPG signal [18,19]. Indirect estimation of BR estimation
is constituted by amplitude, frequency, and baseline wander modulations of ECG and PPG
signals [13,20,21].

A respiratory sleep disorder that is worth monitoring is sleep apnea and hypopnea.
Sleep apnea is the cessation of breathing during sleep, while hypopnea is characterized
by abnormal reductions of the respiratory flow [22]. Both can be obstructive or central:
obstructive if the breathing effort continues while there is a mechanical obstruction of the
airways (resulting in interruption of the airflow); central if no breathing effort nor airflow
is present. Sleep disordered breathing affects more than 15% of the U.S.A. population
and causes daytime sleepiness, injuries, hypertension, cognitive impairment, risk of heart
attack, stroke, and mortality [4,23–25]. The golden standard apparatus to diagnose such
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disturbances is either PSG or polygraphy, but nowadays different noninvasive techniques
have been extensively developed [26].

During sleep, cardiac arrhythmia could even represent a medical emergency for
individuals with cardiovascular diseases [27]. In these cases, heart rate (HR) long-term and
continuous monitoring are beneficial for a sudden intervention.

Bradycardia and tachycardia are HR abnormalities defined as excessively decreased
or elevated rates of the heart. Such conditions can occur in specific situations such as
during sleep, relaxation, or physical activity [28]. Generally, an HR < 50 beats per minute
(bpm) can cause fatigue and transient dizziness. Tachycardia is present when an individual
presents an HR higher than 120 bpm: this can lead to palpitations, shortness of breath, or
dyspnea on exertion [29].

Atrial fibrillation (AF) is predominantly associated with an increased risk for heart fail-
ure and stroke. Its prevalence increases with age [30–32], and its nature can be intermittent
and asymptomatic [33]. Although is the most common arrhythmia, for a large part of the
U.S.A. population it is undiagnosed [34]. Instead, premature ventricular contraction (PVC)
occurs when an ectopic focus, originating in the ventricles, leads to premature activation
of the ventricles, antecedent to typical sinoatrial node activation [35]. PVCs can cause
symptoms as the sensation of an irregular pulse or having skipped beats, but concerning
AF, the clinical course of patients with PVCs is typically benign [36].

To investigate the presence of HR abnormalities, the golden standard methods are the
24-h Holter monitor or the 30-day event recorder [37], employing ECG electrodes adhered
to the person’s chest. In recent years, a wearable solution for long-term HR monitoring
implements wrist-wearable PPG sensors to continuously measure HR in free-living condi-
tions [38]. The pulse rate time series, derived from PPG, is a surrogate of the heart rate time
series and so the pulse rate variability (PRV) concerning the heart rate variability (HRV), as
demonstrated in [39] during tilt table tests. HRV represents fluctuations in the heart rate
related to autonomic nervous system control: HRV high-frequency components (between
0.15 and 0.4 Hz) represent the vagal tone, while low-frequency (LF) components (from
0.04 to 0.15 Hz) manifest the activation of both parasympathetic and sympathetic nervous
systems. Both the PRV and the ratio between LF and HF (defined as the sympathovagal
balance [40]) have been used to discriminate sleep breathing disorders [41,42].

State-Of-The-Art

Nowadays, different devices have been proposed for sleep monitoring solutions
employing less invasive technology, attempting to shift the sleep observation task from
medical clinics to home health care. The main objectives of this transition consist in
improving the quality of records by increasing user comfort during sleep monitoring and
making sleep diagnosis more accessible.

For example, the Advanced Brain Monitoring Company developed the Sleep Profiler
PSG2 EEG measuring helmet that employs also a nasal cannula: although the proposed
equipment is reduced in size concerning the PSG one, it has the benefit of diagnosing
sleep disorders with the same accuracy but, still, the level of discomfort on the user is not
reduced. Similar commercial equipment for sleep home diagnosis exists on the market,
e.g., the Edentec Monitoring System, Embletta, SOMNOcheck, and Apnea Risk Evaluation
System (ARES). All of those implement a helmet as well as an airflow nasal cannula to keep
track of respiration, increasing the accuracy of BR estimation, yet making the equipment
cumbersome. Some other, like Sibel Home, ApneaLink, and Stardust II, implement chest
belt and limb sensors to increase the user’s comfort and derive physiological signals from
pressure sensors, PPG, and accelerometers: this solution reduces monitoring accuracy and
still needs physical connections that can be easily dislodged during sleep [43–45].

To cite other cases, the Stadius Center laboratory at KU Leuven is also working on a
bed-integrated platform that aims to diagnose and treat apneas, implementing plethysmog-
raphy, respiration, and ballistocardiography signals. In the literature, Hernandez et al. [46]
proposed a sleep monitoring device called PASITHEA, tailored for apnea detection: the
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device exploits a nasal cannula to detect the airflow interruption and then acts with a
kinesthetic actuator for vagal stimulation.

Some other approaches aimed to reduce the complexity of the PSG system, making use
of ECG signals to extract vital parameters as HR and BR [47] and then differentiate between
obstructive and central apnea events [48,49]. Some others also integrated accelerometer
signals besides ECG to seek better accuracy [50,51].

Some studies evaluated the performance of an unobtrusive sleep monitoring system
by operating a pressure sensor into a bed mattress [52] for the identification of the sleep
apnea–hypopnea syndrome. In [53], instead, the sensor incorporates multiple pressure
transducers to surveil respiration, heart rate, and body movements on sleeping subjects.
Results of this study were promising to diagnose sleep apnea–hypopnea but are not yet
sufficient to exploit the solution for medical purposes.

In recent years, several studies explored the opportunity to exploit smartphones
as sleep monitoring devices, indicating encouraging results. Many works employed
smartphone-based accelerometry for respiratory rate assessment [54–56] and so to assess
sleep quality [57]. In particular, in a proof-of-concept study [58] tested the feasibility of
using smartphone accelerometry to characterize the sleep respiratory activity and iden-
tify obstructive sleep apnea events. Further [59,60], full-night audio signals recorded
with a smartphone microphone were provided to an automatic detector for identify-
ing sleep apneas and hypopneas. Nevertheless, the pilot studies have not yet passed
medical certification.

A project similar to the sleep monitoring platform presented in this work is being
developed by EIT Health and consists of a smart strap called ApneaBand, that records PPG
signals on the wrist. The signal processing algorithms are embedded in the device, and
thereby they do not take the computational advantage of cloud computing and they need
to be updated over the air. To the authors’ knowledge, PPG signals acquired at the level of
the wrist would be more affected by noise than those collected on the index finger, and this
could reflect on the sleep monitoring performances. Besides, the ApneaBand results are
not immediately available to the user after sleep as the device needs to be connected to a
personal computer for data visualization.

A second interesting commercial device, very close to the monitoring system proposed
in this paper, is WatchPAt by Itamar Medical™, that implements the same sensors UpNEA
is equipped with. WatchPAt integrates the patented Peripheral Arterial Tonometry (PAT®)
technology to track sleep and detect central sleep apnea events. Concerning this solution,
whose architectural design has not been revealed for the company interests, the sleep
monitoring platform presented in this paper adds more functionalities to track sleep with,
e.g., the possibility to classify apnea and hypopnea events and even discern if their nature
is central or obstructive.

In this context of a variety of sleep monitoring solutions, the system proposed in
the present manuscript aims to address the problem of increasing detection accuracy of
sleep disturbances, by implementing sensors that are less cumbersome concerning those
employed in PSG.

The authors, having already published a method to detect and classify sleep ap-
nea/hypopnea syndrome from PPG signals [42] and having compared the performances of
different algorithms for BR estimation in [61], wanted to concertize those works in a novel
integrated platform for sleep monitoring. The proposed system has been built employing
the most recent hardware material and one of the top-notch cloud computing products.
The whole architecture based on the cloud offers a high computational workload and
scalability and easily allows the integration of new algorithms and connected devices.

The novel platform consists of a connected glove called UpNEA, a smartphone appli-
cation, and a Matlab Production Server™ called AeneA hosted by Amazon Web Services
(AWS). To the authors’ knowledge, there is no similar publication in the literature about a
sleep monitoring system employing such technology. We propose that the present publica-
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tion could inspire the development of new Medical of Things devices, coordinated by a
cloud computing ecosystem.

2. Materials and Methods

The proposed platform works as follows. At first, the smart-glove UpNEA collects
PPG, SpO2, and 3-axis accelerometer signals. Those signals are encoded by the device
hardware and then sent via Bluetooth Low Energy (BLE) to a mobile application. The
mobile application sends these data to a secure remote server (AeneA) for cloud computing.
The server decodes the received data and reconstructs the overnight signals. Then, data are
analyzed by different algorithms to estimate the overnight states of sleep, breathing, and
heart rate. Afterward, detection methods are deployed to observe and classify apneas and
hypopneas, and episodes of tachycardia, bradycardia, atrial fibrillation, and premature
ventricular contraction. Finally, the analysis results are then stored in a SQL database
and accessed by a smartphone or web application to show the overnight report. The web
application is conceived to be available for the user as well as for the user’s clinician. The
purpose of the proposed system is to make the user aware of potential sleep disorders and
ultimately to monitor the effects of the person’s habits on sleep. The purpose of such a
platform would be to make a first home screening night sleep possible, instead of going to
specialized clinics. As an effect, it would reduce the sleep diagnosis costs and make the
task more comfortable.

In the following subsections, the proposed novel platform is described by detailing its
components and their functionalities. The integrated algorithms performances have been
recalled in the results section and, as a proof-of-concept, the proposed platform has been
tested during four overnight recordings on a healthy subject.

2.1. Data Acquisition and Cloud Computing

The smart glove UpNEA and its hardware prototype are both shown in Figure 1.
The device has a 32-bit PIC32MX340F512H processor unit (MicroChip® , Chandler, AZ,
USA). It embeds two reflected mode PPG MAX30101 sensors (Maxim Integrated™, San
Jose, CA, USA), one using red light and one using infrared frequencies, an internal RAM
of 32KB, an external flash memory of 512KB, and a MAX21105 inertial measurement unit
(Maxim Integrated™, San Jose, CA, USA). The power system consists of a lithium battery
packaged close to the electronic custom board. The connected glove is controlled by a
mobile application that allows the device to start recording signals, receive data, and
terminate the acquisition.

Figure 1. The UpNEA device and its prototype.
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The PPG signals are sampled at 100 Hz and 3-axis accelerometer data are sampled at
50 Hz. The SpO2 value is computed in a temporal window of a time pulse by taking as
input the two PPG signals and resampling at 1 Hz using an embedded algorithm in the
microprocessor. For cloud computing, only one of the two PPG signals was considered:
the one operating in the red light frequency.

The data acquisition process is visualized in Figure 2. As the acquisition starts, data are
stored in the UpNEA internal memory and then transferred to the external flash memory.
The external flash memory of UpNEA is organized in blocks of 4 KB, and for this reason,
the internal RAM allocated for this task consists of two buffers of 4 KB each.

At the beginning of acquisition, the first buffer is filled with the incoming encoded
data, and when it is full, the second buffer starts to fulfill. As the second buffer is used
for storing data, a parallel process moves data from the first buffer to the external flash
memory. Then, when the second buffer is full, this process is repeated by re-allocating
data in the first buffer and moving data from the second. This process is repeated until the
acquisition ends.

Figure 2. Datastream visualization for UpNEA.

Once a data block of 4 KB has been recorded on the external flash memory, the
UpNEA device looks for an available BLE communication with the smartphone. If the
communication is available, the block is sent by BLE to the mobile application on the
smartphone. This block is sent in an object containing the binary data of the acquisition and
also a JSON header, in which are specified the device ID and a checksum performed with
XOR operator on 8 bits. During the BLE transmission, the UpNEA device still acquires and
stores new data from the pulse oximeters drivers.

The task performed by the mobile application consists of collecting all the blocks sent
by the smart glove, verifying the checksum, and concatenating all the blocks in a binary
(.bin) file allocated in the smartphone memory. If the checksum is not verified, the mobile
application sends to UpNEA a resend request for the specific block of data; otherwise,
the external flash memory block of the device is freed. Doing so, it is worth noticing that
the arrangement of the blocks in the binary file is not chronologically ordered because it
depends on the blocks’ order of the UpNEA external flash memory. Additionally, in order
to univocally associate each sleep session event to the current user account profile, the
filename of the binary file consists of the user-ID and time information.

Finally, when the user wakes up, they send a STOP message to UpNEA by using the
mobile application on the smartphone. This immediately aborts the recording data process
and finalizes the data transmission. Once all the data from UpNEA are correctly received
by the mobile application, the binary file is uploaded to a data bucket AWS S3, where the
information is stored.

When a new file in the data bucket is stored, an AWS Lambda function is triggered.
This function receives as input the filename of the new binary file and establishes, via IP,
a connection with Matlab Production Server™ (MPS), hosted in a m5.xlarge AWS Elastic
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Computing (EC2) instance. Subsequently, the AWS Lambda sends an HTTP request to
MPS, calling a specific MATLAB® deployed function (passing as input the filename),
which in turn starts a connection request with AWS S3 to download the specific binary
file. Once the binary file has been locally downloaded on the EC2 instance hard drive,
the MATLAB® deployed function reconstructs the signals by decoding the received data.
Afterward, different signal processing algorithms are applied to the acquired data for

• heart rate estimation,
• tachycardia and bradycardia detection,
• atrial fibrillation and premature ventricular contraction detection,
• breathing rate estimation,
• apnea and hypopnea detection and classification, and
• sleep stages classification.

The whole cloud computing system is represented in Figure 3, and the elapsed time
for computing all these tasks is ~30 s. The AWS platform was chosen for its scalability
(capacity to easily upgrade its hardware characteristics) and robustness to handle data
stream and perform cloud computing. The chosen EC2 hardware consists of four 3.1 GHz
Intel Xeon Platinum processors, 16 Gb of RAM memory, 50 GB storage memory EBS-Only,
network bandwidth up to 10 Gbps, and EBS bandwidth up to 3500 Mbps.

Figure 3. UpNEA AWS architecture for cloud stream and computing, refer to text for further details.

After processing, all the results labeled with the user-ID and sleep session time are
recorded in an AWS Relational Database Service (RDS) for Microsoft SQL database, with
one-minute resolution: the heart rate and breathing rate are averaged.

Finally, the user can visualize the overnight report just 45 s after waking up, by using
the mobile or web application hosted by EC2. The application reads the SQL database and
displays the overnight report containing the plots of the extracted information.

To handle the errors, a web service AWS Cloudwatch has been deployed. Any error
generated by the MATLAB® deployed function, or by the AWS system, is communicated
to an AWS Lambda that writes the error in the log file of AWS Cloudwatch. Errors in the
log trigger a second AWS Lambda function that calls the AWS Simple Notification Service
(SNS) to notify the web administrator by a report email.
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2.2. Data Compression and Encoding

UpNEA sends objects containing a JSON header and a binary block of 4KB to the
smartphone application via BLE. However, before being recorded on hardware memory,
data are compressed and encoded. Each binary block is composed of 25 rows of 157 Bytes.
The first row of each block contains four elements: the number of samples, the number
of useful bits, the encoded data, and, eventually, empty bits. The following 24 rows of
each block, present all the same structure of the first one, except for the first element, see
Figure 4.
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1 # of Samples # of bits DATA empty
2 # of bits DATA empty
3 # of bits DATA empty
4 # of bits DATA empty
5 # of bits DATA empty
... - -

- -
- -
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The first element of the block indicates the number of samples produced by the drivers
from the beginning of the acquisition up to the first PPG sample, included in the block.
This element is stored in 4 Bytes LSBFirst; knowing that the sampling frequency of the PPG
drivers is 100 Hz, allows reconstructing the time sequence. The time instants associated
with a SpO2 value or to a sleep movement correspond to those of the last PPG sample,
stored in the block.

The second element of the first block row is a 2 Bytes element LSBFirst, containing
the number of useful bits in that row. This number can be smaller than the remaining row
capacity; in this case, the last bits contain no information.

The encoded data are the next element present in the row of the block and, eventually,
are followed by empty bits. Due to the encoding method, it was not possible to ensure the
same amount of information bits in each row of the block. In Table 1, the block structure
is visually represented. The compression method of a data element in each block row is
lossless and the encoding is based on empirical Huffman encoding [62]: a prefix (data
descriptor) has been assigned to each element of the data stream, allocating less memory
for the most frequent value. The first data value per block is always the absolute value,
(AV) of the PPG signal, encoded in 18 bits. Because of the higher sampling rate of PPG, the
next samples of PPG are encoded as Delta Differences (DD) between the new sample and
the old one. The DD prefix is encoded with the data descriptor 0 and the DD values are
stored in signed int of 8 bits. If DD requires more bits to be stored, then the new PPG sample
value is encoded as the DD value, devised by a Scale Factor (SF). The data stream, then,
includes the SF descriptor, the SF value, and the DD value. The SF is encoded on 3 bits,
so it can encode 8 values. In the case that the SF is too high to be encoded as unsigned int
on 3 bits, that sample is assumed to be an artifact, so it is coded as Garbage (GB) without
recording its value but always incrementing the sample counter by one unit. After GB data,
an AV descriptor and its value are proposed to restore the encoding and compression.

The number of sleep movements is encoded on 16 bits, while the SpO2 values on 6 bits.
This allows the SpO2 to have values in the range [0, 63]. For this reason, when a SpO2 is
produced, it is decreased by 37 and the result is stored in the block. If the difference result
is negative, it is replaced by 0 as evidence of an artifact in the signal. The data descriptor’s
size is variable, and it has been chosen in order to assign to the most frequent value, the
lowest memory allocation. The data descriptors and data memory allocations are listed in
Table 1, and an example of an encoding line is presented in Table 2.

Figure 4. Encoding block structure.

The first element of the block indicates the number of samples produced by the drivers
from the beginning of the acquisition up to the first PPG sample, included in the block.
This element is stored in 4 Bytes LSBFirst; knowing that the sampling frequency of the PPG
drivers is 100 Hz, allows reconstructing the time sequence. The time instants associated
with a SpO2 value or to a sleep movement correspond to those of the last PPG sample,
stored in the block.

The second element of the first block row is a 2 Bytes element LSBFirst, containing
the number of useful bits in that row. This number can be smaller than the remaining row
capacity; in this case, the last bits contain no information.

The encoded data are the next element present in the row of the block and, eventually,
are followed by empty bits. Due to the encoding method, it was not possible to ensure the
same amount of information bits in each row of the block. In Figure 4, the block structure
is visually represented. The compression method of a data element in each block row is
lossless and the encoding is based on empirical Huffman encoding [62]: a prefix (data
descriptor) has been assigned to each element of the data stream, allocating less memory
for the most frequent value. The first data value per block is always the absolute value, (AV)
of the PPG signal, encoded in 18 bits. Because of the higher sampling rate of PPG, the next
samples of PPG are encoded as Delta Differences ( DD) between the new sample and the
old one. The DD prefix is encoded with the data descriptor 0 and the DD values are stored
in signed int of 8 bits. If DD requires more bits to be stored, then the new PPG sample value
is encoded as the DD value, devised by a Scale Factor (SF). The data stream, then, includes
the SF descriptor, the SF value, and the DD value. The SF is encoded on 3 bits, so it can
encode 8 values. In the case that the SF is too high to be encoded as unsigned int on 3 bits,
that sample is assumed to be an artifact, so it is coded as Garbage ( GB) without recording
its value but always incrementing the sample counter by one unit. After GB data, an AV
descriptor and its value are proposed to restore the encoding and compression.

The number of sleep movements is encoded on 16 bits, while the SpO2 values on 6 bits.
This allows the SpO2 to have values in the range [0, 63]. For this reason, when a SpO2 is
produced, it is decreased by 37 and the result is stored in the block. If the difference result
is negative, it is replaced by 0 as evidence of an artifact in the signal. The data descriptor’s
size is variable, and it has been chosen in order to assign to the most frequent value, the
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lowest memory allocation. The data descriptors and data memory allocations are listed in
Table 1, and an example of an encoding line is presented in Table 2.

Table 1. List of data descriptors.

Data Descriptor Data Type [bits]

0 DD: PPG Delta Difference 8

10 GB: PPG Garbage 0

110 AV: PPG Absolute Value 18

1110 SF: PPG Scale Factor 3

11110 SpO2 6

111110 Movements 16

Table 2. Encoding data block row example.

110 AV value 0 DD value 0 DD value 1110 SF value DD value 0 DD value 10 110 AV value

Data decoding and decompression are performed by the MATLAB® deployed func-
tion in MPS. This function reads the binary file stored in AWS S3, per 4KB blocks. The
blocks are then chronologically ordered and the signals are reconstructed by decoding
each row of the block. If a block is corrupted or GB segments are present, then the signal
segment is discarded from the analysis.

2.3. PPG Signal Processing
2.3.1. Heart Rate

At first, the PPG signal is filtered by removing its mean and dividing it by its stan-
dard deviation (z-score normalization). Each peak of the PPG signal represents the pulse
occurrence time, and to get them, a search rule is used. It detects the peaks with a min-
imum prominence, fixed by empirical analysis on the database. The peak prominence
is an adimensional parameter and depends on the representation of the acquired PPG
signal by the acquisition device. It measures how much the peak stands out due to its
intrinsic height and its location, relative to other peaks. In this work, for the peaks search
implementation, the MATLAB® signal processing toolbox is used [63]. This strategy was
chosen to discriminate among pulses, discarding some pronounced dicrotic notch of the
PPG signal that otherwise could be detected as single pulses.

To detect episodes of bradycardia and tachycardia, the method developed by Bonomi
et al. in [64] was implemented. The beat time duration has been computed as the time
difference between two successive pulses. To discover and handle ectopic pulses, the
method in [65,66] was implemented, under the assumption that the pulse rate time series
is a surrogate of the heart rate time series. The estimated pulse rate was used to determine
the average inter-pulse interval (IPI) in one minute window. The IPI indicates the mean
time between pulses, and it was used as the surrogate value for inter-beat intervals (IBI),
extracted from ECG. Bradycardia was defined, in a one-minute window, as any episode
during which the IBI was >1200 ms (HR < 50 bpm); tachycardia, instead, as any episode
during which the IBI did not exceed 500 ms (HR > 120 bpm).

AF and PVC are detected implementing the method developed by Rademeyer [67] and
embedded in a wireless device to monitor psychiatric patients. The Rademeyer algorithm
receives as input the electrocardiogram R-R time interval series, and in the present work,
they have been replaced by the pulse-to-pulse time instants (under the assumption that
the R-R time series is a surrogate of the pulse rate time series [39]). Primarily, an average
threshold is defined as the average of R-R time intervals in the series. Then, a possible
AF is recognized when a pulse-to-pulse interval changes suddenly by more than 50 ms
above the average threshold [68]. When the HRV curve drops below the average threshold
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by more than 50 ms (because the next pulse takes place later), a possible PVC is detected.
Finally, each one-minute segment of the night recording is labeled as AF or PVC according
to the presence of at least one of these detections.

2.3.2. Breathing Rate

The embedded algorithm for the breathing rate estimation is the one implemented by
Khreis et al. in [14].

The choice of the best respiration rate estimation method was performed by the
authors in a comparative study published in [61]. For comparison, several techniques
were implemented: empirical mode decomposition (EMD), EMD combined with principal
component analysis, wavelets analysis, respiratory-induced intensity variation analysis,
respiratory-induced amplitude variation analysis, respiratory-induced frequency variation
analysis, and Kalman Smoother method from data fusion. The algorithms were validated
on the public CAPNOBASE database [69], which consists of 42 subjects (29 children and
13 adults) with simultaneous ECG and PPG recordings. Eight minutes of high-quality
data have been acquired during elective surgery or routine anesthesia for each subject.
The capnography waveforms were manually labeled by the authors of the study, and the
annotations of BR were used as reference values; methods comparison was performed by
segmenting the PPG signal in windows of both 32 s and 64 s.

Finally, the best performing algorithm was one implemented by Khreis et al. in [14],
that tracks the respiration signal, using the Kalman smoother, to fuse modulation signals
with the highest respiratory quality indices.

2.3.3. Apnea and Hypopnea

Authors developed and published new methods for sleep apnea and hypopnea detec-
tion and classification. Those algorithms were integrated into the proposed platform for
cloud computing their complete description and validation are presented [42].

Briefly, the underlying principles of the detection and classification methods reside
in a decrease in amplitude fluctuation (DAP) of PPG signal, usually linked to a sleep
disordered breathing event, as shown in [70–75]. From this perspective, the embedded
apnea/hypopnea detection method implemented a DAP detector. A DAP event was
considered apneic/hypopneic when oxygen desaturation also occurred in a 20 s temporal
window left-centered on the DAP. The detection flowchart is shortly described in Figure 5.

Figure 5. Apneic and hypopneic events detection flowchart.
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To further differentiate between sleep disordered breathing events types, PRV-based
features were extracted from 65 s PPG temporal windows, centered on the DAP, in order to
account for sympathovagal arousals. Ultimately, the classification algorithm used a Fine
Gaussian Support Vector Machines (SVM) classifier, with Gaussian kernel with 0.56 scale,
to differentiate between apneic or hypopneic, obstructive or central DAP events.

The methods were tested on 96 overnight signals, recorded at the UZ Leuven hospital,
from patients with sleep apnea/hypopnea syndrome and without any kind of collateral
morbidity. Each record contained a PPG and a SpO2 signal sampled at 500 Hz, and the
apnea–hypopnea index (AHI) was calculated as the number of respiratory events per
hour of sleep, scored according to the AASM 2012 rules [76]. The average AHI in the
UZ Leuven hospital dataset is 31.3 and 39% of the subjects had an AHI larger than 30;
53% of them had an AHI between 5 and 30 and the remaining 8%, an AHI less or equal
to 5. The annotations contain the beginning and duration of central apnea (CA), central
Hypopnea (CH), obstructive apnea (OA), and obstructive hypopnea (OH). Table 3 shows
the total number of annotations per sleep disruptive breathing event (SDBE) category, in
the database.

Table 3. Total number of sleep disordered breathing events, per category, in the database.

CA CH OA OH MA

Number of events 765 689 4984 14,140 750
Percentage of events 3.6% 3.2% 23.4% 66.3% 3.5%

For the overnight sleep apnea/hypopnea detection, each PPG recording was divided
into segments of one minute. Then, 3-fold cross-validation (CV) was performed as follows:
at each fold, two-thirds of the patients present in the database were used to train the
detectors and one-third to test the trained detectors. The 3-fold CV was performed per
patient without re-substitution. As PPG features can be patient-specific, it was taken into
account that each patient should be either in the detection test set or in the detection
training set, in order to ensure a good generalization on new subjects.

Concerning the SDBE classification in CA, OA, CH, and OH, a total of 37 features
were extracted from both the PPG and the SpO2 signals corresponding to a time frame
containing the SDBE. A dataset containing labeled extracted features was then built up
regardless of the implementation of a Leave One Subject Out (LOSO) procedure. That
choice was taken because of the heterogeneous distribution of SDBE types among patients:
for this reason, a further step consisted of balancing data so that each class would be
represented by the same amount of information. Features selection was then applied to
reducing the dimensionality of the problem. The Fine Gaussian Support Vector Machine
model was then trained and tested by using 10-fold CV.

2.3.4. Sleep Stages

A movements counter has been used to classify sleep stages. The counter is based
on the 3-axis accelerometer signal, captured by the UpNEA device. Deep Sleep (DS) is
defined as a stage when no movements or poor movements are detected, Light Sleep (LS)
when frequent little movements are recorded, and Awake (AW) when a huge number of
movements are detected. In the present subsection, the night movement detection and the
sleep stages classification are described.

The accelerometer sampling rate is 50 Hz, therefore every 20 ms (δ) the device acquires
the 3-axes accelerometer values xi, yi, zi. These values are compared with the previous ones
xi−1, yi−1, zi−1 by computing a derivative Di:

Di =
|xi − xi−1|+ |yi − yi−1|+ |zi − zi−1|

δ
(1)
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If Di is larger than a certain threshold, then a movement has been detected. The value
for the threshold is empirically chosen and depends on the hardware characteristics.

The total number of movements at each j-th minute (N j) is then collected. When the
overnight recording is terminated by the user, the night movements mean (mN ) and its
standard deviation (σN ) are computed. A sleep stage label is then assigned to each night
minute, following these criteria:

i f (N j > mN + 3× σN ) : j ∈ AW;

else i f (N j > mN + σN ) : j ∈ LS; (2)

otherwise j ∈ DS.

If the number of movements performed by the user overnight is greater than the night
movements mean plus three times its standard deviation, then we say that likely the user
was awake; otherwise, two more scenarios are possible to light or deep sleep.

2.4. SQL Database

Once AeneA completes the cloud computing analysis, the MATLAB® deployed func-
tion writes all the information extracted from signals, in the SQL database. Two types
of data are recorded: statistical overnight data and one-minute overnight data. Statisti-
cal overnight data comprehend all the statistics computed on the overall sleep duration,
whereas one-minute overnight data collect all one-minute overnight information. These
two types of data are stored in two different database tables, called, respectively, Night-
SleepSummary, for statistical overnight data, and SleepEvents for one-minute overnight data.
Each overnight UpNEA record adds one line to the table NightSleepSummary and as many
lines as the number of sleep minutes to the table SleepEvents. Table 4 visualizes the two
SQL tables fields, corresponding to the data input in the database. The NightSleepSum-
mary presents fields containing the counters for apneas, PVC and AF, tachycardia, and
bradycardia events, as well as the times the user woke up during the night. Moreover,
in the same table are also recorded the overnight mean HR, BR, and SpO2 values, with
user information and the sleep stages total duration. In SleepEvents table, instead, are
reported the user information per sleep night minute: these data collect the average HR,
BR, and SpO2 estimates within the minute, adding also the eventual presence of arrhythmia
and apneas.

Table 4. SQL tables data fields.

NightSleepSummary SQL table fields

UserId, UpNEAId, EventStartDate, EventEndDate,
LightSleepDuration, DeepSleepDuration, SleepDura-
tion, WakeUpsCounter, ApneaCounter, MeanHeartRate,
MeanBreathingRate, MeanOxygenSaturation, Prema-
tureVentricularContractionCounter, AtrialFibrillation-
Counter, BradycardiaCounter, TachycardiaCounter.

SleepEvents SQL table fields

UserId, EventStartDate, HeartRate, BreathingRate, Oxy-
genSaturation, IsApnea, ApneaType, IsPrematureVen-
tricularContraction, IsAtrialFibrillation, IsBradycardia,
IsTachycardia.

2.5. UpNEA Web Application

The user can access their overnight data by logging in to a dedicated internet web
page hosted by AeneA, or in a smartphone application. The user can navigate through
the recorded nights and select which one to display. The plot implements the Highcharts
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JavaScript charting engine from Highsoft, to represent the overnight physiological signals.
The charting engine imports data from the SQL database and displays them on a web page.
Figure 6 presents the screenshot of a generic overnight plot, without clinical significance.
The chart is composed of a zoomable time series with a range selector bar at the bottom,
followed by a legend. The range selector displays only the overnight sleep stages, and a
legend is an active tool that allows showing/hiding information on the plot.

Signals are extracted from the SleepEvents database table, with apnea, AF, PVC, tachy-
cardia, and bradycardia detections. Statistical data, instead, are extracted from the Night-
SleepSummary database table. The plot shows HR, SpO2, and BR signals; apnea and
hypopnea detections; as well as the tachycardia and bradycardia events, represented by
colored bands. In the background, sleep stages are represented in different blue tonalities.
To not overcharge the visualization, the red bands of tachycardia and bradycardia have
been deselected from the figure. Each sleep disruptive breathing event detection is labeled
as apneic or hypopneic, central or obstructive when the mouse pointer passes over the
yellow bands. Ultimately, overnight statistics are reported below the graphic.

Figure 6. The user interface of the UpNEA web application.

3. Results

In the present section, the performances of the methods embedded in the proposed
platform for sleep monitoring will be recalled. Then, a preliminary study employing the
novel sleep monitoring system and consisting of four overnight recordings, on a healthy
subject, will be presented.

3.1. Performances of Methods Deployed in the Novel Sleep Monitoring Platform

At first, the efficacy of the data compression and encoding algorithms will be pre-
sented, then the performances of the breathing rate estimation methods followed by those
obtained from the apnea and hypopnea detection and classification analysis. Concerning
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the performances of the pulse rate estimation method and those of the AFib and PVC detec-
tion, the authors give the reader the possibility to seek further information by approaching
the original manuscripts. At last, during the testing phase, it has not been possible to
evaluate the sleeping stage classifier based on movement detection; however, the authors
decided to integrate it into the platform as an indicative prediction index.

3.1.1. Data Compression and Encoding

The compression algorithm used to encode the data is lossless and acts also as a noise
detector when the difference in amplitude between two adjacent PPG samples (sampled at
100 Hz) cannot be allocated in an 8-bit integer. The average binary file size produced during
one sleep session of eight hours is approximately 5 Megabytes. Reduced file size has two
impacts on the proposed sleep monitoring architecture: it lowers both the time spent by the
smartphone to transmit data into the AWS S3 bucket and the transfer time between UpNEA
and the smartphone, and it allows to implement of the BLE protocol whose capacity of
transfer data is reduced to decrease the devices power consumption. Typically, the data
transfer between UpNEA and the smartphone is performed continuously overnight, during
recording: in this case, when the user stops the recording, then all data have already been
transferred to the mobile device. Then, it takes 45 s for the cloud platform to process the
data and write the results in the SQL database. Finally, the user can have access to its
overnight data analysis after one minute from waking up. Summarizing the benefits of
the proposed architectures: user comfort is boosted with respect to more cumbersome
equipment employed for sleep monitoring (e.g., PSG), the signal quality maintained and
the produced data size minimized.

3.1.2. Breathing Rate

The PPG breathing rate estimation algorithm, integrated into the proposed sleep
monitoring solution, was developed by Khreis in [14]. The implemented technique showed
an absolute median error of 0.5 breath per minute (0.2–1.1 interquartile range 25th–75th)
by segmenting the signal in windows of 32 s duration and 0.2 breath per minute (0.1–0.9)
for the 64 s windowing. These results outperformed other methods, tested on the same
database, and proposed by Pimentel in 2016 [77], Karlen in 2013 [20], Flemming in 2007 [78],
Shelly in 2006 [79], and Nilson in 2000 [80].

3.1.3. Apnea and Hypopnea

The algorithms for apnea and hypopnea detection, embedded in the novel system,
were developed and published by the authors of [42]. Those methods showed an accuracy
(Acc) of 75.1% for the detection of apneic/hypopneic events in one-minute segments, with
76.9% sensitivity (Se) and 73.2% specificity (Sp). In Table 5, the detection Se, Sp, and Acc
values are reported for different types of sleep disordered breathing events: central apnea
(CA) and central Hypopnea (CH), obstructive apnea (OA), and obstructive hypopnea (OH).

Table 5. Apnea and hypopnea detection results.

CA CH OA OH

Se [%] 86.6 73.3 86.4 76.2
Sp [%] 55.3 57.4 57.2 68.2

Acc [%] 70.9 65.4 71.8 72.2

In addition, those algorithms were also tested on patients with a low AHI index
(AHI ≤ 5), and their performances are presented in Table 6. To simplify, the follow-
ing statement will clarify the table reading with an example: if we consider the cen-
tral apnea detection, a sleep disruptive breathing event was considered FP when an
apneic/hypopneic SDBE did not correspond to a central apnea annotation, even if other
apnea types were present.
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Table 6. Apnea/Hypopnea Detection results on patients with AHI ≤ 5.

Event Type Se [%] Sp [%] Acc [%]

All 79.9 75.8 76.1
Central Apnea 100 72.0 72.2

Central Hypopnea 83.6 72.4 72.6
Obstructive Apnea 88.9 63.6 63.8

Obstructive Hypopnea 76.8 74.2 74.3

Comparing results of the apnea and hypopnea detector obtained on the overall
database with those obtained for patients with low AHI, we see there is no substantial
difference, confirming the robustness of the detector. Finally, those methods showed results
comparable to those present in the literature and tested on the same database [81–83].

Additionally, in [42], a further classification was performed on the detected DAP
events to discriminate between central and obstructive, apneic and hypopneic events. The
classification was performed with a Fine Gaussian SVM classifier and showed 92.6% Acc in
separating central from obstructive apnea, 83.7% in separating central apnea from central
hypopnea, and 82.7% in separating obstructive apnea from obstructive hypopnea. The
True Positive rate (TPr = Se) and False Positive (FP) rate (FPr = 1 − Sp) as well as the Acc
and ROC area under the curve (AUC) are shown in Table 7. For comparison, on the same
database, no other works were performed in classifying the SDBE subtypes.

Table 7. Respiratory events classification performances for Fine Gaussian SVM.

TPr [%] FPr [%] Acc [%] AUC

C-O
C 95 10 93 0.97
O 90 5

CA-CH
CA 86 19 84 0.91
CH 82 14

OA-OHA
OA 85 20 83 0.89

OHA 81 14

Note that these results were obtained on signals acquired by the devices available at
the UZ Leuven clinic and not directly with the proposed UpNEA device. However, the
database signals were opportunely downsampled at 100 Hz, before being processed, to
emulate the UpNEA acquisition. For costs and time limits, it was not possible to launch a
clinical protocol for the presented device. Nevertheless, because the proposed platform
transmits lossless data by its conception, the authors would conclude that it is possible to
neglect the hardware validation.

3.2. Performances of the Novel Sleep Monitoring Platform

Finally, the novel proposed platform has been employed to monitor four nights of
sleep, on a 30-year-old healthy male subject not suspected to have apnea or hypopnea
syndrome. The subject voluntarily wore the smart glove UpNEA for four consecutive
nights and reported no sleep discomfort in wearing the acquisition device, as shown in
Figure 1. As already described, the apnea and hypopnea detection analysis was conducted
segmenting the whole night recordings in one-minute segments, implementing the algo-
rithm in [42]. Despite the fact that even a completely healthy person could have some
apneic/hypopneic episodes, for testing purposes, it was supposed that no apneas or hypop-
neas were present. The tests results showed a detection specificity of 96.2%; further details
are represented in Table 8. An example of apnea and hypopnea detection is presented in
Figure 7. The figure shows a time frame containing a DAP event but not a corresponding
desaturation in the SpO2 signal: in that case, the DAP event was labeled as control. This
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example can explain the specificity value obtained on the four night recordings, where,
most likely, a desaturation loss did not correspond to the majority of the detected DAP
events. In conclusion, the authors propose these tests as support for a proof-of-concept of
the novel sleep monitoring system.

Table 8. Apnea and hypopnea detection applied on a healthy subject.

Night 1 2 3 4 Total

Sp [%] 95.4 97.9 92.1 99.3 96.2
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Figure 7. The DAP detection method is applied to a PPG signal.

4. Discussion

Is the authors wish that the presented sleep monitoring platform could inspire the
translation of biomedical algorithms to new connected devices, passing by top-notch cloud
computing solutions. The proposed system consists of a smart glove that is used to increase
user comfort during sleep examination, with respect to the PSG golden standard procedure.
In regard, as the four overnight recording trials revealed, the proposed equipment had
poor sleep ease. Data from UpNEA are sent by a lossless compression protocol to a remote
server. Furthermore, AeneA can be easily updated with new improved algorithms by
redesigning the MATLAB® deployed function and these changes could then be directly
implemented in production. The proposed platform makes it easy and fast the transition
from experimentation to production and allows the introduction of new functionalities, as
the algorithms have been validated.

Concerning the implemented algorithms, the authors chose to implement in the
platform those they already developed and published. In addition, the integrated AFib
and PVC methods were chosen from a published study that embedded them in a wearable
device worn by psychiatric patients. Each implemented algorithm presents its strengths
and weaknesses.

The pulse detection implemented a prominence peak detector, tailored to the database
used for validating the algorithms. A valid alternative would be to implement a Wiener
filter like the one proposed in [84]. In consequence, the AFib and PVC detection methods
would benefit from the integration of pulse rate variability information. We propose that
the BR estimation would improve its performance if accelerometer data (already available
for sleep stages) would have also been exploited for the task. The apnea and hypopnea
detection and classification methods showed good results in highlighting SDBE and in
classifying their nature. Nevertheless, a weak point is represented by their classification
procedure that did not implement the LOSO strategy, as the detection did: for this purpose,



Sensors 2021, 21, 7976 17 of 21

further clinical trials will be required. Last but not least, the sleep stages classifier would
benefit from the integration of PPG signal processing.

At this point, note that the strength of the presented system relies on the flexibility
and scalability of cloud computing: flexibility is intended as the system capacity to intro-
duce new functionalities and improve the implemented algorithms, without updating the
acquisition devices; scalability, instead, allows the remote server (AWS EC2), to be easily
upgraded (e.g., the number of users and threads can be augmented by only updating the
AWS plan). This platform makes the transition from research to production easier and
represents a fast way to remotely build new databases, for research purposes.

On the other hand, trials results obtained exploiting the platform in four overnight
recordings showed high specificity values for apnea and hypopnea detection: those conclu-
sions be correlated to the good health of the tested subject. Although these proof-of-concept
outcomes have no clinical significance (because it was not possible to establish a compari-
son with PSG reference), the results are still indicative of the good health of the subject and
encourage continued testing of the sleep monitoring system in a clinical context.

In comparison with similar products presented on the market, the authors’ research
found two sleep monitoring systems that were revealed to be the most similar to the plat-
form proposed in the present paper: ApneaBand and WatchPAt. Both systems implement
PPG technology and consist, respectively, of a wrist band and a wrist band and a thimble.
At the time of publication of the present paper, ApneaBand is not commercially available
yet. Moreover, the smart band cannot acquire PPG finger signals (usually less noisy), but it
exploits wrist PPG information to provide the overnight detection of apnea events. The
algorithms are embedded in the device, and thereby they do not take the computational
advantage of cloud computing. Results are presented to the user by physically connecting
the device to a personal computer. In respect, WatchPAt is commercially available; takes
as input PPG finger signals; and promises to detect central sleep apnea events along with
heart rate, oximetry, actigraphy, body position, snoring, and chest motion information. As
the presented sleep monitoring platform, WatchPAt, seems to integrate a cloud computing
system with limited functionalities with respect to the proposed systems: it is not able
to discriminate between central and obstructive apnea and hypopnea, nor detect AFib
and PVC.

5. Conclusions

The proposed sleep monitoring platform represents a proof-of-concept for a non-
invasive sleep monitoring system. The zero data loss encoding method embedded in
its hardware allows the system to communicate to UpNEA devices without corrupting
signals quality and compressing the transmitted information. All algorithms integrated
into the platform were tested in different studies, already published in the literature. In
particular, the authors choose to embed the breathing rate estimation algorithm proposed
by Khreis et al. that outperformed other methods tested on the CAPNOBASE database. As
regards the apnea and hypopnea detection and classification methods, the authors exploited
their own work that exhibited good performances on clinical trials and was published
in a separate paper. The point of strength of this platform consists of its flexibility and
scalability, and targets individuals but also clinics that practice polysomnography. It will
be of great interest to continue validating the proposed sleep monitoring platform as a
medical solution complementary to polysomnography.
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