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Abstract

Used to model the interaction of an electromagnetic wave with a particle such as a bo-
son, Maxwell-Klein-Gordon equations are a set of coupled nonlinear time-dependent wave
equations, for which solutions are invariant under a gauge transformation. The latter char-
acteristics expresses through a constraint on the solution fields that might be broken at the
discrete level. In this article, we propose and study a constraint preserving numerical scheme
for this set of equations in dimension 2. At the semi-discrete level, we combine conforming
Finite Element discretizations with the so-called Lattice Gauge theory to design a compatible
gauge invariant discretization, leading to prevservation of a discrete constraint. Relying on
energy techniques, we establish the convergence of this semi-discrete scheme, without the a
priori knowledge of the solution, using compactness arguments. Finally, at the fully-discrete
level, we propose a compatible explicit time-integration strategy of Leap-frog type. We im-
plement the resulting fully-discrete scheme and provide assessment on academical scenarios.

1 Introduction

The Standard Model of physics and Einstein’s theory of Gravitation, which describe the fundamen-
tal forces and particles in nature, involve nonlinear partial differential equations. In the Standard
Model the particles are either fermions or bosons. The fermions are described by spinors, and the
forces between them by connections on certain vector bundles. The connections model bosons. In
Quantum Electrodynamics (QED) these are photons. In particular, in scalar QED, one models
spin-0 bosons that interacts with photons. The equations are derived through a variational prin-
ciple from a Lagrangian function. The form of the Lagrangian is determined by the symmetry
group (gauge symmetry) which the theory is invariant under. If; in addition, one demands the
theory to be renormalizable, the maximal order of derivatives in the Lagrangian is reduced to one,
see Ref. [22]. Through Noether’s theorem (see Ref. [21]) one can show that gauge symmetry
implies preservation of constraints on the solutions of the Fuler-Lagrange equations. Maxwell-
Klein-Gordon (MKG) equations are an example of such equations modelling the interaction of an
electromagnetic wave with a particle such as a boson. The corresponding Lagrangian is invariant
under a gauge transformation and the resulting Euler-Lagrange equations are a set of coupled
nonlinear time-dependent wave equations verifying a charge preservation constraint, consequence
of gauge symmetry. We focus on this set of equations for our study.



Gauge symmetry makes the theory consistent, one should thus strive to preserve this symmetry
when discretizing the model. This is the spirit of the field of structure preserving discretization
in related areas of numerical analysis (see e.g. [3, 4, 12, 13, 16, 17] and references therein) or
in applied physics (see e.g. [26] and references therein). The idea is that the preservation of
the underlying geometric structure will reveal itself through both stability and good qualitative
properties of the solutions.

In MKG equations, the coupling between the electromagnetic field and scalar complex field
describing the evolution of the particle arises through covariant derivatives. Conventional dis-
cretization methods, such as standard Finite Difference Methods (FDM) or Finite Element Meth-
ods (FEM), approximate the gradient part and the part containing the electromagnetic field
separately. Consequently, the resulting approximation of the covariant derivative has no local
transformation law, and the gauge symmetry is broken at the discrete level. This implies, as a
consequence, a violation of the constraint. The key to preserve the gauge symmetry is to approx-
imate the covariant derivative directly, and not as the sum of the gradient and the product of
the gauge field with the scalar field /spinor. This was achieved by Kenneth Wilson [29] in 1974 in
the field of high energy physics. He was doing calculations on quarks on a lattice, and the theory
he developed is now known as Lattice Gauge Theory (LGT). LGT approximates the covariant
derivative in a consistent way and at the same time preserves the local gauge symmetry. The
essence in the procedure is to localize the nonlocal terms arising in finite difference methods : the
nonlocal terms which are to be compared, are parallel transported to a common reference point
with the gauge potential. By doing this, the discrete theory becomes gauge invariant. In this
context, one motivation of this work is thus to exploit this technique in a Finite Element frame-
work to design gauge invariant schemes. As a result, we propose and analyze a numerical LGT
scheme for Maxwell-Klein-Gordon equations that, by preserving gauge symmetry at the discrete
level, ensures the preservation of the inherent discrete constraint verified by the solution fields.

Some LGT schemes have already been proposed in the literature. In two other articles Ref.
[5, 6], two of the authors already analyzed LGT discretization techniques for linear Maxwell-type
equations. In Ref. [6], the convergence of LGT scheme applied to pure Maxwell theory has been
studied. This was done by comparing the LGT-scheme with the converging Yee-scheme [30]. In
Ref. [5], a LGT scheme and a standard Finite Difference discretization for the Maxwell-Klein-
Gordon equations have been compared. A discrete Noether theorem ensures that the constraint
(charge) is preserved. However no proof of convergence of the scheme has been provided in
that paper. With a more applicative perspective, in [26], lattice schemes are also used (with a
Yee-type scheme for the electromagnetic part) to investigate some numerical simulations for the
massive Maxwell-Klein-Gordon equation in the context of QED. Here again no numerical analysis
is provided.

Apart from LGT type discretizations, and regarding numerical analysis works in this context
(MKG), in [8], two of the authors proposed a Finite-Element semi-discrete energy preserving
scheme in the temporal gauge where gauge symmetry is lost but the constraint preservation is
recovered using a Lagrange multiplier. The complete semi-discrete numerical analysis is provided.
Let us also mention the recent study [14] considering Maxwell-Klein-Gordon equations in the
Coulomb Gauge. There, a discretization framework is proposed, based on Finite Elements in
space and a modified Crank-Nicolson scheme in time that is energy preserving but not constraint
preserving. A complete convergence study and some academical test cases are provided. To the
best knowledge of the authors, these are the only studies where a complete numerical analysis
work is tackled in the precise context of Maxwell Klein Gordon equations.

In this article, we propose a discrete numerical framework for the massive and renormalizable
MKG equations in the temporal Gauge, based on conforming Finite Elements (FE) and LGT, aim-
ing at preserving gauge symmetry at the discrete level. The Klein-Gordon (KG) part is discretized
as in Ref. [5] with LGT techniques, while the Maxwell part is discretized using conforming Nédélec
Finite Elements. The resulting semi-discrete scheme preserves a discrete constraint (charge). We
then prove the convergence of this semi-discrete scheme in two dimensions. This is done with some
inspiration from the methodology used in [8] using compactness arguments and energy principles.
Discrete constraint preservation plays a central role in the proof to achieve the adequate bounds



to extract convergence. In a second step, we furthermore propose a fully discrete scheme based
on a leap-frog time integration that also preserves the constraint at the discrete level. The fully
discrete scheme is implemented and some academical numerical results are given for validation.

The paper is organized as follows: In §2, the continuous model is introduced from a variational
point of view. In §3, we set the discretization in space using the lowest order Nédélec elements
[20] on rectangles. The discrete gauge invariant Lagrangian is developed through both LGT and
FE. Constraint and energy conservation are shown leading to the proof of the convergence of the
scheme in§4. Finally, section §5 numerically assess the fully discrete scheme.

2 The Maxwell-Klein-Gordon equation

We first set the equations in a quite general setting of differential forms. Let M be a compact
Riemannian manifold without boundary. The space of real-valued k-forms will be denoted QF(M).
We will often identify one-forms and vector-fields. The real valued L2-product on differential forms
on M is denoted (-, -), and the associated L?-norm || -||. Similar notations will be used for complex
valued forms. All adjoints, denoted (-)*, will be taken with respect to these L2 products.

2.1 Formulation
2.1.1 The Klein Gordon action

The unknown of the Klein-Gordon theory is a complex scalar field, t — ¢(¢) (an element in
Q% M) ® C), and the corresponding action functional is given by

1 r,
St =5 [ (101 = llaol* — w2l = J110FI°) ar (21)

where the dot represents time derivative and d : QF(M) ® C — Q¥ (M) ® C is the exterior
derivative acting on complex valued forms. The third term is the mass term (m > 0 is the mass)
and the fourth term is the self coupling term with v > 0.

Remark 2.1. The case v < 0 will not be envisaged in this work and should deserve a specific
study, since it leads to possible non-positive energy.

2.1.2 The Maxwell Klein Gordon action

In this section, we formally explain the classical physical steps to achieve the gauge invariant MKG
action. The MKG-equation is obtained by imposing a local U(1)-symmetry, i.e. by demanding
the action (or more precisely the Lagrangian) to be invariant under the transformation

b~ P, (2.2)

where 3 is a real valued function on M, 8 € Q°(M). The Lagrangian given in equation (2.1) is
clearly not invariant under this transformation.

This is resolved by replacing the usual derivatives with covariant derivatives, i.e. 9; ~ D, :=
O +iqa and d ~ D4 := d + iqA, with ¢ the coupling constant. Here ¢ — «(t) is a real valued
function on M, i.e. a € Q°(M), and ¢ — A(t) is a real valued one-form on M, i.e. A € QL (M).

The function « is usually called the electric potential while A is called the magnetic potential.
They are related to the electric and magnetic fields by the following equations

E=—A+da, B = dA,
and they transform as

OCWOZ_B)

A~ A—dB,



simultaneously with (2.2). This constitutes the gauge transformation of the field (¢, a, A) given
as (¢7 «, A) ~ (ei5¢7 o — /87A - d/B)

It is then easy to check that the following action

1 T
Sialo, o A = 3 / (1Dadl? = 1Dl = w2]* = S I8/ dt,

is locally U (1)-invariant.

To complete the action we add the U(1)-invariant Maxwell action given by

1

T
| 1= dafp - aagpya,
0

with ¢ the speed of propagation. The full MKG-action is then given by (cf. Ref. [22, 25, 15, 23])
SMKG[¢a «, A] = SKG'[¢5 a, A} + SM[O(, A]

One can finally check that this action is invariant under the gauge transformation.

2.1.3 Euler-Lagrange equations

The stationary points of this action with respect to the different fields are given by the following
Euler-Lagrange equations

(DaDa¢,¢') +(Dag, Dad’) +m*(¢,¢") +7(|6[°0,¢') =0, V¢’ € Q°(M)®C,
(B, A) — 2(dA,dA") + (i¢g*Dag, A') =0, VA € QY (M), (2.3)
(E,dd) — (i¢p* Do, ') =0, Vo' € Q°(M).

In a strong formulation, the Euler-Lagrange equations are also given by

DaDa¢+DZDA¢+m2¢+7|¢|2¢: 07 (24)
E - A2d*dA + i%(qﬁ*DAqb — ¢(Dag)*) =0, (2.5)
4B i3 (¢ Dat — 6(Dad)") =0, (2.6

where d* is the adjoint to d and D% = d* —igA.

We see that the Euler-Lagrange-equations consist of two evolution equations given by (2.7)-
(2.8) and a constraint equation given by equation (2.6). Due to the local gauge invariance,
Noether’s second theorem can be applied to conclude that the constraint is preserved on the
solution of the evolution equations (see [5]), which makes the equations consistent. See Ref. [21]
for the continuous version(s) of Noether’s theorem(s).

These equations together with the differential Bianchi identity (cf. Ref. [28])
dB=0, B=-dE,

which is satisfied by construction of the electromagnetic field from a gauge potential, constitute
the complete set of the MKG-equations.

In the rest of the paper, we consider unitary constants ¢ = 1, ¢ = 1. For the mass m and
self-coupling constant v, we will consider that they are either 1 or 0 in the mathematical proofs
to allow for variations on the system of equations considered. All the proofs are of course valid
for non unitary cases.



2.2 In the temporal gauge

We restrict the equations to the temporal gauge, a = 0, allowed by the gauge symmetry for
the rest of the paper. We also now focus on domains in R%2. From this section, we also leave
the differential forms notation behind (namely d) and use rather the usual notation grad = V,
curl = Vx, div= V..

2.2.1 Strong form of the equation
In the temporal gauge, the strong form of the equations formally writes as find (A, ¢) such that

¢+ DADad +m?¢ + /6% = 0, (27)
A+ curl(curld) — S(¢* D) = 0, (2.8)
where D% = —div- —iA- and S is the imaginary part of a complex.

The constraint formally writes

div(4) = 3(69).

2.2.2 Notations and definition of weak solutions

We let S be a bounded contractible domain in R? with C' boundary.
We use the classical notations for LP(S) spaces and Sobolev spaces W1:#(S), H'(S), H}(S) (with
semi-norm | - |g1(g)), and H(curl, S) is the space of vector potentials in R? considered as vector
fields or one forms, with square integrable curl; the analogue space for the divergence will be
denoted H(div,S). We also denote

Hy(curl, S) := {A € H(curl, S)|v;A =0 on 9S},
where 7, A is the tangential component of A on 95, and
V :={v € Hy(curl, S)|dive =0 in Q},

Time dependent spaces are defined as follows.
For closed intervals I C [0,7], C(I; X) is the space of continuous functions from I to X, and
C(0,T; X) will denote C([0,T7]; X).
We also define for 1 < p < 400, the Bochner spaces LP(0,7; X) for X a Banach space as in [27].

We now give a rigorous sense to a weak solution in the temporal gauge and use a similar notion
as in [8].
Definition 2.2. (E, A, ¢) is said to be a weak solution of (5.11) in the temporal gauge, if

o There exists q < 2, such that
— E € L>(0,T; L3(S)),
— AeC(0,T; L*(S)) N L>(0,T; Hy(curl, S) N Wh4(S5)2),
— ¢ €C(0,T;L*(S)) N L>=(0, T Hy(9))-
{ A = -—E,
° .
¢ = 9.
e For every (E',¢') € C2°(]0,T[xS5)? x C2°(]0,T[xS), there holds
T ) T ) T
—/ (E,E’)dt—/ (W, ")dt = / (Vx AV x E')dt—l—/
0 0 0 0

T T
<DA¢S7i¢E’>dt+/ (Dag, D an)')dt
0

T T
o / (6,0'dt + / (1626, ')t (2.9)

We now turn to the discretization of this equation.



3 Semi-discrete setting

3.1 Finite Element discretization and gauge invariance
3.1.1 Finite element discretization

We discretize the spatial part of the continuous action. Let h > 0. We assume S to be a rectan-
gular domain with a cartesian mesh 7j, and we will assume homogeneous boundary conditions.
Furthermore, for (k,l) € N x N, Qi ;(C) is defined as the space of polynomials with complex
coefficients in two variables (z1,72) € R? with maximum degree k with respect to z; and [ with
respect to xs.

The discretization is based on three finite dimensional spaces Z,g, Z }L, and Zﬁ defined as (see
[20, 19] for properties of these spaces)

ZY = {up, € HY(S) |VK € Th, un|ik € ©1.1(C)} the space of piecewise Q1 1(C) continuous scalar

functions on S.

Z} = {v, € Ho(curl, S) |VK € Ty, vp|k € Q0,1(C) x Q1,0(C)},

72 ={v, € L*(S)|VK € Th, vn|k € Qo,0(C)}.

(3.1)

We denote by Yho7 th, Yh2 (respectively) the analogues of Z,?, VA ,%, Zg constructed with real valued
functions. These spaces are equipped with real basis functions (w!), (w?) and (wf}) respectively,
which we choose as the tensor product of the one dimensional Whitney forms [20, 19]. With
these choices of basis functions, scalar fields ¢, have degrees of freedom at the nodes of the mesh,
qbZ, edge-vector-fields/one-forms Aj;, have degrees of freedom at the edges of the mesh, A" while
face-vector-fields/two-forms Bj, have degrees of freedom at the faces of the mesh.

Moreover, the grad and curl operators in 2D relate the finite dimensional spaces Z9, Z}, and

Z%, so that we have a complex :
70 Y, 70 Y5 72,

They also induce matrices G = (Gen) and R = (Ry.) in the chosen bases, such that
RV & RP B RF

where N, E and I are the sets of vertices, edges and faces respectively.

Remark 3.1. Since curl o grad = 0, we analogously have RG = 0.

Thus, for a node element function ¢, and an edge element function A; we can write

on =D dhul,  Von=> (Ge")wl, ¢, (Go"). €C,
Ah = ZAZ’UJZ, V X Ah - Z(RAh)fw?, AZa (RAh)f € R
e f

Here ¢ and (G¢"). are vertex and edge degrees of freedom, while A? and (RA"); are edge and
face degrees of freedom. The quantity (G(bh)e represents the differential of the scalar field along
the edge e, and has the form (d)ﬁn - (],’)Z), where the edge e goes from node m to node n. Since we
are considering rectangles, a natural orthogonal coordinate system can be associated to the mesh,
and in such a coordinate system the expression (qbfn - qbZ) represents the differential in one of the
two directions (see [5] for a more explicit formulation).

The notation e = {m,n} will denote the edge e which goes from node m to node n.



3.1.2 Scalar products and norms

The information about the shape and size of the rectangles is encoded in the mass matrices. For
two edges e and €', we define

(Mlh)ee’ = / w(};'w?[7
S

where - denotes the scalar product in R%Z. We also define

(M) = [

in the cases k = 0 and k = 2, where s and s’ are respectively two nodes or two faces of the mesh.

We note that the matrices M, ,? are square, symmetric and positive definite. We also note that
the non-zero entries in Mgb, M{’, Mzh are of the order h?, h%, h=2, where h denotes the maximum
diameter of the elements in the mesh.

These matrices M]* are the representative matrices of the L2-products in the corresponding
bases w”. Thus, for example, for two edge element fields u;, and v, written as

Z h, h Z h, R

Up = u,we, Vp = VoW,
€ (&

where u” and v’ are the edge degrees of freedom (DoF), we have

1 — R
() = 5 3 (abvl o ulVE) [ -l

ee’'cE S
—T
=R MV = (M V).

We use (+, ) to denote the real valued scalar product of vectors.

3.1.3 Norm estimates

One can establish estimates between norms and degrees of freedom as in the following Lemmas

Lemma 3.2. Ifuy €Y}, then
ug| < Cllunc2s)-
Furthermore, with p > 2, ¢ > 2 and % + % = %, we have :
2
[ul| < Chillun|Lr(s)-

Proof. Let uy, € Y;!. There exists a constant C, independent of u and h such that
1
5(uh)Tuh <lunl72 = (M{u"u") < C@@M™", (@) =) (ul)?,

Thus

[ < [ (uh)? < Cllunllax) < Cllunllzecs)-
e'e K

This estimate together with Holder’s inequality gives

2
[ul| < Ch|lunlLe(s)-



3.1.4 Gauge symmetry

We can redo the formal derivation of the gauge invariant action at the discrete level. This amounts
to understand how the natural analogue of the action at the discrete level would transform under
the gauge and correct the terms to obtain a gauge invariant action.

With the notation developed in the previous sections, we can express the discrete version of
the Lagrangian from (2.1) as

(bn, dn) — (Von, Von) = (MI@",¢") — (MEGY" Go").

- h
where ¢ and ¢h are degrees-of-freedom vectors.
As in the continuous model we want to impose a local U(1) gauge symmetry. We would like the
theory to be invariant under the set of transformations

O~ €y, (3.2)

where t — B(t) € Y2 is a real valued function, but with ¢, € Z2, e?Pr¢), & Z9.
We thus modify (¢, dn) = (Mé’(iﬁh, (;bh) in two steps.

(a) First, as in the continuous case, we replace the ordinary time derivative by the covariant

time derivative, i.e. Jy ~» Dy, = Oy + oy, where oy, is a real valued function, ), € Y,?.
Furthermore, ay, ~» o, — By under a gauge transformation, implying that Dy, ¢ transforms
as

Do, ¢ ~ € Dy, b1

(b) Next, we replace the mass matrix M* with a mass lumped version H{!, which is both diagonal
and positive definite. Its entries are given by

(HY ) = {?k(MéL)nk, Z ; :,

Let u, v be continuous scalar functions, and u, v their vectors of nodal degrees-of-freedom.
We define the associated bilinear form by (.,.)o., (which gives the scalar product associated
to the matrix H} on Z?) by

{w, v)on = Z %(UH(H(]})nn@n) = (H(})Lua v)
neN

5 ( / no,h(uv)ds> = ¥ B S Ru@yte).

KeTy zeK

(3.3)

where the points « appearing in the sum are the vertices of K and (-,-) denotes the real
valued scalar product for nodal DoF vectors.

Consistency. HP is consistent with M. More precisely, we have the following error esti-
mate (see [10, 9]).

For real [ > 1, and all u € H'(S) and v;, € Z?, there exists a constant C' depending on [
such that
[(w, vn)o,n = (w, vn)| < Chllullgics)llonllL2(s)- (3.4)

Holder type inequality. Furthermore, for p and p’ such that %—!— ﬁ =1, for all (u,v) continuous
scalar fields on .5,

[(w, v)o.n| < ullnpllvllnp, (3.5)



where for p > 1, one defines

el p = ( / Ho,h<u|P>dS> ,

which is uniformly equivalent on Z) to the true L? norm [2], i.e. there exists a constant C
(independent of k) such that for all u € ZJ),

1
clullzees) < llullnp < Cliullzacs)-

As a conclusion, we have modified the term <q5h, ¢h> as (D, &n, Doy, $1n)o,h-

. . “h -
As for the term (¢, ) = (ME¢p ,¢ ), we get a gauge invariant expression approximating
(Von, Von) = (MPG",G") in two steps.

(a)

The mass matrix M{* defines the L2-product for fields with edge degrees-of-freedom. We
lump this matrix with the same numerical quadrature as we used for Mé‘ in equation (3.3),
as follows.

Define the scalar product (.,.)1 5 on Z}l X Z,% by a diagonal matrix H} in the basis w” indexed
over the edges in the mesh. Let u,v be continuous vector fields/one-forms, and u, v their
edge degrees-of-freedom. Then

<u,v>1,h=§R(/Hohu v)dS) Z 1x] ZS‘E

KeTh z€K
=Y R(uHY . T) = (H{u,v).
ecEl
Here (-, -) denotes the real valued scalar product for edge DoF vectors, (u,v) = > 5 R(UeVe).
We observe that HJ is both symmetric and positive-definite.

Consistency. We have the following error estimate (see [10, 9]). For real I > 1, and all
u € HY(S) and v, € Z},

[(w, o) = (u,vn)1,0] < COb[ullgs)llvallzcs)- (3.6)

Henceforth, the mass matrix M} is replaced with the above described mass lumped version
HY? in the inner products.

However, we observe that
h h h iB" L h iB" L h
(G¢ )e:{m,n} = d)n - ¢)m ~ elﬁnd)n - elﬁmd)m
under a gauge transformation, so the expression (H {LG¢h, Gd)h) is not gauge invariant.

This can be resolved by inspiration from Lattice Gauge Theory (LGT) [29, 24, 11], i.e. we
make the replacement

(G¢h)e:{m,n} — (GAhd)h)e:{m,n} = ¢Z - Uh(m7n)¢fnv Uh(m7 ’I’L) = e_i I Aha

where U"(m,n) is called a link variable.

The vector-field A;, € th transforms as
Ap ~ Ap — VP,

under a gauge transformation, implying that (G zn ¢h)€:{m n} ~ P (Gan ¢h)€:{m n}-

We will denote G or @™ the vector of degrees of freedom (¢h Uh(m n)¢ Je={m.n} and G 4, ¢p,
the corresponding element of Z} (i.e. that has the vector G Aan@™" of degrees of freedom). Further-

more, we define Uy, € Z} that has vector of degrees of freedom (e

A )e:{m,n} .

In conclusion, we have thus replaced (V¢y,, V) with the expression (Ga, ¢n, Ga, ®n)1.h



3.2 Discrete formulation of the Maxwell-Klein-Gordon equation
3.2.1 Gauge invariant discrete Maxwell-Klein-Gordon action

The LGT inspired discretely gauge invariant Klein-Gordon action is therefore given by

1 T ¥
S1Cnan Anl = 5 [ (IDas6lla = 1Gasonlfa = monllo = F16nPIR) .

To complete the construction of the Maxwell-Klein-Gordon action, we add the Maxwell action

LT
$Mlan,n) =5 [ (dn = TanlFas, = IV % Anlfgs)) (37)

The discretization of the Maxwell part of the action is well understood (see e.g. Ref. [1, 18, 19, 20]),
so the gauge invariant action we are going to use is

SYEC G, an, Ap] = S [an, Ap] + SEC [dn, on, Ap)- (3.8)
With the above considerations, S}]LW KG is invariant under the discrete gauge transformation Ggs, :

((bmah,Ah) — (Hoﬁh(6i5h¢h),ah — B}“Ah — Vﬂh), with ¢t — Bh(t) c Y;? and HO,h the nodal
interpolant onto Z9.

3.2.2 Weak formulation of the discretized equations

The variation of SMEY at (¢p, an, Ap) in the direction (¢}, , A}) is given by

T
Ds,yxa[¢h7ah,Ah](¢§L,0,0):/ ((Dadns Dad})on — (Ga, dn, Ga, d))1.n) dt
0
T
+m2/0 ((Bn: Bh)on +Y(|Pn]>Pns Ph)o,n) dt (3.9)

T
DSMEG (b an. Ap](0, 0, 0) = / (—(An = Van, Vaj) + (Dadn,ichdn)on) dt,  (3.10)
0

DS}JLMKG[QSM o, Ap](0,0, AL) =
T
/ ((Ah —Vap, A) — (V x Ap,V x A}) — (Ga, on, iRu(Up, dp, A%»l,h) dt, (3.11)
0

where Ry, : Z} x Z) x Y} — Z}, and for all (U, $, A) in Z} x Z2, Ri(U, ¢, A) is the edge element
uniquely defined by its edge degrees of freedom

(Rh(Ua ¢~)a A))e = UeQEmAe,

for e = {m,n}.

The Euler-Lagrange equations are given by the stationarity of the action, i.e.
DS}]LWKGM”H Qp, A](Qz)/h? O‘;zv ;L) =0.

By defining the electric field Ey, as )
Eh = VOéh - Ah, (312)
and by a partial integration in time, the Euler-Lagrange equations read
(D21, dh)on + (G a,dn, Ga, dh)1,n +m*(dn, dh)on + ¥{|On*dns $h)on = 0, Vo, € Zy,

(Bp, Ap) — (V x Ap, YV x A}) = (Ga, &1, iRW(Un, dn, A))1n = 0, VA, €Yy,
(3.13)
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and
(En,Vap) + (Dadn,icgdn)on =0,  Vaj, €Y. (3.14)
We see that these equations consist of two evolution equations, Eq. (3.13), and one constraint

equation, Eq. (3.14) (corresponding to equation (5.11)).

Remark 3.3. If one would have considered a classical Finite Element discretization, the covari-
ant derivative would have been discretized using Doy, + 111 ,(Anr) which would break the gauge
mnovariance.
We suppose that the following initial conditions, A° € HY(S), E° € L?(S), ¢° € HL(S),
0 € L2(S) are given.
Then we consider the following discrete initial conditions
Ah(oa ) = A?L € Yh17
Eh(07 ) = Eg € tha

(3.15)
¢h(07 ) = ¢2 S Z}?a
Vr(0,.) =y € Zp.
Furthermore, we suppose that they are chosen such that
AY) — A% in Hy(curl, S))N LY, E) — EYin L?(S), (3.16)
h—0 h—0
oh — ¢ in Hy(S), op — ¢ in L*(9). (3.17)
h—0 h—0

In the rest of section 3.2, for simplicity of notations we drop the indices h, and consider the
situation where h is fized.
3.2.3 Constraint preservation

One important feature of this scheme concerns the constraint equation (3.14). The discrete MKG
action (3.8) is gauge invariant, since both terms are. One can therefore use a discrete Noether’s
theorem to prove constraint preservation, in a similar manner as in [5].

We can also show this by a direct calculation.

Theorem 1. Suppose (E, A, a, @) solves equation (3.13) on a time interval [0,T]. Suppose fur-
thermore that the constraint (3.14) is satisfied at t = 0. Then the constraint (3.14) is satisfied for
all t € [0, 7).

Proof. We start out by a differentiation in time of the left hand side of equation (3.14), denoted
k. This gives

fo = (E,Va') + (Do, ic! 9o n + (Dud,ia! Yo p + (icp, i d)o.p. (3.18)
By the evolution equation for the electric field, equation (3.13), we have
(B,Va')y = (Gad,iR(U,,Va'))1 . (3.19)

Furthermore, )
D2¢ = Dot + iaDad + icg, (3.20)

and we can apply the nodal interpolator to both sides of this equality. Then (3.18) can be rewritten
fo = (G ad, TR(U, 6, V)1 5 + (D2b,ic o p + (D, ic )o.n — (iaDyd,ic/ d)o - (3.21)

The evolution equation for the Klein-Gordon scalar field gives

o= (Gad,iR(U, ¢, V)1 — (Gad, Galillon(a/9)))1,n +m* (¢, illg (' $))o,n + v(|B|° ¢, illo n (e d))o,n

+(Dag, i/ Yo.n — (iaDa,ic! $)o p-

11
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Since our scalar product is real valued, we obtain
<Da¢7ia,§z;>0,h - <iO¢Da¢), 7:O/¢>O,h = <Da¢7ia/Da¢>O,h =0 (323)

In a same manner, since

(1617¢,iTlo n (/' ))o.n = (|9° D, ia’ d)o n, (3.24)
one has
(|¢1*¢, iTlo 1 (' $))o.n = O, (3.25)
and
(¢, illo. (' ))o.n = (@i’ Phop =0 (3.26)
This gives
i = (G0, iR(U, $,Va'))1,n — (Gag, Ga(illo n('$))) 1.1 (3.27)
where,
(GA(iH07h(a/¢)))e = Za/nd)n - Z'UeO/m(ZSm (3-28)
iy ($n = Uehpm) = iU(Ga")cfrm, (3.29)
= i (Gad)e — iU (G ) e (3.30)
This gives that
<GA¢a Ga (iHO,h(O/(b)»l,h = <GAh,¢7 iR(Uv Vo‘lv ¢)> (3'31)
Thus £ = 0.
This concludes the proof. O

3.2.4 Energy conservation

We define the energy of the system at any time with

o IGAGIR , + 1B + IV x AJ* + m?l¢

1 v
() = 5 (I1Das Ba+ 216113 4)-

We will show through a direct formal calculation that this energy is preserved by the flow.

Proposition 1. Suppose (E, A, «, ¢) solves the evolution equations (3.12, 8.13). Then the energy
is conserved.

Proof. The proof is a mere calculation. We have

H(t) = (Dot Dad)on + (ich, Dad)on + (Gad, Gad)ipn + (Gad, RGU, ¢, A1,

HEE) +(V x A,V x A) + m*(¢, o + (|66, So.n- (3.32)
Using (3.20), we deduce that
(D26, Dad)on = (Dad, Dad)on + (i&d, Dad)o.n. (3.33)
So that
H(t) = (D26, Dad)on+ (Gad,Gad)rn+ (Gag, R(iU, ¢, A))1n+ (E,E) + (V x A,V x A)
+m*(o, o + (1010, )on- (3.34)
Using (3.13), we find
H(t) = —(Gad,Gallop(Dad))on — m*(d, Dad)on — ¥(|¢|*, Dad)on

(
+(Gad,Gad)rn + (Gad, R(iU, ¢, A)) 1.1
_<GA¢7 ZR(Ua ¢7 A)>1,h + <GA¢7 ZR(U7 ¢7 va)>1,h
+m? (6, )o.n + {026, o n- (3.35)
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Since the scalar product is real, one has that (¢,ia¢)o s and (|¢|*¢, iad)o ,, vanish. This gives

H(t) = —(Gad,Galiad))on + (Gad,iR(U,¢,Va))n (3.36)
Using the computation done in the proof of theorem 1, we conclude that H = 0, so that the
energy is preserved in time. O

3.2.5 Choice of gauge and existence

We choose to work in the temporal gauge, i.e. & = 0 (as in definition 2.2) and, for the discretization,
ap = 0. This implies
A, = —E,
Do, = on.
Let T > 0. Since we are working on a finite dimensional space, we have local existence of solutions
of (3.13), (3.14) and (3.15). Conservation of energy assures that the local solution is a global one:
the discrete solutions are defined on the whole interval [0, T7].

4 Convergence of the semi-discrete scheme

In the rest of the paper, C will denote a generic constant (independent of ¢ and h). In the proof of
convergence, we will need some results concerning the convergence of approximations. We state
them here and postpone their proofs to the appendix A.1.

4.1 Preliminary results

Lemma 4.1. Let I, ;, be the edge interpolant. For p > 2, the following inequalities hold. There
exists C > 0 such that for all (Fy, () € Z} x Z7,

(i) 2
1FnCh — M n(Fnln)ll2csy < CR' P (| Full Loyl Chlmcs)- (4.1)
Furthermore there exists C > 0 such that for all t € [0,T],

(i)
Ap,Vr
S A, <C<||w Anllasy + sup L2 h>'>, (42)
KeT, rpeyy IThIlL2(S)
(iii)

_2
D M n(Andn) 3 sy < Ch7
KeTy

Ah,Vrh
IV x Apllp2(sy + sup Hn, V)|
rREY Irallzzcs)

) lPnllLe(s)+

HAnllLe(s)|Pnl 1 (s)

(4.3)
The following result allows, by the constraint (3.14), to control the weak divergence of Aj
appearing in (4.2) and (4.3).
Lemma 4.2. Let p > 2. There exists C > 0 such that for all t € [0,T]:
A}“ V TR _2 .
[ln, V)] < Ch™?||¢nl| Lo 0,7,20(5)) | Pnll Lo 0,1, L2(5))-
rey? lIrallrzcs)

With these results at hand, we are ready to prove the convergence of the weak solution of
(3.13).

13



4.2 Study of convergence
4.2.1 Boundedness in the energy norm

The initial energy is bounded uniformly in h, as can be seen from (3.16), (3.17) , and since it is con-
served in time, we can immediately conclude that FEj, and V x Aj, are bounded in L>(0,T; L2(S)),
ie.

| EnllL=(0,1,22(5)) < C,

(4.4)
IV x Al Lo 0,1,22(5)) < C.
We can also conclude that ¢y, Q'S;L and G 4, ¢n are bounded in time in the following sense.
sup ||énllo.n < C,
0.7] (4.5)
sup |G a, ¢nllin < C.
[0,T]
Furthermore if m ## 0,
sup ||énllne < C,
sup 6112 (46)
and if v > 0,
sup ||énllna < C,
sup 6] )

4.2.2 Convergence of ¢,

This is obtained in three steps. First, one bounds the H!(S)-norm of |¢,|, then one obtains a
bound on the LP(S) (p > 2) norm of the gauge potential A,. In a third step, this is used to
conclude that ¢, is bounded in H!.

Boundedness of the H-norm of |¢|. We would like to deduce that

IG 4,007, < C implies ||V]y|[|7 < C.

One has
(GAh ¢h)e:{m,n} = d)ZrL - Uh(m7n)¢’7ia
with "

Uh(m,n) = exp(—i/ Ap) = exp(fiAZ),

m

where A" is the degree of freedom relative to the edge e.
Since iA” is purely imaginary, we have the following estimate

h
H¢m| - ‘QﬁnH < |(GA"¢ )e:{m,n}|a
so that by positivity of the diagonal matrix H{*, one can conclude that

IVIonlén] I3 < IIGa, ST -

We recall that VI ,|ép| is the edge element vector field whose degrees of freedom are given by
the vector G|¢"|. By previous estimates,

IV o, nlnl 17205y < ClIVIIohl6nll[3 -
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This implies
IV TLo b |60] 17 0.7, 22(5)) < C
which gives that IIo ,|¢p| is bounded in L>(0,T, Hg(S)).

In order to extract estimates on the H'-norm of ¢, rather than on the H'-norm of its modulus
|¢r|, one needs a control of the LP-norm of Aj,.

Boundedness of the gauge potential. Along the same lines as in [8], one can obtain a bound
on A in the LP norm. To this aim, we consider the discrete Helmholtz decomposition of Ay

Ay = /ih + Vpy. (48)

We bound each part in LP.
Bound on the discrete divergence-free part. The discrete divergence free part A, is bounded
in LP by the L?-norm of the curl of the gauge potential,

[ Al Lo 0,1,r(5y) < CIIV X ApllLoe(o,1,L2(5))- (4.9)

We won’t give any details on this estimate as it can be extracted exactly as in Proposition 2.5. of
[8].

Bound on the gradient part. One has from the constraint equation (3.14)
(Von, Vun) = (un, vn)o,n, (4.10)
with )
uh(t) = / qﬁhahdt.
0

We would like to bound pj, in L>(0,T; W1P(S)) for p > 2.
By classical estimates that can be found in [2], we have

Up, U)o,k
[prllwie(s) < C sup T, vndo.n]

at any t € (0,77,
vp EYY \|Uh||w1»p’(5)

Where%+§:17withp>2andp'<2.

Let us choose ¢’ such that % = % For any ¢ such that é + % =1, we have

1
P

[(un, vn)o,n| < llunllngllvnlln,g -

Furthermore,

ol

t t
funllg < C [ 16nlnalulln < € [ 16nlzo(s) I6nl1rcs)
0 0

Since § + 5 = 7, from the energy bound (4.7), we deduce that nllz2(s)y < C and ||¢nlr(s) < C.
This implies that
[(un, vr)o,nl < Cllvnll e sy,

independently of ¢ € [0,T].
By the Sobolev embeddings W'?'(S) < L9 (S), we deduce
un, vn)o,nl < Cllonllwe sy,
which implies that py, is bounded in W1(S), and

[ Anllze(0,1,20(5)) < C.
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Remark 4.3. If v > 0, we can also directly prove (without having to use the boundedness in the
H' norm of |¢n|) that Ay, is bounded in L°°(0,T, L*(S)), using that in this case ¢y, is bounded in
L*(0,T, L*(S)).

Convergence of ¢p. From this, we deduce that ¢y, is bounded in H'(S). Indeed,

1 — exp(—iAl)

14 exp(—iAh)

(Garg")e s (G + 5 (fm ),
so that (iA%)
2 1 —exp(—1
Gy — Gand™)o — e h hy
( ¢ ) 1+ exp( ZAh)( Al d) ) 1+ eXp(—iAZ) (d)m + d)n)
which implies
. (‘ h ‘
sin
h
> ’ Ah¢ )e ‘Qb
’ ’ ‘cos Ah ‘ ‘cos( ‘ ( )
In the last section we obtained
| Anll Lo 0,7, 17 (5)) < C,
which yields
2
|Al| < Cha, (4.11)

where % + % = % This means that for h sufficiently small, h < g¢ with g9 > 0 given,

||>C>0

| cos(
We also make use of the following inequality
AL _ A
<
sin( 5 ) < 5

As a consequence
(G")el < Cl(Gard")el + CIALI(I¢y] + dnl).

h h
Furthermore, AQ(MW) are the degrees of freedom of the product A,y 1 (|¢n]), and one can
then conclude that

IVonllh o < CllGa, dnlli 2 + Clyn(ArTlo k(190 ])17 2

Using Lemma 4.1 with A,IIy ,(|¢r|) and bounds obtained on both A and |¢y|, we can conclude
that
IVenllTn < C.

Finally since [|Vonl|z2(s)y < Cl|Vn|1,n, it follows that

[énll Lo 0,1, H2(5)) < C-

Remark 4.4. Following remark 4.3, if v > 0, we can also directly obtain this result (without having
to use the boundedness in the H' norm of |¢n|) using the boundedness of Ay, in L>=(0,T, L*(S9)).

By following [8] and using the bound on the energy, we arrive the convergence of ¢, in
L>(0,T; L*(S)) (up to a subsequence) using the compactness result from [27] and interpolation
estimates on LP(S) spaces.
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4.2.3 Convergence of the gauge potential A,

The convergence of the gauge potential is obtained by considering the discrete divergence free part
and the gradient part of the discrete Helmholtz decomposition (4.8) separately.

Discrete divergence free part. ~We follow again [8]. By a Kikuchi type result, one obtains
the convergence of Aj, in L>(0,T, L?(S)). Interpolation estimates then give the convergence in
L*>(0,T, LP(S)), since one has (4.9).

Gradient part. The equation we are considering is (equation(4.10))
<Vph, V’Uh> = (uh, vh>0,h = lh(vh), Yo, € Y;(L)

We have I, € (Y}?)*, and one can then find, by the Riesz representation theorem, f;, € Y;? such
that Yoy, € Y2,

(fnrvn) = ln(vn).

Let ¢ > 2 be given. We choose r > 0 such that % < % < % + %. One has
fnyv Inyvn In (v,
Wl =  sup A9mOl gy Wl el gy
veL" (S) HU”LT’(S') veL"™ (S) HU”LT’(S) veL" (S) HUHL“(S)
where % + % =1, and v, = P,(v) is the L? orthogonal projection on Y;? (which is stable in

L’"I(S)). As already shown in a previous section, this implies

I fnllzo= 0,705y < Clidnll Lo (0,7:02(5) |80l L= (0,7 14(5)) -
Furthermore, Vt € [0, T, .
(frsvn) = (U, vn)o,hs
which means that
I fnllLe=o,1,27(5)) < CllonllLe=(o.r;22(5) 10l L (0,1;19(5))-
From this one concludes that there exists w € L>(0,T; W~14(S)) such that
frn — w in L0, T; W~19(S)),
h—0
where we used the compact embedding from L"(S) into W~14(S), and the compactness result of
[27].
Define p € W14(S) as the unique solution of
/ 1
(Vp, Vv) = (w,v) =: l(v), Yo € WH(9), -+-—=1
We would like to prove that
lpn — pllLos (0, 7;w1.9(5)) = 0.

In order to prove this, we use a version of the Strang lemma, i.e.

sup [t (vn) = Uon)| 0

onez9  vnllwra gy h—0

which is verified by construction of [, and we can conclude that pj, P in L>°(0,T; Whe(S)) for
—
all ¢ > 2.

17



4.3 The limit equation
4.3.1 Summary of convergences obtained

(a) Convergence obtained for Aj. We have that
Ay — Ain L*>(0,T; LP(S)), V2 < p,
h—0
and from energy bound we directly have

V x A, — V x Ain L>(0,T; L*(S)) weak-*,
h—0

and _ _
A, — Ain L>=(0,T; L*(S)) weak-*.
h—0

(b) Convergence of ¢p. We have that
¢ — ¢ in L*(0,T; LP(S)), Vp < +o0,
h—0
and from energy bound, we directly have
én — ¢ in L>(0,T; Hy(S)) weak-*,
h—0
and

én — ¢ in L=(0,T; L*(S)) weak-*.
h—0

4.3.2 Limit equations

Let ¢/ € €2°(]0,T[xS) and A" € (C(]0,T[xS))?. Define ¢j = I n(¢') € C(0,T;2)) and
Al =TI, ,(A) € C°(0,T;Y;!). We denote by ¢ and A’ the vectors of the degrees of freedom
associated to ¢}, and Aj respectively.

In the temporal gauge, the semi-discrete equations (3.13) read

T T T T
/ <¢h»¢;1>0,h+/ <GAh¢h7GAh¢§L>1,h+m2/ <¢>h7¢>2>0,h+7/ (lonl*dns D)o = 0,
0 0 0 0

(4.12)

T T T
/ <Eh,Ag>—/ (V x Ay, ¥ x Ag>—/ (G ay &1 iR (Uny 1, A1 = 0.
0 0 0
(4.13)

T T T
Study of equation (4.12). We have / @h, Oon = */ <<Z'5h, Q%JO,h = */ (Qﬁ.h, (2.5/>07h, and
0 0 0

by weak-* convergence of (;.Sh,
T T
[ 6nény = | 6.0,
0 -0 Jo

Furthermore from (3.4) and uniform L? bound on ¢j,
T . . T . .
/ <¢ha¢/>0,h 7/ <¢h7¢,>

0 0
T T
The convergence of the terms / (én, ¢ )o,n and / (|¢n|*Pn, @Yo directly follows from the
0

T
< / Chlldnllz2s) 19|l 15y < Che
0

0
convergence of ¢p, in L>(0,T; LP(S)) and the convergence for the test functions. We now study

18



T T
the convergence of the term / (Ga, dn,Ga, dn)1.n to / (Dad,Da¢’). Tt will be obtained in
0 0

several steps.
First, we decompose the quantity of interest (Ga, ¢n,Ga, ¢h)1.n — (Dad, Da¢’) into three terms
as

(Ga,dnsGa, )1, — (Dag, Dad’) = (Ga,on, Ga,dp)1.n — Ui n(Da, dn), Ga,dh)1n
Iy
+ (M 1 (Da, &), G, n)1n — (i n(Da, én), i n(Da, 1)) 1.0
I
+ (y,5(Da, ¢n), M1 n(Da, dp))1,n — (Dad, Dag’) (4.14)
J

We first concentrate on I; and Is. We need the two following Lemma. Their proofs are
postponed to appendix B.

Lemma 4.5. There exist n > 0 and C > 0 such that if h <,

[Sup] |G a,, &0 — Hl,hDAh@lHig < CR2* 4P,
0,T

so that

sup |Ga, én — i nDa, énll, 5 — 0.
[0,7] “ h—0

Furthermore, from the bound on the energy we directly have the following.

Lemma 4.6. There exists C' > 0 such that

sap 1Ga,énll, o < C. (4.15)

)

We can in a same manner obtain the analogous Lemma with ¢, replaced by ¢},. Using Lemma
4.5, 4.6 and 4.1 (and their analogous counter part for ¢} ), one proves that I; and I, converges
uniformly in time to 0 as h — 0.

The estimation of J rely on the following decomposition

J = (In(Da,dn),Von)1n — Min(Da,én), V') (4.16)
+ (Vén, iAndh)1.n — <L§¢h, iAngh,) (4.17)
+{Von, Hl,h(iAh;Z) —iApdh)in (4.18)
+ <H1,h(DAh¢h)7;i4h¢Z> — (1 (Da, ¢n), iAY) (4.19)
+ (I p (iAndn), Hl,h@z‘f%)h,h — (M n(iARdn), 1,k (EARSE)) (4.20)
+ (I p (1 ARdn), T n (1AR9),)) *Jznl,h(iAhd?h), iAndy) (4.21)
+ (Il 1 (Da, on), V') — <Di:¢7 Da¢’) + (i n(Da, én),iA¢) . (4.22)

Jr

To estimate these terms, one needs the four following Lemma. To ease the reading, we post-
poned their proofs to the Appendix B.
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Lemma 4.7.

T n(Danén)s Voh)1n = (i n(Day 1), V') | oe 0,1y - 0.

Lemma 4.8.
176, Andh)rn = (Von, Angh) |~ (o.1) —3 0.
Lemma 4.9.

({10 (Andn), 1 n (Andy))1,n — (Ui n(Andn), Hin (And)) | Lo 0,1) " 0.

Lemma 4.10. - r
/ (L1, D a, ¢, Iy y D, ¢),)dt — / (Dap, Dag')dt.
0 h—0 Jo
Let us briefly describe how the seven terms of the decomposition of J are treated. The first
term Jp is estimated using Lemma 4.7. Lemma 4.8 gives an estimation of JJ5. The terms J3, J4 and
Jg are estimated using 4.1 and bounds on the discrete solution. Lemma 4.9 gives an estimation of
Js. Finally, since J7 = (IIy ,(Da, ¢n), Dad’) — (Dag, Da¢’), we deduce that this terms converges

to 0 as h — 0 with the help of Lemma 4.1 and the convergences obtained and summarized at the
beginning of section 4.3.

Study of equation (4.13). The two first terms in equation (4.13) are classical and are treated
in a same manner as for equation (4.12). Thus, the only remaining term to estimate is the non
linear term of equation (4.13). We use the following Lemma

Lemma 4.11.
(Rn(Uns 61y Ah) = Tl n(A'6), Ri(Un, 61, Ap) = T n(A'0))1,0 — 0.
The proof is postponed to the appendix B.
We write

(Ga, On: iRL(Un, Ons Ap))1,n — (Dag,igpA"Y = (Ga, én, iRA(Un, on, An))1,n — (Da, dn, i1 p(dnA}))
7
+(D 4, ¢n,illy n(PnAL)) — (Dad, ipA”) (4.23)

Using convergences summarized at the beginning of Section 4.3 and Lemma 4.1, we can prove that

T T
/ (Doa, dy Tl ALY —> / (Dad,igA'),
0 h—0 0

Furthermore,
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I = (Ga,0n iR (Un, $n, An) — il n(8nA4))1,n
+(Ga,on — Hl,iz(DAI;Ll¢’z)a Ty 0 (PnAh))1n
+ (1w (Da, $n), Z'Hl,hlszhA?,,) — i Al )1n
+ (I w(Da, én), i¢h(z% —A))1n
+ (1,0 (Da, dn), Z‘bh — ) A )1
+ <H1,h(DA;L¢h)7Iz¢A/>1,h — (1 (Day, ¢n), i A")

Is
+ (M 1, (Da, ¢n) — Da, én),ipA")
I7
+{(Da,dn — Dag),igpA) . (4.24)

Ig

Each of the terms converges to 0 as b — 0. Indeed, for

I, we use the energy norm estimate and Lemma 4.11,
I, we use Lemma 4.7, Lemma 4.1 (i) and estimates on A} and ¢y,

I3, we use estimates on Ay, ¢p, A}, Lemma 4.1 and the fact that ||[II; ,(Da, én)|1,n is
bounded (combination of Lemma 4.1 and bounds on the fields),

14, we use the estimates on Ay, ¢y, the convergence properties of A} and bound on ||IIy 1, (Da, ¢n)||1,7,
I5, we use the estimates on Ay, ¢, the convergence properties of ¢}, and bound on (|11 (D, ér)l| 1,k
I, we use the consistency estimate (3.6),

I7, we use Lemma (4.1) and estimates on Ay, ¢n,

I, we use the convergence properties of A and ¢p,.

Thus we can state that

T T
| (G iRnUnon, A1 = [ (Dasion)
0 —YJo

The limit equation. To conclude,

- /0 o)+ /0 " (Dad Dad?) = 0,
4.25
_/T<E,A'>—/T<dA,dA'>—/T<DA¢,i¢A’> =0, -

0 0 0

which means that (A, ¢) is a weak solution of the Maxwell-Klein-Gordon equation in the sense of
Definition 2.2.

21



5 Numerical results

In this section, we provide some numerical results to assess the theory. To this end, we first
propose a fully discrete scheme and then study two types of test cases in two dimensions.

5.1 Fully discrete setting

We consider a time-discretization that consists of a uniform subdivision of Np + 1 (Np € N¥)

T
points of the interval [0,T]. The time step will be denoted At := N We propose the following
T

simple time discretization of leap-frog type.

For all k € {0, .., Nz}, find (¢F, ¢k, EF AF) € Z0 x Z0 x Y;! x Y} such that for all (¢}, A}) €
Z) x YQ,
(deg s Vh)on = (Gar b, G ar )10 — w3, S )o.n — V(|05 2D, D)o =
(diEp;, A}) — (curl Ay cwrl A7) — (G ax 07, Up ¢h Af)1n = 0
with
k k
o Ek+§ _ _AhJrl Z and "/}k+§ _ +1 - ¢h
h At h At
k+1 k—1 k+ k—1
E 2 E 2 2 1)[} 2
o EF =N A b and dyyf = ~ h
k+3 k-1 k+3
E 2 E 2 2
o EF [ and 1 = n +¢h
2 2
Bk,—i—l _ Bk
For a given sequence B*, we will also use the following notations d, B* = —

We initialize the algorithm with values A, A}, ¢, ¥}

In this work, we focus on first numerical results and postpone a more thorough fully-discrete
numerical analysis for a future work.

5.2 Constraint preservation

One can straightforwardly check that the constraint is verified.

Proposition 5.1. If <E5,Vﬁ’> = (w,%,(blﬁ’)O,h, the constraint is verified i.e.
(Ep 2.VBi) = (¥, 2,888 0, ¥k € {0,.., Nr} (5.1)
Proof. If one expresses the discrete differential, one obtains
k—1 k-1 1 k+1 k—1 k
a (B398 — Wi 2 ehBion) = 7 [ 98 — (B2, 980 — i ek o + (5
(5.2)
But from the definition w:+5 and the scalar product,
1 k+3 k—1 Ptz — b3 ket (o5t —of)
AL [( a¢k+1ﬁh>0,h (¥, , 01 B )o, h} = <T7¢hﬁh>o h+ (Y 7Th/@2
= (di¥h, D B0
So that ) .
de((E*"2, V') — ("2, ¢ 8 )on) = (dE*, VB') — (dit*, 6" 5)o,n (5.4)
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Similar arguments as in Section 3.2.3 apply to prove that the constraint is preserved even in
discrete time. This implies that

(E*=4,V8') — ("4, 6" )0, = 0 (5:5)

if the constraint is verified at initial time, i.e. for k = 1. | O

5.3 Numerical tests

We have implemented the proposed fully-discrete scheme using a dedicated module that we de-
veloped using the Finite Element library Firedrake!. Let us point out that these results are
preliminary and used as first assessments of the method. We consider a two dimensional domain
given by a square [0,1] x [0,1]. The scheme defined in the previous section is explicit. Thus, as
expected in each of our test cases, we observe that the stability of the scheme is guaranteed by
a CFL type condition At < CFLh. The CFL constant has been empirically fixed according to our
tests to 0.25.

5.3.1 Artificial test case and convergence order

One does not have access to an exact solution as such. In order to assess our implementation,
we propose to design an artificial test case as explained in the following. We consider for all
(t,z,y) € [0,7] x [0,1] x [0,1],
Gart(t,x,y) = sin(wt)sin(rz) sin(my), (5.6)
Agre(t,z,y) = (cos(V2mt) cos(mz) sin(my), — cos(vV2nt) sin(mz) cos(my)),

with w = v272 + m2. Then we define

J¢am = attgb(l?”t + (DAam)*DAaM ¢a7"t + m2¢art + 'Y'd)art‘ngart (58)
JAQM = 8ttAart + d*dAart - i(bzrtDAam ¢art (59)
(5.10)

In this way, (Aart, Part) is a solution of the following set of equations:

O+ (Da)* Dag + m?¢ +4|0[*d = Ty,

" ok (5.11)
OuA+d*"dA —i¢"Dagp = Ja,,,.
with initial conditions
¢(Oﬂ ) = ¢art(0; ')7 (512)
A(0,-) = Au(0,-). (5.13)

We then use the discretization proposed above, add the external currents (J4,.,, Js,,,) on the
right hand side, and compute the corresponding solution (A}, ¢} )neqo,..., Ny} Doing so, we are
able to compute the L L? error as

|

2

2 7
errf’ = max (16 = o (@are(tns ) [F2gs) + 145 = Tia(Aare(tns DllEas) ) (5:14)

ne{0,...,Nr}
We computed the solution for 4 types of (m,~y) couples: (0,0), (1,0), (0,1) and (1,1). In Figure
1, we plot for several values of the number of points, the values of the respective error defined in
(5.14). The error analysis is performed using mesh parameters that fulfill At = crLh. Doing so,
we compute the minimum order in time and space of the scheme.
In Figure 2, we plot the results in logarithm scales. We infer an order of convergence of 1 (a
linear regression would even give slopes of & 1.5). Local orders are presented in Table 1.
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Figure 2: Convergence order

Although this is out of the scope of this work to obtain a theoretical proof of the convergence
orders, one can however try to find, through our analysis, some indication of first order convergence
for this test case using regular fields. Indeed the approximation of the discrete covariant derivative
D 4, ¢n by the LGT gauge compatible discretization come at the price of the estimate such as (4.5)
where we do not hope to obtain more than first order of approximation of the covariant derivative.

Regarding the constraint «, in this case, one has instead of (3.14), the following equation.

(k(t), ') = ((0),a) +/0 ((Jpur Ho.n(—i0/9)) + (Ja,,,, Va')) ds. (5.15)

Hence, except if currents are chosen such that the right hand side vanishes, we do not expect
preservation of the constraint in this artificial case. We will not compute the constraint for this
precise test case and postpone the tests to the next section.

Thttps://www.firedrakeproject.org/
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R 10,00 ] (0,1) | (1,0) | (1,1)
0.2 — — — —
0.1 1.64 1.57 1.33 1.23
0.05 1.68 1.71 1.82 1.75

0.033 1.65 1.47 1.54 1.43

0.025 1.96 1.33 1.07 1.30
0.02 1.62 1.25 1.11 2.01

0.0125 | 0.56 1.16 1.05 0.66
0.01 1.16 1.10 1.02 1.04

Table 1: Approximate numerical orders obtained for various values of the couples (m,~) ((0,0),
(0,1), (1,0), (1,1)).

5.3.2 Second test case and preservation of the constraint

For this second test case, we propose to initialize the system with an electromagnetic plane wave
for A and a 2D-Gaussian initial profile for ¢ centered at the center of the domain. In other words,
we consider a focalized density profile for the modulus of the complex Klein-Gordon field. In figure
3, we observe that the constraint is preserved up to machine precision. This is in accordance with
the theory developed in previous sections. The energy is not preserved by the time-integration

%10-17 +1.9510543196x10-4  Evolution of the constraint over time «10-17 + 1.9510543106x10-+  Evolution of the constraint over time
SLA9 _ Constraint —— Constraint
—— Initial constraint 800014 — Initial constraint
81.001 4
79.499 4
80.502 4
79.000 4
80.001 4
78.502 4
79.499 4
78.000 4
79.000 4
77.499 4
78.502 4
77.000 4
78.000 - T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time ¢ x10! Time ¢ x 101
«10-17 +2.00077873 %104 Evolution of the constraint over time «10-17 +2.00077873 %104 Evolution of the constraint over time

4.001

—— Constraint —— Constraint

3.502 1 —— Initial constraint —— Initial constraint
3.003 4 3.001 4
2.502 4

2.000 4
2.000 4

1.003 q
1.502 4

LYY R i

1.003 4 0.000 4
—0.997 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time t x10! Time ¢ x 101

0.501 4

0.000 4

Figure 3: Evolution of the constraint in time for several couples (m,~): (0,0) upper left, (0,1)
upper right, (1,0) bottom left, (1,1) bottom right. The initial constraint is non zero and is
represented by the orange horizontal line.

scheme, however relative variations of the energy from its initial value are relatively small (see
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Figure 4) and this variation gets consistently smaller as the discretization parameters decrease
(see Figure 5).

T N T W
- AR
1” MHEAn } ,Hl LA A0 { g

Bl L0 1M
- U e+

Figure 4: Evolution of the energy over time for several couples (m,v): (0,0) upper left, (0,1)
upper right, (1,0) bottom left, (1,1) bottom right. The initial energy is represented by the orange
horizontal line.

10-2 Evolution of the energy variations to intial value

—— 50pts
~——— 100pts

H\w“ “\ M
AP m'( MJ(

00 02 04 056 08 10
Time t x10t

Figure 5: Absolute variations of the energy with respect to its initial value over time for a space
discretization made of 50pts and 100pts.

To conclude, we represent in Figure 7 some ¢ modulus profiles and their evolution with time
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(the initial profile is represented in Figure 6). At this stage of our investigations, we cannot
really interpret these profiles since we work on a toy academic model. This will be part of future
works to improve the physical relevance of the setting considered here and the corresponding test
cases. The way we use these profiles here is to show the effect of the introduction of mass and
self-coupling term. Even if, again, the physical relevance of the values chosen are not discussed
here, we propose to test the use of non unitary values of the mass and self-coupling term.

0

i
g
S
T
e
2

Figure 6: Initial profile of the modulus of the Klein Gordon complex field.

What we observe is that the effect of mass and/or self-coupling occurs after some elapsed time
and that the effect of self-coupling seems to be weak. We therefore also tested a situation where
self-coupling is ten times bigger than mass. In this case, we significantly see self-coupling effects
over mass on the profiles patterns.

6 Conclusion

In this work, we studied the Maxwell-Klein-Gordon equation in dimension two and focused on the
semi-discrete analysis of a discretization scheme based on Lattice Gauge Theory (LGT) combined
with Nédélec finite elements. The special feature of this scheme is that it ensures gauge invariance
at the discrete level therefore respecting the geometrical structure of the original equation through
the preservation of the constraint. Our analysis is not an a priori analysis, but concentrates on
sequential compactness arguments without the a priori knowledge of a solution of the continuous
equations. We use the discrete energy principle combined to constraint preservation to extract
bounds in the appropriate spaces and extract convergent subsequences. At last, we implement
a fully discrete numerical scheme based on a leap frog type time integration. We provide first
academical test cases to extract convergence orders and assess the method. Future works include
more relevant physical test cases and the fully discrete analysis of the proposed scheme.
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A Proofs of the preliminary Lemma 4.1 and A.2.

Lemma A.1. Let II; }, be the edge interpolant. For p > 2, the following inequalities hold. There
exists C > 0 such that for all (Fy,(p) € Yl x Z)

(i) .
1FnCh — M n (Frl)llz2sy < ChY % || Fnll Lo sy |Chl e s) (A1)

Furthermore there exists C > 0 such that
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Figure 7: Evolution of the profile of the modulus of the Klein Gordon complex field with (m,~) =
(0,0) (first row), (m,v) = (0,10) (second row), (m,~) = (10,0) (third row) and (m,~v) = (10, 10)
(fourth row): ¢t = 0.125 left, t = 0.225 middle, ¢ = 0.985 right, with ¢ = 1 being the end of
simulation time.

Figure 8: Evolution of the profile of the modulus of the Klein Gordon complex field with (m,v) =
(10,100): ¢t = 0.125 left, t = 0.225 center, t = 0.985 right, with ¢ = 1 being the end of simulation
time.
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(ii)

Ap,Vr
Z IAhﬁql(K) <C (HV X Ah||L2(S’) + sup <hh>|> , (A.2)
KETh rReY? Irnllz2(s)

Ap,Vr
(IV x Apllzzes) + sup M) [onllLe(s)+

rev? lrallrzcs)

(iii)

_2
D M n(Andn) 3 gy < Ch7
KeTy,

+[Anll e (s)|PlE1(5) | -
(A.3)

Proof. Pmof of (i). Let II be the projector on the reference domain K corresponding to II; h On
Zh, and Fh, (h the corresponding functions classically defined on the reference element K.

One has o o o
[EnCh — HERChl 2y < C;gg [FnCh = Pl g (k)
where Q = Qy1(C) x Q1,0(C) is the space of polynomials we will consider on K. Furthermore
[}2(5 | G =Pl gy < piéllpfo 1 Fn(Ch — P iy
where Py are complex constant functions on K. In addition,
nf | F(Ch = 2) iy
<C ”FhHL”(K)piél]pfo ||éh _P”Hl([{) + ‘Fh|H1(f<) piél]ljfo ||éh —p”Hl(i{) + Iéh|Hl(K)“Fh|‘Lp(k)
which gives
Jnf 1E3Ch =2l ) < CNERM oy il iz iy + 1Enl i iy Wl ey + 160l iy 1l o
< C||Fh||Lp(K)|Ch|H1(I%)'
So on any rectangle K, one deduces by scaling

_2 _2
1FnCh — T (Fuln) [l 2y < Ch 2 | Full o) [Snl i) < CRY T2 (| Fll o () [Snl mr (56,

and by summing up the squares of each part of this inequality (4) is proved.
By inverse inequality one also has
1FnCh — T (FnCo) |l a6y < Ch7 7 (| Pl oo o) | oL (16
Furthermore, on the reference square K,
Enalin ) < C (1Bl i o 1l oy + 1l i | Bl o |
which gives on any rectangle K,

_2
|FiChlar iy < Ch™% [|Ful i) llChll Lo () + [Chl (i) | Fll o i) -
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This implies

_z
D Mn(FuGn) gy < Ch ™7 D B | IGhlzocs) + IFulloogs) |l cs)
KeTh KeThn
A.4)
Turning to the proof of (i¢). The discrete Helmholtz decomposition of Ay, is written (see [19])

A, = A+ Vpy, (A.5)
where
o Ay is discrete divergence free, i.e. Ay € Vj, := {uh € Y (un, VB) =0, VB, € Y,?} ,
e pp €Y

First, we consider the term A;,. We would like to prove that

D 1wl < CIV x Anllz2s).- (A.6)
KeT

Let us define Py the L? projection on the space of divergence free vectors fields. By inverse
inequality

D 1Aw = Py An3p ) < Ch7 VAR — Py Anl2s),
KeTn

and following [8] (the proof of proposition 2.5.), one has
|1‘ih — Py Ah|L2(S) < Cth X AhHLQ(S)-

This yields

Z | A, — Py z‘ih@p(;{) < OV x Apllrzs).-
KeTy,

Furthermore Py (A4y) € H'(S) and one has
|PV Ah‘Hl(S) < OHV x Py Ah”LQ(S) = CHV X Ah||L2(S)7

and (A.6) is proved. Let us study the gradient part. From the expression of the constraint (3.14),
there exists, from Riesz representation theorem, uj, € Y;? such that

<vPhavrh> = <uh7Th>a v’/’h € Yi?)

and
_ [V pn, V)|
||uh||L2(S) = sup ——————————
reve  Irallzzcs)

Define p € HE(S) as the unique solution of the following equation
(Vp,Vr) = (up,r), ¥r € Hy(S).
Since uy, € L?(S), then p € H?(S) N H(S) and the following inequality holds
plr2(s) < Cllunllrzcs).-
Furthermore, by standard estimates

lpn — Mo npl a1 sy < Chlplaz(s)-
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We would like to prove that

Z ‘Vphﬁll(x) < CllunllLz(s)-

KeTy,
One has

Z |vph|%{1(K) < Z |Vph _VHO,hph‘?ql(K) + Z |VH0,hp|12q1(K) (A7)

KeTy, KeTh KeTy
< ChM D Ve = VTonpliage + | D [V Tonpl3 ) (A8)

KeTy, KeTy,

< Clpluzsy + CIVplas) (A.9)
< Cllunllzzs), (A.10)

where we used inverse inequalities and the continuity arguments.

Using the estimates established, one concludes that

A
E [Anl3 ey < C | IV X AnllLags) + sup [{An, V7| ’
KeTy, rREYY ||7’h||L2(S)

and (i7) is proved.
Inequality (iii) follows directly from (ii) and (A.4).
O

The following result allows by the constraint (3.14) to control the weak divergence of Aj
appearing in (4.2) and (4.3).

Lemma A.2. For any p > 2,

Ah,Vrh _2 .
sup HAR VT o261 ey lnll o or o).
meve lIrallzacs)

Proof. One has from the constraint (3.14)

t
(AR, V)| = ‘(/ OhPrTh)on| s Y € VP,
0
implying that
. .
A,V NS r
sup [{(An, Vra)| _ sup [(Jo DrPnsTh)o,n] < sup I Jo ndnllonllrnllon
ey ellezesy  reve  lrallres) rhEYP Irallzzcs)

o

/ e

_2 .
< Ch™?||¢nll Lo 0,7,00(5)) |0 || Lo (0,7, 12 (5)) s

t
<c / Il sy l0nllecs)
0,h 0

31



B Proof of Lemma 4.5 to Lemma 4.11

We will use the following decomposition of G 4, ¢5, in terms of its gradient part and its non linear
part, that upon requiring h to be sufficiently small, is close to iAn¢p.

Let e = {m,n} denote an oriented edge of the mesh. The following decomposition holds

1+ exp(—iAh) exp(—iAl)

(Cargh). = ORI (g gy LZOPTAR (1 4 g (B.1)

Let us denote

e Nj, € Z} the edge element such that its edge degrees of freedom are N =1 — exp(—iAPl).

o N¢" the vector of the degrees of freedom of the vector Ny dy, i.e. (No"), = NZ(M)

1
e P" the vector such that P" := —§NQ(G¢h)67 and P, € Z} its associated edge element

vector field.

This gives
(Gard")e = (Go")e + P! + (No")...

We first prove the following
Lemma B.1. There exist n > 0 and C > 0 such that if h <mn,

sup IG 4,6 — Ty n(Da, én)ll7, < CH>4/P,
0,T

so that
sup |G a, ¢n — Il p(Da, én)lly ), — 0.
[0,7] " h—0

Proof. Let e = {m,n} be an oriented edge of the mesh, one has,

h h h B Pt P
(Garg” — L p(Dang™))e = (P?)e + (Ng —iA) =0 —=,
and
[Pn + (N = iAn)n)ll1 p, < [1Pallyp, + [(Na — iAn)énll; , -
Furthermore,

exp(—iAP) —1 ?

1P, = S0 [FPER) =L g,
< Sah. 2L .|
< OR Al ooy DY) (G|
e
< CRTH|VenlR ) < Ch* 7 [Vl o mira(sy < Ch* 77,

since V¢y, is uniformly bounded in L*(0, 7T, L*(S)). In addition,
1 — exp(—iAl) — iAD ?
2

[(Nn = iA)énllsn = D (H)ee (P, + &h)

€
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There exists 7 > 0, such that |A"| is sufficiently small (from (4.11)) so that the following inequal-
ities hold for h < n

2
[(Nn = iAn)énllsn < CD (H)ee AL "’f(%mﬁ)
- h 2
< O Al oirrsy S (e |55 (6 + 1)
< O | A2 o115y ITLn (Andn) |13 1
< ChQ_%||Ah||2Loo(o,T,Lp(S))HHLh(Ah‘ZSh)H%W(&T,L?(S))
< On*i,

where we used Lemma A.1, and uniform bounds on the LP-norm of A; and the H'-norm on
Oh- O

The following Lemma is a direct consequence of the estimate on the energy.

Lemma B.2. There exists C > 0 such that

sup [|Ga,, énlly ), < C. (B.2)
[0,7]

Lemma B.3.

[Ty, 1 (Da, én), Vi) 1,0 — (M n(Da,én), V)|l o0,y — 0

h—0

Proof. From the consistency estimate, one has

[(T1n(Da,én), Vé' )1n = [ n(Da, én), V)| < ChlTyn(Da, én)llL2s) IVE [ m1(s),

for I > 1, and from bounds established in Lemma A.1l, one deduces for p > 2 a bound on
HHI,h(DAh¢h)||L2(S) in terms Of ||AhHLoo(O’T;Lp(S)) and ||¢h||L°°(O,T;H1(S)) WhiCh COIlChldeS the
proof using the obtained bounds and convergence of discrete test functions. O

Lemma B.4.
(¥ 6n, Andh)1n = (Von, Andy) | Lo,y ~— 0.

Proof. Mapping consistency estimates from the reference square to any rectangle K of the mesh
(as is done in [9]) gives

[(Von, Andn)1.n—{(Von, Andh)|

<C | Y7 A B + 17| D0 1Andh ey | IVERIL2s)-
KeTy, KeTy

The two terms \/zKeTh

techniques on the reference simplex as in Lemma A.1. It will not be detailed here since arguments
are similar to those already used in previous proofs.
One obtains

_2
he [ D 1A +1° [ D 1A B ey S ORY7 [ 1AW g |0l s
KeTy, KeTy, KeTy,

Using Lemma A.1 and A.2 and previously obtained bounds, we obtain

H <v¢ha Ah¢;1>1,h - <V¢h, Ah¢;;,> ||L°°(07T) < Ch17% )
Choosing p > 4 gives the result. -

Apd} |3 ) and \/ZKeTh |And}, |32 (k) can be estimated by standard
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Lemma B.5.
(T 1 (Andn), T n (Andy)) 1,0 — T n (Anén), I (Andi) e 0,1) 0

Proof. From error estimates in [10], one deduces that

(1,1 (Ardn), D1 p (Andh))1,n — (T n(Andn), I n (Ardy,))|
<Ch Y (1M (Anén)ll 2o M n (Angi)|  (x)

KeT
T 1 (And) | 22 ) Tk (Andn) (5 -
So by Lemma A.1, Lemma A.2 and the bounds on Ay, ¢, and ¢}, the result follows. O

Lemma B.6. - "
| M Da 0. (D, it — [ (Dag,Dadhyar
0 0
Proof. This follows from Lemma A.1, weak-* convergence of V¢, to V¢ in L>(0,T; L*(S)) and
strong convergence of Ay, and ¢p, in L°(0,T; LP(S)). O
Last

Lemma B.7.
1Ru(Un, én, A}) — 1w (A dn)|l1,n " 0.

Proof. For h sufficiently small

IR (Un, dn, Al) — 1 n (A d0) 13 1
'+ ol |

= (th)ee A/eh exp(—iAZ)¢Zl - A/eh B

2
h h h _ h h h
_ (H{L)ee A/eh eXp(—iAZ)(j)n —g (vzsm _ A;/h eXp(—iAZ) ¢n 5 ¢m _ A/eh ¢m _2|_ ¢n

2
P+ ol
2

ol — @l

= SO (H)ee [AD (1 - exp(—iAL) .

— A exp(—iAl)

2
+ Al

2
P+ ol

b — b
2 2

<O (e | a2 [AL

2
h h
<O Y (HP)ee | |AL Pt P ; P

e

_4
< Ch2 P (HHLh(Ah¢iz)||ioo(07T;L2(S)) + ||V¢}L||i°°(0,T;L2(S))> :

| 2

2
+ |0k~ oh)

The same arguments as in Lemma 4.9 gives the result. O
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