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Abstract

In this article we study a semi-discrete numerical scheme for the Maxwell-Klein-Gordon
equation in two spatial dimensions, based on Finite Elements and Lattice Gauge Theory
(LGT). The discretization procedure from LGT, together with a numerical quadrature, en-
sures gauge invariance of the scheme. The gauge invariance implies that the scheme is con-
straint preserving. We combine this with energy conservation to prove convergence of the
scheme towards a weak solution, for initial data of finite energy. Finally, we propose and
implement a numerical scheme to assess our results.

1 Introduction

The Standard Model of physics and Einstein’s theory of Gravitation, which describe the fundamen-
tal forces and particles in nature, involve nonlinear partial differential equations. In the Standard
Model the particles are either fermions or bosons. The fermions are described by spinors, and the
forces between them by connections on certain vector bundles. The connections model bosons. In
Quantum Electrodynamics (QED) these are photons. In particular, in scalar QED, one models
spin-0 bosons that interacts with photons.

The equations are in both cases derived through a variational principle from a Lagrangian
function. The form of the Lagrangian is determined by the symmetry group (gauge symmetry)
which the theory is invariant under. If, in addition, one demands the theory to be renormalizable,
the maximal order of derivatives in the Lagrangian is reduced to one, see Ref. [22].

Euler-Lagrange (EL) equations stemming from Lagrangians constructed from a local gauge
group always contain certain constraint equations. However, through Noether’s theorem (see
Ref. [21]) one can show that these constraints are preserved on the solutions of the evolution
EL-equations, making the theory consistent.

Since the gauge symmetry makes the theory consistent, one should strive to preserve this
symmetry when discretizing the model. This is the spirit of the field of structure preserving
discretization in related areas of numerical analysis (see e.g. [3, 4, 12, 13, 16, 17] and references
therein). This is also of interest in applied physics too (see e.g. [26] and references therein). The
idea is that the preservation of the underlying geometric structure will reveal itself through both
stability and good qualitative properties of the solutions.

The coupling between the gauge connections and scalar fields/spinors arises through covariant
derivatives. The covariant derivative applied to a scalar/spinor field is given as a linear combination
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of the gradient and the gauge field acting on the scalar/spinor field. Conventional methods, such
as standard Finite Difference Methods (FDM) or Finite Element Methods (FEM), approximate
the gradient part and the part containing the gauge field separately. By doing this, the resulting
approximation of the covariant derivative has no local transformation law, and the gauge symmetry
is broken at the discrete level.

The key to preserve the gauge symmetry is to approximate the covariant derivative directly,
and not as the sum of the gradient and the product of the gauge field with the scalar field/spinor.
This was achieved by Kenneth Wilson [29] in 1974 in the field of high energy physics. He was
doing calculations on quarks on a lattice, and the theory he developed is now known as Lattice
Gauge Theory (LGT). LGT approximates the covariant derivative in a consistent way and at the
same time preserves the local gauge symmetry. The essence in the procedure is to localize the
nonlocal terms arising in finite difference methods : the nonlocal terms which are to be compared,
are parallel transported to a common reference point with the gauge potential. By doing this, the
discrete theory becomes gauge invariant.

In two other articles Ref. [5, 6], two of the authors analyzed LGT discretization of Maxwell-type
equations.

In Ref. [5] a LGT scheme and a standard finite difference discretization for the Maxwell-Klein-
Gordon (MKG) equations have been compared. Concerning the LGT-scheme, the constraint,
which is a statement about charge conservation, is preserved on the solution of the evolution
equations, as a consequence of a discrete version of Noether’s theorem. This makes, as indicated
earlier, the equations to be solved compatible. The standard finite difference scheme does not
preserve the constraint. However no proof of convergence has been provided in that paper.

In Ref. [6], the convergence of LGT scheme applied to pure Maxwell theory has been studied.
This was done by comparing the LGT-scheme with the converging Yee-scheme [30].

With a more applicative perspective, in [26], the same kind of lattice schemes is used (with a
Yee-type scheme for the electromagnetic part) to investigate some numerical simulations for the
massive Maxwell-Klein-Gordon equation in the context of QED.

Apart from LGT type discretizations, and regarding numerical analysis works in this context,
in [8], two of the authors proposed a Finite-Element semi-discrete energy preserving scheme in
the temporal gauge where gauge symmetry is lost but the constraint preservation is recovered
using a Lagrange multiplier. The complete semi-discrete numerical analysis is provided. Let us
also mention the recent study [14] considering Maxwell-Klein-Gordon equations in the Coulomb
Gauge. There, a discretization framework is proposed, based on Finite Elements in space and a
modified Crank-Nicolson scheme in time that is energy preserving but not constraint preserving. A
complete convergence study and some academical test cases are provided. To the best knowledge
of the authors, these are the only studies where a complete numerical analysis work is tackled in
the precise context of Maxwell Klein Gordon equations.

In this article we propose a semi-discrete numerical scheme for the massive and renormalizable
MKG equations in the temporal Gauge, based on conforming Finite Elements (FE) and LGT. The
Klein-Gordon (KG) part is discretized as in Ref. [5] with LGT techniques, while the Maxwell part
is discretized using conforming Nédélec Finite Elements.

In this work, we prove the convergence of the semi-discrete scheme in two dimensions. This
is done with some inspiration from the methodology used in [8]. We furthermore propose a fully
discrete scheme based on a leap-frog time integration scheme and give some academical numerical
tests cases for validation.

The paper is organized as follows: In §2, the continuous model is introduced from a variational
point of view. In §3, we set the discretization in space using the lowest order Nédélec elements
[20] on rectangles. The discrete gauge invariant Lagrangian is developed through both LGT and
FE. Constraint and energy conservation are shown leading to the proof of the convergence of the
scheme in§4. Finally, section §5 numerically assess the fully discrete scheme.
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2 The Maxwell-Klein-Gordon equation

We first set the equations in a quite general setting of differential forms. Let M be a compact
Riemannian manifold without boundary. The space of real-valued k-forms will be denoted Ωk(M).
We will often identify one-forms and vector-fields. The real valued L2-product on differential forms
on M is denoted 〈·, ·〉, and the associated L2-norm ‖ ·‖. Similar notations will be used for complex
valued forms. All adjoints, denoted (·)∗, will be taken with respect to these L2 products.

2.1 Formulation

2.1.1 The Klein Gordon action

The unknown of the Klein-Gordon theory is a complex scalar field, t 7→ φ(t) (an element in
Ω0(M)⊗ C), and the corresponding action functional is given by

S[φ] =
1

2

∫ T

0

(
‖φ̇‖2 − ‖dφ‖2 −m2‖φ‖2 − γ

2
‖ |φ|2‖2

)
dt, (2.1)

where the dot represents time derivative and d : Ωk(M) ⊗ C → Ωk+1(M) ⊗ C is the exterior
derivative acting on complex valued forms. The third term is the mass term (m ≥ 0 is the mass)
and the fourth term is the self coupling term with γ ≥ 0.

Remark 2.1. The case γ < 0 will not be envisaged in this work and should deserve a specific
study, since it leads to non-positive energy.

2.1.2 The Maxwell Klein Gordon action

In this section, we formally explain the classical physical steps to achieve the gauge invariant MKG
action. The MKG-equation is obtained by imposing a local U(1)-symmetry, i.e. by demanding
the action (or more precisely the Lagrangian) to be invariant under the transformation

φ eiβφ, (2.2)

where β is a real valued function on M , β ∈ Ω0(M). The Lagrangian given in equation (2.1) is
clearly not invariant under this transformation.

This is resolved by replacing the usual derivatives with covariant derivatives, i.e. ∂t  Dα :=
∂t + iqα and d  DA := d + iqA, with q the coupling constant. Here t 7→ α(t) is a real valued
function on M , i.e. α ∈ Ω0(M), and t 7→ A(t) is a real valued one-form on M , i.e. A ∈ Ω1(M).

The function α is usually called the electric potential while A is called the magnetic potential.
They are related to the electric and magnetic fields by the following equations

E = −Ȧ+ dα, B = dA,

and they transform as

α α− β̇,
A A− dβ,

simultaneously with (2.2). This constitutes the gauge transformation of the field (φ, α,A) given
as (φ, α,A) (eiβφ, α− β̇, A− dβ).

It is then easy to check that the following action

SKG[φ, α,A] =
1

2

∫ T

0

(
‖Dαφ‖2 − ‖DAφ‖2 −m2‖φ‖2 − γ

2
‖ |φ|2‖2

)
dt,
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is locally U(1)-invariant.

To complete the action we add the U(1)-invariant Maxwell action given by

SM [α,A] =
1

2

∫ T

0

(‖Ȧ− dα‖2 − c2‖dA‖2)dt,

with c the speed of propagation. The full MKG-action is then given by (cf. Ref. [22, 25, 15, 23])

SMKG[φ, α,A] = SKG[φ, α,A] + SM [α,A].

One can finally check that this action is invariant under the gauge transformation.

2.1.3 Euler-Lagrange equations

The stationary points of this action with respect to the different fields are given by the following
Euler-Lagrange equations

〈DαDαφ, φ
′〉+ 〈DAφ,DAφ

′〉+ m2〈φ, φ′〉+ γ〈|φ|2φ, φ′〉 = 0, ∀φ′ ∈ Ω0(M)⊗ C,

〈Ė, A′〉 − c2〈dA, dA′〉+ 〈iφ∗DAφ,A
′〉 = 0, ∀A′ ∈ Ω1(M),

〈E, dα′〉 − 〈iφ∗Dαφ, α
′〉 = 0, ∀α′ ∈ Ω0(M).

(2.3)

In a strong formulation, the Euler-Lagrange equations are also given by

DαDαφ+D?
ADAφ+ m2φ+ γ|φ|2φ = 0, (2.4)

Ė− c2d?dA+ i
1

2
(φ∗DAφ− φ(DAφ)∗) = 0, (2.5)

d?E− i1
2

(φ∗Dαφ− φ(Dαφ)∗) = 0, (2.6)

where d? is the adjoint to d and D?
A = d? − iqA.

We see that the Euler-Lagrange-equations consist of two evolution equations given by (2.4)-
(2.5) and a constraint equation given by equation (2.6). Due to the local gauge invariance,
Noether’s second theorem can be applied to conclude that the constraint is preserved on the
solution of the evolution equations (see [5]), which makes the equations consistent. See Ref. [21]
for the continuous version(s) of Noether’s theorem(s).

These equations together with the differential Bianchi identity (cf. Ref. [28])

dB = 0, Ḃ = −dE,

which is satisfied by construction of the electromagnetic field from a gauge potential, constitute
the complete set of the MKG-equations.

In the rest of the paper, we consider unitary constants q = 1, c = 1. For the mass m and
self-coupling constant γ, we will consider that they are either 1 or 0 in the mathematical proofs
to allow for variations on the system of equations considered. All the proofs are of course valid
for non unitary cases.

2.2 Definition of weak solution

We now focus on domains in R2. From this section, we also leave the differential forms notation
behind (namely d) and use rather the usual notation grad = ∇, curl = ∇×, div = ∇·.
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2.2.1 Notations

We let S be a bounded contractible domain in R2 with C1 boundary.
We use the classical notations for Lp(S) spaces and Sobolev spaces W 1,s(S), H1(S), H1

0 (S) (with
semi-norm | · |H1(S)), and H(curl, S) is the space of vector potentials in R2 considered as vector
fields or one forms, with square integrable curl; the analogue space for the divergence will be
denoted H(div, S). We also denote

H0(curl, S) := {A ∈ H(curl, S)|γτA = 0 on ∂S} ,

where γτA is the tangential component of A on ∂S, and

V := {v ∈ H0(curl, S)|div v = 0 in Ω} ,

Time dependent spaces are defined as follows.
For closed intervals I ⊆ [0, T ], C(I;X) is the space of continuous functions from I to X, and
C(0, T ;X) will denote C([0, T ];X).
We also define for 1 ≤ p ≤ +∞, the Bochner spaces Lp(0, T ;X) for X a Banach space as in [27].

2.2.2 Definition of weak solutions in the temporal gauge

We use a similar notion as in [8], and we restrict the equations to the temporal gauge, α = 0,
allowed by the gauge symmetry.

Definition 2.2. (E,A, ψ, φ) is said to be a weak solution of (5.11) in the temporal gauge, if

� There exists q < 2, such that

– E ∈ L∞(0, T ;L2(S)),

– A ∈ C(0, T ;L2(S)) ∩ L∞(0, T ;H0(curl, S) ∩W 1,q(S)2),

– ψ ∈ L∞(0, T ;L2(S)),

– φ ∈ C(0, T ;L2(S)) ∩ L∞(0, T ;H1
0 (S)).

�

{
Ȧ = −E,
φ̇ = −ψ.

� For every (E′, ψ′) ∈ C∞c (]0, T [×S)2 × C∞c (]0, T [×S), there holds

−
∫ T

0

〈E, Ė′〉dt−
∫ T

0

〈ψ, ψ̇′〉dt =

∫ T

0

〈∇ × A,∇× E′〉dt+

∫ T

0

〈DAφ, iφE
′〉dt+

∫ T

0

〈DAφ,DAψ
′〉dt

+m2

∫ T

0

〈φ, ψ′〉dt+ γ

∫ T

0

〈|φ|2φ, ψ′〉dt. (2.7)

We now turn to the discretization of this equation.

3 Semi-discrete setting

3.1 Finite Element discretization and gauge invariance

3.1.1 Finite element discretization

We discretize the spatial part of the continuous action. Let h > 0. We assume S to be a rectan-
gular domain with a cartesian mesh Th, and we will assume homogeneous boundary conditions.
Furthermore, for (k, l) ∈ N × N, Qk,l(C) is defined as the space of polynomials with complex
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coefficients in two variables (x1, x2) ∈ R2 with maximum degree k with respect to x1 and l with
respect to x2.

The discretization is based on three finite dimensional spaces Z0
h, Z1

h, and Z2
h defined as (see

[20, 19] for properties of these spaces)
Z0
h = {uh ∈ H1

0 (S) | ∀K ∈ Th, uh|K ∈ Q1,1(C)} the space of piecewise Q1,1(C) continuous scalar

functions on S.

Z1
h = {vh ∈ H0(curl, S) | ∀K ∈ Th, vh|K ∈ Q0,1(C)×Q1,0(C)},

Z2
h = {vh ∈ L2(S) | ∀K ∈ Th, vh|K ∈ Q0,0(C)}.

(3.1)
We denote by Y 0

h , Y 1
h , Y 2

h (respectively) the analogues of Z0
h, Z1

h, Z2
h constructed with real valued

functions. These spaces are equipped with real basis functions (whn), (whe ) and (whf ) respectively,
which we choose as the tensor product of the one dimensional Whitney forms [20, 19]. With
these choices of basis functions, scalar fields φh have degrees of freedom at the nodes of the mesh,
φhn, edge-vector-fields/one-forms Ah have degrees of freedom at the edges of the mesh, Ah

e , while
face-vector-fields/two-forms Bh have degrees of freedom at the faces of the mesh.

Moreover, the grad and curl operators in 2D relate the finite dimensional spaces Z0
h, Z1

h, and
Z2
h, so that we have a complex :

Z0
h
∇−→ Z1

h
∇×−→ Z2

h.

They also induce matrices G = (Gen) and R = (Rfe) in the chosen bases, such that

RN G−→ RE R−→ RF ,

where N,E and F are the sets of vertices, edges and faces respectively.

Remark 3.1. Since curl ◦ grad = 0, we analogously have RG = 0.

Thus, for a node element function φh and an edge element function Ah we can write

φh =
∑
n

φhnw
h
n, ∇φh =

∑
e

(Gφh)ew
h
e , φhn, (Gφh)e ∈ C,

Ah =
∑
e

Ah
ew

h
e , ∇×Ah =

∑
f

(RAh)fw
h
f , Ah

e , (RAh)f ∈ R.

Here φhn and (Gφh)e are vertex and edge degrees of freedom, while Ah
e and (RAh)f are edge and

face degrees of freedom. The quantity (Gφh)e represents the differential of the scalar field along
the edge e, and has the form (φhm −φhn), where the edge e goes from node m to node n. Since we
are considering rectangles, a natural orthogonal coordinate system can be associated to the mesh,
and in such a coordinate system the expression (φhm−φhn) represents the differential in one of the
two directions (see [5] for a more explicit formulation).

The notation e = {m,n} will denote the edge e which goes from node m to node n.

3.1.2 Scalar products and norms

The information about the shape and size of the rectangles is encoded in the mass matrices. For
two edges e and e′, we define

(Mh
1 )ee′ =

∫
S

whe · whe′ ,

where · denotes the scalar product in R2. We also define

(Mh
k )ss′ =

∫
S

whsw
h
s′ ,
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in the cases k = 0 and k = 2, where s and s′ are respectively two nodes or two faces of the mesh.

We note that the matrices Mh
k are square, symmetric and positive definite. We also note that

the non-zero entries in Mh
0 ,M

h
1 ,M

h
2 are of the order h2, h0, h−2, where h denotes the maximum

diameter of the elements in the mesh.
These matrices Mh

k are the representative matrices of the L2-products in the corresponding
bases wh. Thus, for example, for two edge element fields uh and vh written as

uh =
∑
e

uhew
h
e , vh =

∑
e

vhew
h
e ,

where uhe and vhe are the edge degrees of freedom (DoF), we have

〈uh, vh〉 =
1

2

∑
e,e′∈E

(uhev
h
e′ + uhev

h
e′)

∫
S

whe · whe′

= <(uh
T
Mh

1 vh) = (Mh
1 uh,vh).

We use (·, ·) to denote the real valued scalar product of vectors.

3.1.3 Norm estimates

One can establish estimates between norms and degrees of freedom as in the following Lemmas

Lemma 3.2. If uh ∈ Y 1
h , then

|uhe | ≤ C‖uh‖L2(S).

Furthermore, with p > 2, q > 2 and 1
p + 1

q = 1
2 , we have :

|uhe | ≤ Ch
2
q ‖uh‖Lp(S).

Proof. Let uh ∈ Y 1
h . There exists a constant C, independent of u and h such that

1

C
(uh)Tuh ≤ ‖uh‖2L2 = (Mh

1 uh,uh) ≤ C(uh)Tuh, (uh)Tuh =
∑
e

(uhe )2.

Thus

|uhe | ≤
√∑
e′∈K

(uhe′)
2 ≤ C‖uh‖L2(K) ≤ C‖uh‖L2(S).

This estimate together with Hölder’s inequality gives

|uhe | ≤ Ch
2
q ‖uh‖Lp(S).

3.1.4 Gauge symmetry

We can redo the formal derivation of the gauge invariant action at the discrete level. This amounts
to understand how the natural analogue of the action at the discrete level would transform under
the gauge and correct the terms to obtain a gauge invariant action.

With the notation developed in the previous sections, we can express the discrete version of
the Lagrangian from (2.1) as

〈φ̇h, φ̇h〉 − 〈∇φh,∇φh〉 = (Mh
0 φ̇

h
, φ̇

h
)− (Mh

1Gφ
h, Gφh).
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where φ̇
h

and φh are degrees-of-freedom vectors.
As in the continuous model we want to impose a local U(1) gauge symmetry. We would like the
theory to be invariant under the set of transformations

φh  eiβhφh, (3.2)

where t 7→ βh(t) ∈ Y 0
h is a real valued function, but with φh ∈ Z0

h, eiβhφh /∈ Z0
h.

We thus modify 〈φ̇h, φ̇h〉 = (Mh
0 φ̇

h
, φ̇

h
) in two steps.

(a) First, as in the continuous case, we replace the ordinary time derivative by the covariant
time derivative, i.e. ∂0  Dαh

= ∂0 + iαh, where αh is a real valued function, αh ∈ Y 0
h .

Furthermore, αh  αh− β̇h under a gauge transformation, implying that Dαh
φh transforms

as
Dαh

φh  eiβhDαh
φh.

(b) Next, we replace the mass matrix Mh
0 with a mass lumped version Hh

0 , which is both diagonal
and positive definite. Its entries are given by

(Hh
0 )nm =

{∑
k(Mh

0 )nk, n = m,

0, n 6= m.

Let u, v be continuous scalar functions, and u,v their vectors of nodal degrees-of-freedom.
We define the associated bilinear form by 〈., .〉0,h (which gives the scalar product associated
to the matrix Hh

0 on Z0
h) by

〈u, v〉0,h =
∑
n∈N
<(un(Hh

0 )nnvn) = (Hh
0 u,v)

= <
(∫

S

Π0,h(uv)dS

)
=
∑
K∈Th

|K|
4

∑
x∈K
<(u(x)v(x)),

(3.3)

where the points x appearing in the sum are the vertices of K and (·, ·) denotes the real
valued scalar product for nodal DoF vectors.

Consistency. Hh
0 is consistent with Mh

0 . More precisely, we have the following error esti-
mate (see [10, 9]).

For real l > 1, and all u ∈ H l(S) and vh ∈ Z0
h, there exists a constant C depending on l

such that
|〈u, vh〉0,h − 〈u, vh〉| ≤ Ch‖u‖Hl(S)‖vh‖L2(S). (3.4)

As a conclusion, we have modified the term 〈φ̇h, φ̇h〉 as 〈Dαh
φh, Dαh

φh〉0,h.

As for the term 〈φ̇h, φ̇h〉 = (Mh
0 φ̇

h
, φ̇

h
), we get a gauge invariant expression approximating

〈∇φh,∇φh〉 = (Mh
1Gφ

h, Gφh) in two steps.

(a) The mass matrix Mh
1 defines the L2-product for fields with edge degrees-of-freedom. We

lump this matrix with the same numerical quadrature as we used for Mh
0 in equation (3.3),

as follows.

Define the scalar product 〈., .〉1,h on Z1
h×Z1

h by a diagonal matrix Hh
1 in the basis whe indexed

over the edges in the mesh. Let u, v be continuous vector fields/one-forms, and u,v their
edge degrees-of-freedom. Then

〈u, v〉1,h = <(

∫
S

Π0,h(u · v)dS) =
∑
K∈Th

|K|
4

∑
x∈K
<(u(x)v(x))

=
∑
e∈E
<(ueH

h
1,eeve) = (Hh

1 u,v).
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Here (·, ·) denotes the real valued scalar product for edge DoF vectors, (u,v) =
∑
e∈E <(ueve).

We observe that Hh
1 is both symmetric and positive-definite.

Consistency. We have the following error estimate (see [10, 9]). For real l > 1, and all
u ∈ H l(S) and vh ∈ Z1

h,

|〈u, vh〉 − 〈u, vh〉1,h| ≤ C(l)h‖u‖Hl(S)‖vh‖L2(S). (3.5)

Hölder type inequality. Furthermore, for p and p′ such that 1
p + 1

p′ = 1,

|〈u, v〉1,h| ≤ ‖u‖h,p‖vh‖h,p′ , (3.6)

where for p > 1, one defines

‖u‖h,p =

(∫
S

Π0,h(|u|p)dS
) 1

p

,

which is uniformly equivalent to the true Lp norm [2], i.e. there exists a constant C inde-
pendent of u such that

1

C
‖u‖Lp(S) ≤ ‖u‖h,p ≤ C‖u‖Lp(S).

Remark 3.3. We use the same notation, ‖u‖h,p, for vectorial and scalar u.

Henceforth, the mass matrix Mh
1 is replaced with the above described mass lumped version

Hh
1 in the inner products.

However, we observe that

(Gφh)e={m,n} = φhn − φhm  eiβ
h
nφhn − eiβ

h
mφhm

under a gauge transformation, so the expression (Hh
1Gφ

h, Gφh) is not gauge invariant.

(b) This can be resolved by inspiration from Lattice Gauge Theory (LGT) [29, 24, 11], i.e. we
make the replacement

(Gφh)e={m,n} −→ (GAhφh)e={m,n} = φhn − Uh(m,n)φhm, Uh(m,n) = e−i
∫ n
m
Ah ,

where Uh(m,n) is called a link variable.

The vector-field Ah ∈ Y 1
h transforms as

Ah  Ah −∇βh,

under a gauge transformation, implying that (GAhφh)e={m,n}  eiβ
h
n(GAhφh)e={m,n}.

We will denote GAhφh the vector of degrees of freedom (φhn−Uh(m,n)φhm)e={m,n} and GAh
φh

the corresponding element of Z1
h (i.e. that has the vector GAhφh of degrees of freedom). Further-

more, we define Uh ∈ Z1
h that has vector of degrees of freedom (e−iAe)e={m,n}.

In conclusion, we have thus replaced 〈∇φh,∇φh〉 with the expression 〈GAh
φh, GAh

φh〉1,h.

3.2 Discrete formulation of the Maxwell-Klein-Gordon equation

3.2.1 Gauge invariant discrete Maxwell-Klein-Gordon action

The LGT inspired discretely gauge invariant Klein-Gordon action is therefore given by

SKGh [φh, αh, Ah] =
1

2

∫ T

0

(
‖Dαh

φh‖2h,2 − ‖GAh
φh‖2h,2 −m2‖φh‖2h,2 −

γ

2
‖ |φh|2‖2h,2

)
dt.
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To complete the construction of the Maxwell-Klein-Gordon action, we add the Maxwell action

SM [αh, Ah] =
1

2

∫ T

0

(
‖Ȧh −∇αh‖2L2(S) − ‖∇×Ah‖

2
L2(S)

)
dt. (3.7)

The discretization of the Maxwell part of the action is well understood (see e.g. Ref. [1, 18, 19, 20]),
so the gauge invariant action we are going to use is

SMKG
h [φh, αh, Ah] = SMh [αh, Ah] + SKGh [φh, αh, Ah]. (3.8)

With the above considerations, SMKG
h is invariant under the discrete gauge transformation Gβh

:

(φh, αh, Ah) 7→ (Π0,h(eiβhφh), αh − β̇h, Ah − ∇βh), with t 7→ βh(t) ∈ Y 0
h and Π0,h the nodal

interpolant onto Z0
h.

3.2.2 Weak formulation of the discretized equations

The variation of SMKG
h at (φh, αh, Ah) in the direction (φ′h, α

′
h, A

′
h) is given by

DSMKG
h [φh, αh, Ah](φ′h, 0, 0) =

∫ T

0

(〈Dαφh, Dαφ
′
h〉0,h − 〈GAh

φh, GAh
φ′h〉1,h) dt

+ m2

∫ T

0

(
〈φh, φ′h〉0,h + γ〈|φh|2φh, φ′h〉0,h

)
dt (3.9)

DSMKG
h [φh, αh, Ah](0, α′h, 0) =

∫ T

0

(
−〈Ȧh −∇αh,∇α′h〉+ 〈Dαφh, iα

′
hφh〉0,h

)
dt, (3.10)

DSMKG
h [φh, αh, Ah](0, 0, A′h) =∫ T

0

(
〈Ȧh −∇αh, Ȧ′h〉 − 〈∇ ×Ah,∇×A′h〉 − 〈GAh

φh, iRh(Uh, φh, A
′
h)〉1,h

)
dt, (3.11)

where Rh : Z1
h ×Z0

h × Y 1
h → Z1

h, and for all (Ũ , φ̃, Ã) in Z1
h ×Z0

h, Rh(Ũ , φ̃, Ã) is the edge element
uniquely defined by its edge degrees of freedom

(Rh(Ũ , φ̃, Ã))e := Ũeφ̃mÃe,

for e = {m,n}.

The Euler-Lagrange equations are given by the stationarity of the action, i.e.

DSMKG
h [φh, αh, A](φ′h, α

′
h, A

′
h) = 0.

By defining the electric field Eh as
Eh = ∇αh − Ȧh, (3.12)

and by a partial integration in time, the Euler-Lagrange equations read

〈D2
αφh, φ

′
h〉0,h + 〈GAh

φh, GAh
φ′h〉1,h + m2〈φh, φ′h〉0,h + γ〈|φh|2φh, φ′h〉0,h = 0, ∀φ′h ∈ Z0

h,

〈Ėh, A′h〉 − 〈∇ ×Ah,∇×A′h〉 − 〈GAh
φh, iRh(Uh, φh, A

′
h)〉1,h = 0, ∀A′h ∈ Y 1

h ,
(3.13)

and
〈Eh,∇α′h〉+ 〈Dαφh, iα

′
hφh〉0,h = 0, ∀α′h ∈ Y 1

h . (3.14)

We see that these equations consist of two evolution equations, Eq. (3.13), and one constraint
equation, Eq. (3.14) (corresponding to equation (5.11)).

We suppose that the following initial conditions, A0 ∈ H1(S), E0 ∈ L2(S), φ0 ∈ H1
0 (S),

ψ0 ∈ L2(S) are given.
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Then we consider the following discrete initial conditions

Ah(0, .) = A0
h ∈ Y 1

h ,

Eh(0, .) = E0
h ∈ Y 1

h ,

φh(0, .) = φ0h ∈ Z0
h,

ψh(0, .) = ψ0
h ∈ Z0

h.

(3.15)

Furthermore, we suppose that they are chosen such that

A0
h −→
h→0

A0 in H0(curl, S)) ∩ Lq, E0
h −→
h→0

E0 in L2(S), (3.16)

φ0h −→
h→0

φ0 in H1
0 (S), ψ0

h −→
h→0

ψ0 in L2(S). (3.17)

In the rest of section 3.2, for simplicity of notations we drop the indices h, and consider the
situation where h is fixed.

3.2.3 Constraint preservation

One important feature of this scheme concerns the constraint equation (3.14). The discrete MKG
action (3.8) is gauge invariant, since both terms are. One can therefore use a discrete Noether’s
theorem to prove constraint preservation, in a similar manner as in [5].

We can also show this by a direct calculation.

Theorem 1. Suppose (E,A, α,φ) solves equation (3.13) on a time interval [0, T ]. Suppose fur-
thermore that the constraint (3.14) is satisfied at t = 0. Then the constraint (3.14) is satisfied for
all t ∈ [0, T ].

Proof. We start out by a differentiation in time of the left hand side of equation (3.14), denoted
κ. This gives

κ̇ = 〈Ė,∇α′〉+ 〈Dαφ̇, iα
′φ〉0,h + 〈Dαφ, iα

′φ̇〉0,h + 〈iα̇φ, iα′φ〉0,h. (3.18)

By the evolution equation for the electric field, equation (3.13), we have

〈Ė,∇α′〉 = 〈GAφ, iR(U, φ,∇α′)〉1,h. (3.19)

Furthermore,
D2
αφ = Dαφ̇+ iαDαφ+ iα̇φ, (3.20)

and we can apply the nodal interpolator to both sides of this equality. Then (3.18) can be rewritten

κ̇ = 〈GAφ, iR(U, φ,∇α′)〉1,h + 〈D2
αφ, iα

′φ〉0,h + 〈Dαφ, iα
′φ̇〉0,h − 〈iαDαφ, iα

′φ〉0,h. (3.21)

The evolution equation for the Klein-Gordon scalar field gives

κ̇ = 〈GAφ, iR(U, φ,∇α′)〉1,h − 〈GAφ,GA(iΠ0,h(α′φ))〉1,h + m2〈φ, iΠ0,h(α′φ)〉0,h + γ〈|φ|2φ, iΠ0,h(α′φ)〉0,h
+〈Dαφ, iα

′φ̇〉0,h − 〈iαDαφ, iα
′φ〉0,h. (3.22)

Since our scalar product is real valued, we obtain

〈Dαφ, iα
′φ̇〉0,h − 〈iαDαφ, iα

′φ〉0,h = 〈Dαφ, iα
′Dαφ〉0,h = 0 (3.23)

In a same manner, since
〈|φ|2φ, iΠ0,h(α′φ)〉0,h = 〈|φ|2φ, iα′φ〉0,h, (3.24)

one has
〈|φ|2φ, iΠ0,h(α′φ)〉0,h = 0, (3.25)
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and
〈φ, iΠ0,h(α′φ)〉0,h = 〈φ, iα′φ〉0,h = 0 (3.26)

This gives
κ̇ = 〈GAφ, iR(U, φ,∇α′)〉1,h − 〈GAφ,GA(iΠ0,h(α′φ))〉1,h. (3.27)

where,

(GA(iΠ0,h(α′φ)))e = iα′nφn − iUeα′mφm (3.28)

= iα′n(φn − Ueφm)− iUe(Gα′)eφm, (3.29)

= iα′n(GAφ)e − iUe(Gα′)eφm (3.30)

This gives that

〈GAφ,GA(iΠ0,h(α′φ))〉1,h = 〈GAh
φ, iR(U,∇α′, φ)〉. (3.31)

Thus κ̇ = 0.
This concludes the proof.

3.2.4 Energy conservation

We define the energy of the system at any time with

H(t) =
1

2

(
‖Dαφ‖20,h + ‖GAφ‖21,h + ‖E‖2 + ‖∇ ×A‖2 + m2‖φ‖20,h +

γ

2
‖ |φ|2‖20,h

)
.

We will show through a direct formal calculation that this energy is preserved by the flow.

Proposition 1. Suppose (E,A, α, φ) solves the evolution equations (3.12, 3.13). Then the energy
is conserved.

Proof. The proof is a mere calculation. We have

Ḣ(t) = 〈Dαφ̇,Dαφ〉0,h + 〈iα̇φ,Dαφ〉0,h + 〈GAφ,GAφ̇〉1,h + 〈GAφ,R(iU, φ, Ȧ)〉1,h
+〈Ė, E〉+ 〈∇ ×A,∇× Ȧ〉+ m2〈φ, φ̇〉0,h + γ〈|φ|2φ, φ̇〉0,h. (3.32)

Using (3.20), we deduce that

〈D2
αφ,Dαφ〉0,h = 〈Dαφ̇,Dαφ〉0,h + 〈iα̇φ,Dαφ〉0,h. (3.33)

So that

Ḣ(t) = 〈D2
αφ,Dαφ〉0,h + 〈GAφ,GAφ̇〉1,h + 〈GAφ,R(iU, φ, Ȧ)〉1,h + 〈Ė, E〉+ 〈∇ ×A,∇× Ȧ〉

+m2〈φ, φ̇〉0,h + γ〈|φ|2φ, φ̇〉0,h. (3.34)

Using (3.13), we find

Ḣ(t) = −〈GAφ,GAΠ0,h(Dαφ)〉0,h −m2〈φ,Dαφ〉0,h − γ〈|φ|2φ,Dαφ〉0,h
+〈GAφ,GAφ̇〉1,h + 〈GAφ,R(iU, φ, Ȧ)〉1,h
−〈GAφ, iR(U, φ, Ȧ)〉1,h + 〈GAφ, iR(U, φ,∇α)〉1,h
+m2〈φ, φ̇〉0,h + γ〈|φ|2φ, φ̇〉0,h. (3.35)

Since the scalar product is real, one has that 〈φ, iαφ〉0,h and 〈|φ|2φ, iαφ〉0,h vanish. This gives

Ḣ(t) = −〈GAφ,GA(iαφ)〉0,h + 〈GAφ, iR(U, φ,∇α)〉1,h (3.36)

Using the computation done in the proof of theorem 1, we conclude that Ḣ ≡ 0, so that the
energy is preserved in time.
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3.2.5 Choice of gauge and existence

We choose to work in the temporal gauge, i.e. α ≡ 0 (as in definition 2.2) and, for the discretization,
αh ≡ 0. This implies

Ȧh = −Eh,
Dαh

φh = φ̇h.

Let T > 0. Since we are working on a finite dimensional space, we have local existence of solutions
of (3.13), (3.14) and (3.15). Conservation of energy assures that the local solution is a global one:
the discrete solutions are defined on the whole interval [0, T ].

4 Convergence of the semi-discrete scheme

In the rest of the paper, C will denote a generic constant (independent of t and h). In the proof of
convergence, we will need some results concerning the convergence of approximations. We state
them here and postpone their proofs to the appendix A.1.

4.1 Preliminary results

Lemma 4.1. Let Π1,h be the edge interpolant. For p > 2, the following inequalities hold. There
exists C > 0 such that for all (Fh, ζh) ∈ Z1

h × Z0
h,

(i)

‖Fhζh −Π1,h(Fhζh)‖L2(S) ≤ Ch1−
2
p ‖Fh‖Lp(S)|ζh|H1(S). (4.1)

Furthermore there exists C > 0 such that for all t ∈ [0, T ],

(ii) √∑
K∈Th

|Ah|2H1(K) ≤ C

(
‖∇ × Ah‖L2(S) + sup

rh∈Y 0
h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

)
, (4.2)

(iii) √∑
K∈Th

|Π1,h(Ahφh)|2H1(K) ≤ Ch
− 2

p

[(
‖∇ × Ah‖L2(S) + sup

rh∈Y 0
h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

)
‖φh‖Lp(S)+

+‖Ah‖Lp(S)|φh|H1(S)

]
.

(4.3)

The following result allows, by the constraint (3.14), to control the weak divergence of Ah
appearing in (4.2) and (4.3).

Lemma 4.2. Let p > 2. There exists C > 0 such that for all t ∈ [0, T ]:

sup
rh∈Y 0

h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

≤ Ch−
2
p ‖φh‖L∞(0,T,Lp(S))‖φ̇h‖L∞(0,T,L2(S)).

With these results at hand, we are ready to prove the convergence of the weak solution of
(3.13).
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4.2 Study of convergence

4.2.1 Boundedness in the energy norm

The initial energy is bounded uniformly in h, as can be seen from (3.16), (3.17) , and since it is con-
served in time, we can immediately conclude that Eh and ∇× Ah are bounded in L∞(0, T ;L2(S)),
i.e.

‖Eh‖L∞(0,T,L2(S)) ≤ C,
‖∇ × Ah‖L∞(0,T,L2(S)) ≤ C.

(4.4)

We can also conclude that φh, φ̇h and GAh
φh are bounded in time in the following sense.

sup
[0,T ]

‖φ̇h‖h,2 ≤ C,

sup
[0,T ]

‖GAh
φh‖h,2 ≤ C.

(4.5)

Furthermore if m 6= 0,

sup
[0,T ]

‖φh‖h,2 ≤ C, (4.6)

and if γ > 0,

sup
[0,T ]

‖φh‖h,4 ≤ C, (4.7)

4.2.2 Convergence of φh

This is obtained in three steps. First, one bounds the H1(S)-norm of |φh|, then one obtains a
bound on the Lp(S) (p > 2) norm of the gauge potential Ah. In a third step, this is used to
conclude that φh is bounded in H1.

Boundedness of the H1-norm of |φh|. We would like to deduce that

‖GAh
φh‖2h,2 ≤ C implies ‖∇|φh| ‖2L2 ≤ C.

One has
(GAhφh)e={m,n} = φhm − Uh(m,n)φhn,

with

Uh(m,n) = exp(−i
∫ n

m

Ah) = exp(−iAh
e ),

where Ah
e is the degree of freedom relative to the edge e.

Since iAh
e is purely imaginary, we have the following estimate

||φm| − |φn|| ≤ |(GAhφh)e={m,n}|,

so that by positivity of the diagonal matrix Hh
1 , one can conclude that

‖∇Π0,h|φh| ‖2h,2 ≤ ‖GAh
φh‖2h,2.

We recall that ∇Π0,h|φh| is the edge element vector field whose degrees of freedom are given by

the vector G|φh|. By previous estimates,

‖∇Π0,h|φh| ‖2L2(S) ≤ C‖∇Π0,h|φh|‖2h,2.
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This implies
‖∇Π0,h|φh| ‖2L∞(0,T,L2(S)) ≤ C,

which gives that Π0,h|φh| is bounded in L∞(0, T,H1
0 (S)).

In order to extract estimates on the H1-norm of φh rather than on the H1-norm of its modulus
|φh|, one needs a control of the Lp-norm of Ah.

Boundedness of the gauge potential. Along the same lines as in [8], one can obtain a bound
on Ah in the Lp norm. To this aim, we consider the discrete Helmholtz decomposition of Ah

Ah = Åh +∇ ph. (4.8)

We bound each part in Lp.
Bound on the discrete divergence-free part. The discrete divergence free part Åh is bounded

in Lp by the L2-norm of the curl of the gauge potential,

‖Åh‖L∞(0,T,Lp(S)) ≤ C‖∇ × Ah‖L∞(0,T,L2(S)). (4.9)

We won’t give any details on this estimate as it can be extracted exactly as in Proposition 2.5. of
[8].

Bound on the gradient part. One has from the constraint equation (3.14)

〈∇ ph,∇ vh〉 = 〈uh, vh〉0,h, (4.10)

with

uh(t) =

∫ t

0

φ̇hφhdt.

We would like to bound ph in L∞(0, T ;W 1,p(S)) for p > 2.
By classical estimates that can be found in [2], we have

‖ph‖W 1,p(S) ≤ C sup
vh∈Y 0

h

|〈uh, vh〉0,h|
‖vh‖W 1,p′ (S)

at any t ∈ [0, T ],

where 1
p + 1

p′ = 1, with p > 2 and p′ < 2.

Let us choose q′ such that 1
q′ = 1

p′ −
1
2 . For any q such that 1

q + 1
q′ = 1, we have

|〈uh, vh〉0,h| ≤ ‖uh‖Lq(S)‖vh‖Lq′ (S).

Furthermore,

‖uh‖Lq(S) ≤ C
∫ t

0

‖φ̇hφh‖Lq(S) ≤ C
∫ t

0

‖φ̇h‖L2(S)‖φh‖Lp(S).

Since 1
2 + 1

p = 1
q , from the energy bound (4.7), we deduce that ‖φ̇h‖L2(S) ≤ C and ‖φh‖Lp(S) ≤ C.

This implies that
|〈uh, vh〉0,h| ≤ C‖vh‖Lq′ (S),

independently of t ∈ [0, T ].

By the Sobolev embeddings W 1,p′(S) ↪→ Lq
′
(S), we deduce

|〈uh, vh〉0,h| ≤ C‖vh‖W 1,p′ (S),

which implies that ph is bounded in W 1,p(S), and

‖Ah‖L∞(0,T,Lp(S)) ≤ C.
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Remark 4.3. If γ > 0, we can also directly prove (without having to use the boundedness in the
H1 norm of |φh|) that Ah is bounded in L∞(0, T, L4(S)), using that in this case φh is bounded in
L∞(0, T, L4(S)).

Convergence of φh. From this, we deduce that φh is bounded in H1(S). Indeed,

(GAhφh)e =
1 + exp(−iAh

e )

2
(Gφh)e +

1− exp(−iAh
e )

2
(φhm + φhn),

so that

(Gφh)e =
2

1 + exp(−iAh
e )

(GAhφh)e −
1− exp(−iAh

e )

1 + exp(−iAh
e )

(φhm + φhn),

which implies

∣∣(Gφh)e
∣∣ ≤ 1∣∣∣cos(|A

h
e

2 |)
∣∣∣
∣∣∣(GAhφh)e

∣∣∣+

∣∣∣sin(|A
h
e

2 |)
∣∣∣∣∣∣cos(|A

h
e

2 |)
∣∣∣
(∣∣∣φhm∣∣∣+

∣∣∣φhn∣∣∣) .
In the last section we obtained

‖Ah‖L∞(0,T,Lp(S)) ≤ C,

which yields

|Ah
e | ≤ Ch

2
q , (4.11)

where 1
q + 1

p = 1
2 . This means that for h sufficiently small, h ≤ ε0 with ε0 > 0 given,

| cos(
|Ah

e |
2

)| ≥ C > 0.

We also make use of the following inequality

sin(
|Ah

e |
2

) ≤ |A
h
e |

2
.

As a consequence

|(Gφh)e| ≤ C|(GAhφh)e|+ C|Ah
e |(|φ

h
m|+ |φ

h
n|).

Furthermore, Ah
e (
|φh

m|+|φ
h
n|

2 ) are the degrees of freedom of the product AhΠ0,h(|φh|), and one can
then conclude that

‖∇φh‖2h,2 ≤ C‖GAh
φh‖2h,2 + C‖Π1,h(AhΠ0,h(|φh|))‖2h,2.

Using Lemma 4.1 to AhΠ0,h(|φh|) and bounds obtained on both Ah and |φh|, we can conclude
that

‖∇φh‖2h,2 ≤ C.

Finally since ‖∇φh‖L2(S) ≤ C‖∇φh‖h,2, it follows that

‖φh‖L∞(0,T,H1
0 (S))

≤ C.

Remark 4.4. Following remark 4.3, if γ > 0, we can also directly obtain this result (without having
to use the boundedness in the H1 norm of |φh|) using the boundedness of Ah in L∞(0, T, L4(S)).

By following [8] and using the bound on the energy, we arrive the convergence of φh in
L∞(0, T ;Lp(S)) (up to a subsequence) using the compactness result from [27] and interpolation
estimates on Lp(S) spaces.
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4.2.3 Convergence of the gauge potential Ah

The convergence of the gauge potential is obtained by considering the discrete divergence free part
and the gradient part of the discrete Helmholtz decomposition (4.8) separately.

Discrete divergence free part. We follow again [8]. By a Kikuchi type result, one obtains
the convergence of Åh in L∞(0, T, L2(S)). Interpolation estimates then give the convergence in
L∞(0, T, Lp(S)), since one has (4.9).

Gradient part. The equation we are considering is (equation(4.10))

〈∇ph,∇vh〉 = 〈uh, vh〉0,h =: lh(vh), ∀vh ∈ Y 0
h .

We have lh ∈ (Y 0
h )∗, and one can then find, by the Riesz representation theorem, fh ∈ Y 0

h such
that ∀vh ∈ Y 0

h ,
〈fh, vh〉 = lh(vh).

Let q > 2 be given. We choose r > 0 such that 1
2 <

1
r <

1
2 + 1

q . One has

‖fh‖Lr(S) = sup
v∈Lr′ (S)

|〈fh, v〉|
‖v‖Lr′ (S)

= sup
v∈Lr′ (S)

|〈fh, vh〉|
‖v‖Lr′ (S)

= sup
v∈Lr′ (S)

|lh(vh)|
‖v‖Lr′ (S)

≤ C‖uh‖h,r,

where 1
r + 1

r′ = 1, and vh = Ph(v) is the L2 orthogonal projection on Y 0
h (which is stable in

Lr
′
(S)). As already shown in a previous section, this implies

‖fh‖L∞(0,T ;Lr(S)) ≤ C‖φ̇h‖L∞(0,T ;L2(S))‖φh‖L∞(0,T ;Lq(S)).

Furthermore, ∀t ∈ [0, T ],
〈ḟh, vh〉 = 〈u̇h, vh〉0,h,

which means that

‖ḟh‖L∞(0,T,Lr(S)) ≤ C‖φ̇h‖L∞(0,T ;L2(S))‖φh‖L∞(0,T ;Lq(S)).

From this one concludes that there exists w ∈ L∞(0, T ;W−1,q(S)) such that

fh −→
h→0

w in L∞(0, T ;W−1,q(S)),

where we used the compact embedding from Lr(S) into W−1,q(S), and the compactness result of
[27].

Define p ∈W 1,q(S) as the unique solution of

〈∇p,∇v〉 = 〈w, v〉 =: l(v), ∀v ∈W 1,q′(S),
1

q
+

1

q′
= 1.

We would like to prove that
‖ph − p‖L∞(0,T ;W 1,q(S)) −→

h→0
0.

In order to prove this, we use a version of the Strang lemma, i.e.

sup
vh∈Z0

h

|lh(vh)− l(vh)|
‖vh‖W 1,q′ (S)

−→
h→0

0,

which is verified by construction of l, and we can conclude that ph −→
h→0

p in L∞(0, T ;W 1,q(S)) for

all q > 2.
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4.3 The limit equation

4.3.1 Summary of convergences obtained

(a) Convergence obtained for Ah. We have that

Ah −→
h→0

A in L∞(0, T ;Lp(S)), ∀2 < p,

and from energy bound we directly have

∇× Ah ⇀
h→0
∇×A in L∞(0, T ;L2(S)) weak-*,

and
Ȧh ⇀

h→0
Ȧ in L∞(0, T ;L2(S)) weak-*.

(b) Convergence of φh. We have that

φh −→
h→0

φ in L∞(0, T ;Lp(S)), ∀p < +∞,

and from energy bound, we directly have

φh ⇀
h→0

φ in L∞(0, T ;H1
0 (S)) weak-*,

and
φ̇h ⇀

h→0
φ̇ in L∞(0, T ;L2(S)) weak-*.

4.3.2 Limit equations

Let φ′ ∈ C∞c (]0, T [×S) and A′ ∈ (C∞c (]0, T [×S))2. Define φ′h = Π0,h(φ′) ∈ C∞c (0, T ;Z0
h) and

A′h = Π1,h(A′) ∈ C∞c (0, T ;Y 1
h ). We denote by φ′h and A′h the vectors of the degrees of freedom

associated to φ′h and A′h respectively.

In the temporal gauge, the semi-discrete equations (3.13) read∫ T

0

〈φ̈h, φ′h〉0,h +

∫ T

0

〈GAh
φh, GAh

φ′h〉1,h + m2

∫ T

0

〈φh, φ′h〉0,h + γ

∫ T

0

〈|φh|2φh, φ′h〉0,h = 0,

(4.12)∫ T

0

〈Ėh, A′h〉 −
∫ T

0

〈∇ × Ah,∇× A′h〉 −
∫ T

0

〈GAh
φh, iRh(Uh, φh, A

′
h)〉1,h = 0.

(4.13)

Study of equation (4.12). We have

∫ T

0

〈φ̈h, φ′h〉0,h = −
∫ T

0

〈φ̇h, φ̇′h〉0,h = −
∫ T

0

〈φ̇h, φ̇′〉0,h, and

by weak-* convergence of φ̇h, ∫ T

0

〈φ̇h, φ̇′〉 −→
h→0

∫ T

0

〈φ̇, φ̇′〉.

Furthermore from (3.4) and uniform L2 bound on φ̇h∣∣∣∣∣
∫ T

0

〈φ̇h, φ̇′〉0,h −
∫ T

0

〈φ̇h, φ̇′〉

∣∣∣∣∣ ≤
∫ T

0

Ch‖φ̇h‖L2(S)‖φ̇′‖Hl(S) ≤ Ch.

The convergence of the terms

∫ T

0

〈φh, φ′〉0,h and

∫ T

0

〈|φh|2φh, φ′〉0,h directly follows from the

convergence of φh in L∞(0, T ;Lp(S)) and the convergence for the test functions. We now study
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the convergence of the term

∫ T

0

〈GAh
φh, GAh

φ′h〉1,h to

∫ T

0

〈DAφ,DAφ
′〉. It will be obtained in

several steps.
First, we decompose the quantity of interest 〈GAh

φh, GAh
φ′h〉1,h − 〈DAφ,DAφ

′〉 into three terms
as

〈GAh
φh, GAh

φ′h〉1,h − 〈DAφ,DAφ
′〉 = 〈GAh

φh, GAh
φ′h〉1,h − 〈Π1,h(DAh

φh), GAh
φ′h〉1,h︸ ︷︷ ︸

I1

+ 〈Π1,h(DAh
φh), GAh

φ′h〉1,h − 〈Π1,h(DAh
φh),Π1,h(DAh

φ′h)〉1,h︸ ︷︷ ︸
I2

+ 〈Π1,h(DAh
φh),Π1,h(DAh

φ′h)〉1,h − 〈DAφ,DAφ
′〉︸ ︷︷ ︸

J

(4.14)

We first concentrate on I1 and I2. We need the two following Lemma. Their proofs are
postponed to appendix B.

Lemma 4.5. There exist η > 0 and C > 0 such that if h < η,

sup
[0,T ]

‖GAh
φh −Π1,hDAh

φh‖2h,2 ≤ Ch
2−4/p,

so that
sup
[0,T ]

‖GAh
φh −Π1,hDAh

φh‖h,2 −→h→0
0.

Furthermore, from the bound on the energy we directly have the following.

Lemma 4.6. There exists C > 0 such that

sup
[0,T ]

‖GAh
φh‖h,2 ≤ C. (4.15)

We can in a same manner obtain the analogous Lemma with φh replaced by φ′h. Using Lemma
4.5, 4.6 and 4.1 (and their analogous counter part for φ′h), one proves that I1 and I2 converges
uniformly in time to 0 as h→ 0.

The estimation of J rely on the following decomposition

J = 〈Π1,h(DAh
φh),∇φ′h〉1,h − 〈Π1,h(DAh

φh),∇φ′〉︸ ︷︷ ︸
J1

(4.16)

+ 〈∇φh, iAhφ′h〉1,h − 〈∇φh, iAhφ′h〉︸ ︷︷ ︸
J2

(4.17)

+ 〈∇φh,Π1,h(iAhφ
′
h)− iAhφ′h〉1,h︸ ︷︷ ︸

J3

(4.18)

+ 〈Π1,h(DAh
φh), iAhφ

′
h〉 − 〈Π1,h(DAh

φh), iAφ′〉︸ ︷︷ ︸
J4

(4.19)

+ 〈Π1,h(iAhφh),Π1,h(iAhφ
′
h)〉1,h − 〈Π1,h(iAhφh),Π1,h(iAhφ

′
h〉)︸ ︷︷ ︸

J5

(4.20)

+ 〈Π1,h(iAhφh),Π1,h(iAhφ
′
h)〉 − 〈Π1,h(iAhφh), iAhφ

′
h〉︸ ︷︷ ︸

J6

(4.21)

+ 〈Π1,h(DAh
φh),∇φ′〉 − 〈DAφ,DAφ

′〉+ 〈Π1,h(DAh
φh), iAφ′〉︸ ︷︷ ︸

J7

. (4.22)

To estimate these terms, one needs the four following Lemma. To ease the reading, we post-
poned their proofs to the Appendix B.
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Lemma 4.7.

‖〈Π1,h(DAh
φh),∇φ′h〉1,h − 〈Π1,h(DAh

φh),∇φ′〉‖L∞(0,T ) −→
h→0

0.

Lemma 4.8.
‖〈∇φh, Ahφ′h〉1,h − 〈∇φh, Ahφ′h〉‖L∞(0,T ) −→

h→0
0.

Lemma 4.9.

‖〈Π1,h(Ahφh),Π1,h(Ahφ
′
h)〉1,h − 〈Π1,h(Ahφh),Π1,h(Ahφ

′
h)〉‖L∞(0,T ) −→

h→0
0.

Lemma 4.10. ∫ T

0

〈Π1,hDAh
φh,Π1,hDAh

φ′h〉dt −→
h→0

∫ T

0

〈DAφ,DAφ
′〉dt.

Let us briefly describe how the seven terms of the decomposition of J are treated. The first
term J1 is estimated using Lemma 4.7. Lemma 4.8 gives an estimation of J2. The terms J3, J4 and
J6 are estimated using 4.1 and bounds on the discrete solution. Lemma 4.9 gives an estimation of
J5. Finally, since J7 = 〈Π1,h(DAh

φh), DAφ
′〉− 〈DAφ,DAφ

′〉, we deduce that this terms converges
to 0 as h→ 0 with the help of Lemma 4.1 and the convergences obtained and summarized at the
beginning of section 4.3.

Study of equation (4.13). The two first terms in equation (4.13) are classical and are treated
in a same manner as for equation (4.12). Thus, the only remaining term to estimate is the non
linear term of equation (4.13). We use the following Lemma

Lemma 4.11.

〈Rh(Uh, φh, A
′
h)−Π1,h(A′φ),Rh(Uh, φh, A

′
h)−Π1,h(A′φ)〉1,h −→

h→0
0.

The proof is postponed to the appendix B.

We write

〈GAh
φh, iRh(Uh, φh, A

′
h)〉1,h − 〈DAφ, iφA

′〉 = 〈GAh
φh, iRh(Uh, φh, Ah)〉1,h − 〈DAh

φh, iΠ1,h(φhA
′
h)〉︸ ︷︷ ︸

I

+〈DAh
φh, iΠ1,h(φhA

′
h)〉 − 〈DAφ, iφA

′〉 (4.23)

Using convergences summarized at the beginning of Section 4.3 and Lemma 4.1, we can prove that∫ T

0

〈DAh
φh, iΠ1,hφhA

′
h〉 −→

h→0

∫ T

0

〈DAφ, iφA
′〉,

Furthermore,
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I = 〈GAh
φh, iRh(Uh, φh, Ah)− iΠ1,h(φhA

′
h)〉1,h︸ ︷︷ ︸

I1

+ 〈GAh
φh −Π1,h(DAh

φh), iΠ1,h(φhA
′
h)〉1,h︸ ︷︷ ︸

I2

+ 〈Π1,h(DAh
φh), iΠ1,h(φhA

′
h)− iφhA′h〉1,h︸ ︷︷ ︸

I3

+ 〈Π1,h(DAh
φh), iφh(A′h −A′)〉1,h︸ ︷︷ ︸

I4

+ 〈Π1,h(DAh
φh), i(φh − φ)A′〉1,h︸ ︷︷ ︸

I5

+ 〈Π1,h(DAh
φh), iφA′〉1,h − 〈Π1,h(DAh

φh), iφA′〉︸ ︷︷ ︸
I6

+ 〈(Π1,h(DAh
φh)−DAh

φh), iφA′〉︸ ︷︷ ︸
I7

+ 〈(DAh
φh −DAφ), iφA′〉︸ ︷︷ ︸

I8

. (4.24)

Each of the terms converges to 0 as h→ 0. Indeed, for

� I1, we use the energy norm estimate and Lemma 4.11,

� I2, we use Lemma 4.7, Lemma 4.1 (i) and estimates on A′h and φh,

� I3, we use estimates on Ah, φh, A′h, Lemma 4.1 and the fact that ‖Π1,h(DAh
φh)‖1,h is

bounded (combination of Lemma 4.1 and bounds on the fields),

� I4, we use the estimates onAh, φh, the convergence properties ofA′h and bound on ‖Π1,h(DAh
φh)‖1,h,

� I5, we use the estimates onAh, φh, the convergence properties of φ′h and bound on ‖Π1,h(DAh
φh)‖1,h,

� I6, we use the consistency estimate (3.5),

� I7, we use Lemma (4.1) and estimates on Ah, φh,

� I8, we use the convergence properties of Ah and φh.

Thus we can state that∫ T

0

〈GAh
φh, iRh(Uh, φh, A

′
h)〉1,h −→

h→0

∫ T

0

〈DAφ, iφA
′〉.

The limit equation. To conclude,

−
∫ T

0

〈φ̇, φ̇′〉+

∫ T

0

〈DAφ,DAφ
′〉 = 0,

−
∫ T

0

〈E, Ȧ′〉 −
∫ T

0

〈dA, dA′〉 −
∫ T

0

〈DAφ, iφA
′〉 = 0,

(4.25)

which means that (A, φ) is a weak solution of the Maxwell-Klein-Gordon equation in the sense of
Definition 2.2.
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5 Numerical results

In this section, we provide some numerical results to assess the theory. To this end, we first
propose a fully discrete scheme and then study two types of test cases in two dimensions.

5.1 Fully discrete setting

We consider a time-discretization that consists of a uniform subdivision of NT + 1 (NT ∈ N∗)

points of the interval [0, T ]. The time step will be denoted ∆t :=
T

NT
. We propose the following

simple time discretization of leap-frog type.
For all k ∈ {0, .., NT }, find (ψkh, φ

k
h, E

k
h, A

k
h) ∈ Z0

h × Z0
h × Y 1

h × Y 1
h such that for all (φ′h, A

′
h) ∈

Z0
h × Y 0

h ,{
〈dtψk0,h, ψ′h〉0,h − 〈GAk

h
φkh, GAk

h
φ′〉1,h −m2〈φkh, φ′h〉0,h − γ〈|φkh|2φkh, φ′h〉0,h = 0.

〈dtEkh, A′h〉 − 〈curlAkh, curlA′h〉 − 〈GAk
h
φkh, U

k
hφ

k
hA
′
h〉1,h = 0

with

� E
k+ 1

2

h := −
Ak+1
h −Akh

∆t
and ψ

k+ 1
2

h := −
φk+1
h − φkh

∆t

� dtE
k
h :=

E
k+ 1

2

h − Ek−
1
2

h

∆t
and dtψ

k
h :=

ψ
k+ 1

2

h − ψk−
1
2

h

∆t

� Ekh :=
E
k+ 1

2

h + E
k− 1

2

h

2
and ψkh :=

ψ
k+ 1

2

h + ψ
k− 1

2

h

2

For a given sequence Bk, we will also use the following notations dtB
k =

Bk+1 −Bk

∆t
.

We initialize the algorithm with values A0
h, A1

h, ψ0
h, ψ1

h.

In this work, we focus on first numerical results and postpone a more thorough fully-discrete
numerical analysis for a future work.

5.2 Constraint preservation

One can straightforwardly check that the constraint is verified.

Proposition 5.1. If 〈E
1
2

h ,∇β′〉 = 〈ψ
1
2

h , φ
1β′〉0,h, the constraint is verified i.e.

〈Ek−
1
2

h ,∇β′h〉 = 〈ψk−
1
2

h , φkhβ
′〉0,h, ∀k ∈ {0, .., NT } (5.1)

Proof. If one expresses the discrete differential, one obtains

dt

(
〈Ek−

1
2

h ,∇β′h〉 − 〈ψ
k− 1

2

h , φkhβ
′
h〉0,h

)
=

1

∆t

[
〈Ek+

1
2

h ,∇β′h〉 − 〈E
k− 1

2

h ,∇β′h〉 − 〈ψ
k+ 1

2

h , φk+1
h β′〉0,h + 〈ψk−

1
2

h , φkhβ
′
h〉0,h

]
(5.2)

But from the definition ψ
k+ 1

2

h and the scalar product,

1

∆t

[
〈ψk+

1
2

h , φk+1
h β′h〉0,h − 〈ψ

k− 1
2

h , φkhβ
′
h〉0,h

]
= 〈ψ

k+ 1
2 − ψk− 1

2

∆t
, φkhβ

′
h〉0,h + 〈ψk+

1
2

h ,
(φk+1
h − φkh)

∆t
β′h〉0,h,

= 〈dtψkh, φkhβ′h〉0,h (5.3)

So that
dt(〈Ek−

1
2 ,∇β′〉 − 〈ψk− 1

2 , φkβ′〉0,h) = 〈dtEk,∇β′〉 − 〈dtψk, φkβ′〉0,h (5.4)
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Similar arguments as in Section 3.2.3 apply to prove that the constraint is preserved even in
discrete time. This implies that

〈Ek− 1
2 ,∇β′〉 − 〈ψk− 1

2 , φkβ′〉0,h = 0 (5.5)

if the constraint is verified at initial time, i.e. for k = 1. �

5.3 Numerical tests

We have implemented the proposed fully-discrete scheme using a dedicated module that we de-
veloped using the Finite Element library Firedrake1. Let us point out that these results are
preliminary and used as first assessments of the method. We consider a two dimensional domain
given by a square [0, 1] × [0, 1]. The scheme defined in the previous section is explicit. Thus, as
expected in each of our test cases, we observe that the stability of the scheme is guaranteed by
a cfl type condition ∆t ≤ cflh. The cfl constant has been empirically fixed according to our
tests to 0.25.

5.3.1 Artificial test case and convergence order

One does not have access to an exact solution as such. In order to assess our implementation,
we propose to design an artificial test case as explained in the following. We consider for all
(t, x, y) ∈ [0, T ]× [0, 1]× [0, 1],

φart(t, x, y) = sin(ωt) sin(πx) sin(πy), (5.6)

Aart(t, x, y) = (cos(
√

2πt) cos(πx) sin(πy),− cos(
√

2πt) sin(πx) cos(πy)), (5.7)

with ω =
√

2π2 + m2. Then we define

Jφart = ∂ttφart + (DAart)
∗DAartφart + m2φart + γ|φart|2φart (5.8)

JAart = ∂ttAart + d∗dAart − iφ∗artDAartφart (5.9)

(5.10)

In this way, (Aart, φart) is a solution of the following set of equations:

∂ttφ+ (DA)∗DAφ+ m2φ+ γ|φ|2φ = Jφart
,

∂ttA+ d∗dA− iφ∗DAφ = JAart
.

(5.11)

with initial conditions

φ(0, ·) = φart(0, ·), (5.12)

A(0, ·) = Aart(0, ·). (5.13)

We then use the discretization proposed above, add the external currents (JAart
, Jφart

) on the
right hand side, and compute the corresponding solution (Anh, φ

n
h)n∈{0,...,NT }. Doing so, we are

able to compute the L∞L2 error as

errL
2

h = max
n∈{0,...,NT }

(
‖φnh −Π0,h(φart(tn, ·))‖2L2(S) + ‖Anh −Π1,h(Aart(tn, ·))‖2L2(S)

) 1
2

(5.14)

We computed the solution for 4 types of (m, γ) couples: (0, 0), (1, 0), (0, 1) and (1, 1). In Figure
1, we plot for several values of the number of points, the values of the respective error defined in
(5.14). The error analysis is performed using mesh parameters that fulfill ∆t = cflh. Doing so,
we compute the minimum order in time and space of the scheme.

In Figure 2, we plot the results in logarithm scales. We observe an order of convergence of 1.

1https://www.firedrakeproject.org/
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Figure 2: Convergence order

Although this is out of the scope of this work to obtain a theoretical proof of the convergence
orders, one can however try to find, through our analysis, some indication of first order convergence
for this test case using regular fields. Indeed the approximation of the discrete covariant derivative
DAh

φh by the LGT gauge compatible discretization come at the price of the estimate such as (4.5)
where we do not hope to obtain more than first order of approximation of the covariant derivative.

Regarding the constraint κ, in this case, one has instead of (3.14), the following equation.

〈κ(t), α′〉 = 〈κ(0), α′〉+

∫ t

0

(〈Jφart ,Π0,h(−iα′φ)〉+ 〈JAart ,∇α′〉) ds. (5.15)

Hence, except if currents are chosen such that the right hand side vanishes, we do not expect
preservation of the constraint in this artificial case. We will not compute the constraint for this
precise test case and postpone the tests to the next section.
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5.3.2 Second test case and preservation of the constraint

For this second test case, we propose to initialize the system with an electromagnetic plane wave
for A and a 2D-Gaussian initial profile for φ centered at the center of the domain. In other words,
we consider a focalized density profile for the modulus of the complex Klein-Gordon field. In figure
3, we observe that the constraint is preserved up to machine precision. This is in accordance with
the theory developed in previous sections. The energy is not preserved by the time-integration

Figure 3: Evolution of the constraint in time for several couples (m, γ): (0, 0) upper left, (0, 1)
upper right, (1, 0) bottom left, (1, 1) bottom right. The initial constraint is non zero and is
represented by the orange horizontal line.

scheme, however relative variations of the energy from its initial value are relatively small (see
Figure 4) and this variation gets consistently smaller as the discretization parameters decrease
(see Figure 5).

To conclude, we represent in Figure 7 some φ modulus profiles and their evolution with time
(the initial profile is represented in Figure 6). At this stage of our investigations, we cannot
really interpret these profiles since we work on a toy academic model. This will be part of future
works to improve the physical relevance of the setting considered here and the corresponding test
cases. The way we use these profiles here is to show the effect of the introduction of mass and
self-coupling term. Even if, again, the physical relevance of the values chosen are not discussed
here, we propose to test the use of non unitary values of the mass and self-coupling term.

What we observe is that the effect of mass and/or self-coupling occurs after some elapsed time
and that the effect of self-coupling seems to be weak. We therefore also tested a situation where
self-coupling is ten times bigger than mass. In this case, we significantly see self-coupling effects
over mass on the profiles patterns.
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Figure 4: Evolution of the energy over time for several couples (m, γ): (0, 0) upper left, (0, 1)
upper right, (1, 0) bottom left, (1, 1) bottom right. The initial energy is represented by the orange
horizontal line.

Figure 5: Absolute variations of the energy with respect to its initial value over time for a space
discretization made of 50pts and 100pts.

6 Conclusion

In this work, we studied the Maxwell-Klein-Gordon equation in dimension two and focused on the
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Figure 6: Initial profile of the modulus of the Klein Gordon complex field.

Figure 7: Evolution of the profile of the modulus of the Klein Gordon complex field with (m, γ) =
(0, 0) (first row), (m, γ) = (0, 10) (second row), (m, γ) = (10, 0) (third row) and (m, γ) = (10, 10)
(fourth row): t = 0.125 left, t = 0.225 middle, t = 0.985 right, with t = 1 being the end of
simulation time.

semi-discrete analysis of a discretization scheme based on Lattice Gauge Theory (LGT) combined
with Nédélec finite elements. The special feature of this scheme is that it ensures gauge invariance
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Figure 8: Evolution of the profile of the modulus of the Klein Gordon complex field with (m, γ) =
(10, 100): t = 0.125 left, t = 0.225 center, t = 0.985 right, with t = 1 being the end of simulation
time.

at the discrete level therefore respecting the geometrical structure of the original equation through
the preservation of the constraint. Our analysis is not an a priori analysis, but concentrates on
sequential compactness arguments without the a priori knowledge of a solution of the continuous
equations. We use the discrete energy principle combined to constraint preservation to extract
bounds in the appropriate spaces and extract convergent subsequences. At last, we implement
a fully discrete numerical scheme based on a leap frog type time integration. We provide first
academical test cases to extract convergence orders and assess the method. Future works include
more relevant physical test cases and the fully discrete analysis of the proposed scheme.

Acknowledgment

This research was supported by the European Research Council through the FP7-IDEAS-ERC
Starting Grant scheme, project 278011 STUCCOFIELDS.

A Proofs of the preliminary Lemma 4.1 and A.2.

Lemma A.1. Let Π1,h be the edge interpolant. For p > 2, the following inequalities hold. There
exists C > 0 such that for all (Fh, ζh) ∈ Y 1

h × Z0
h

(i)

‖Fhζh −Π1,h(Fhζh)‖L2(S) ≤ Ch1−
2
p ‖Fh‖Lp(S)|ζh|H1(S), (A.1)

Furthermore there exists C > 0 such that

(ii) √∑
K∈Th

|Ah|2H1(K) ≤ C

(
‖∇ × Ah‖L2(S) + sup

rh∈Y 0
h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

)
, (A.2)

(iii) √∑
K∈Th

|Π1,h(Ahφh)|2H1(K) ≤ Ch
− 2

p

[(
‖∇ × Ah‖L2(S) + sup

rh∈Y 0
h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

)
‖φh‖Lp(S)+

+‖Ah‖Lp(S)|φ|H1(S)

]
.

(A.3)
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Proof. Proof of (i). Let Π̂ be the projector on the reference domain K̂ corresponding to Π1,h on

Z1
h, and F̂h, ζ̂h the corresponding functions classically defined on the reference element K̂.

One has
‖F̂hζ̂h − Π̂F̂hζ̂h‖L2(K̂) ≤ C inf

p∈Q
‖F̂hζ̂h − p‖H1(K̂),

where Q = Q0,1(C)×Q1,0(C) is the space of polynomials we will consider on K̂. Furthermore

inf
p∈Q
‖F̂hζ̂h − p‖H1(K̂) ≤ inf

p∈P0

‖F̂h(ζ̂h − p)‖H1(K̂),

where P0 are complex constant functions on K̂. In addition,

inf
p∈P0

‖F̂h(ζ̂h − p)‖H1(K̂)

≤ C
[
‖F̂h‖Lp(K̂) inf

p∈P0

‖ζ̂h − p‖H1(K̂) + |F̂h|H1(K̂) inf
p∈P0

‖ζ̂h − p‖H1(K̂) + |ζ̂h|H1(K̂)‖F̂h‖Lp(K̂)

]
,

which gives

inf
p∈P0

‖F̂h(ζ̂h − p)‖H1(K̂) ≤ C‖F̂h‖Lp(K̂)|ζ̂h|H1(K̂) + |F̂h|H1(K̂)|ζ̂h|H1(K̂) + |ζh|H1(K̂)‖F̂h‖Lp(K̂)

≤ C‖F̂h‖Lp(K̂)|ζ̂h|H1(K̂).

So on any rectangle K, one deduces by scaling

‖Fhζh −Π1,h(Fhζh)‖L2(K) ≤ Ch1−
2
p ‖Fh‖Lp(K)|ζh|H1(K) ≤ Ch1−

2
p ‖Fh‖Lp(S)|ζh|H1(K),

and by summing up the squares of each part of this inequality (i) is proved.

By inverse inequality one also has

‖Fhζh −Π1,h(Fhζh)‖H1(K) ≤ Ch−
2
p ‖Fh‖Lp(K)|ζh|H1(K).

Furthermore, on the reference square K̂,

|F̂hζ̂h|H1(K̂) ≤ C
[
|F̂h|H1(K̂)‖ζ̂h‖Lp(K̂) + |ζ̂h|H1(K̂)‖F̂h‖Lp(K̂)

]
,

which gives on any rectangle K,

|Fhζh|H1(K) ≤ Ch−
2
p
[
|Fh|H1(K)‖ζh‖Lp(K) + |ζh|H1(K)‖Fh‖Lp(K)

]
.

This implies

√∑
K∈Th

|Π1,h(Fhζh)|2H1(K) ≤ Ch
− 2

p

√ ∑
K∈Th

|Fh|2H1(K)

 ‖ζh‖Lp(S) + ‖Fh‖Lp(S)|φ|H1(S)

 .
(A.4)

Turning to the proof of (ii). The discrete Helmholtz decomposition of Ah is written (see [19])

Ah = Åh +∇ ph, (A.5)

where

� Åh is discrete divergence free, i.e. Åh ∈ Vh :=
{
uh ∈ Y 1

h |〈uh,∇βh〉 = 0, ∀βh ∈ Y 0
h

}
,

� ph ∈ Y 0
h .
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First, we consider the term Åh. We would like to prove that√∑
K∈Th

|Åh|2H1(K) ≤ C‖∇ × Åh‖L2(S). (A.6)

Let us define PV the L2 projection on the space of divergence free vectors fields. By inverse
inequality √∑

K∈Th

|Åh − PV Åh|2H1(K) ≤ Ch
−1|Åh − PV Åh|L2(S),

and following [8] (the proof of proposition 2.5.), one has

|Åh − PV Åh|L2(S) ≤ Ch‖∇ × Åh‖L2(S).

This yields √∑
K∈Th

|Åh − PV Åh|2H1(K) ≤ C‖∇ × Åh‖L2(S).

Furthermore PV (Åh) ∈ H1(S) and one has

|PV Åh|H1(S) ≤ C‖∇ × PV Åh‖L2(S) = C‖∇ × Åh‖L2(S),

and (A.6) is proved. Let us study the gradient part. From the expression of the constraint (3.14),
there exists, from Riesz representation theorem, uh ∈ Y 0

h such that

〈∇ ph,∇ rh〉 = 〈uh, rh〉, ∀rh ∈ Y 0
h ,

and

‖uh‖L2(S) = sup
rh∈Y 0

h

|〈∇ ph,∇ rh〉|
‖rh‖L2(S)

.

Define p ∈ H1
0 (S) as the unique solution of the following equation

〈∇ p,∇ r〉 = 〈uh, r〉, ∀r ∈ H1
0 (S).

Since uh ∈ L2(S), then p ∈ H2(S) ∩H1
0 (S) and the following inequality holds

|p|H2(S) ≤ C‖uh‖L2(S).

Furthermore, by standard estimates

|ph −Π0,hp|H1(S) ≤ Ch|p|H2(S).

We would like to prove that√∑
K∈Th

|∇ ph|2H1(K) ≤ C‖uh‖L2(S).

One has√∑
K∈Th

|∇ ph|2H1(K) ≤
√∑
K∈Th

|∇ ph −∇Π0,hph|2H1(K) +

√∑
K∈Th

|∇Π0,hp|2H1(K) (A.7)

≤ Ch−1
√∑
K∈Th

|∇ ph −∇Π0,hp|2L2(K) +

√∑
K∈Th

|∇Π0,hp|2H1(K) (A.8)

≤ C|p|H2(S) + C|∇ p|H1(S) (A.9)

≤ C‖uh‖L2(S), (A.10)
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where we used inverse inequalities and the continuity arguments.

Using the estimates established, one concludes that√∑
K∈Th

|Ah|2H1(K) ≤ C

(
‖∇ × Ah‖L2(S) + sup

rh∈Y 0
h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

)
,

and (ii) is proved.
Inequality (iii) follows directly from (ii) and (A.4).

The following result allows by the constraint (3.14) to control the weak divergence of Ah
appearing in (4.2) and (4.3).

Lemma A.2. For any p > 2,

sup
rh∈Y 0

h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

≤ Ch−
2
p ‖φh‖L∞(0,T,Lp(S))‖φ̇h‖L∞(0,T,L2(S)).

Proof. One has from the constraint (3.14)

|〈Ah,∇ rh〉| =
∣∣∣∣〈∫ t

0

φ̇hφh, rh〉0,h
∣∣∣∣ , ∀rh ∈ Y 0

h ,

implying that

sup
rh∈Y 0

h

|〈Ah,∇ rh〉|
‖rh‖L2(S)

= sup
rh∈Y 0

h

|〈
∫ t
0
φ̇hφh, rh〉0,h|
‖rh‖L2(S)

≤ sup
rh∈Y 0

h

‖
∫ t
0
φ̇hφh‖0,h‖rh‖0,h
‖rh‖L2(S)

≤ C
∥∥∥∥∫ t

0

φ̇hφh

∥∥∥∥
0,h

≤ C
∫ t

0

‖φ̇h‖Lp(S)‖φh‖Lq(S)

≤ Ch−
2
p ‖φh‖L∞(0,T,Lp(S))‖φ̇h‖L∞(0,T,L2(S)),

with 1/p+ 1/q = 1/2.

B Proof of Lemma 4.5 to Lemma 4.11

We will use the following decomposition of GAh
φh in terms of its gradient part and its non linear

part, that upon requiring h to be sufficiently small, is close to iAhφh.

Let e = {m,n} denote an oriented edge of the mesh. The following decomposition holds

(GAhφh)e =
1 + exp(−iAh

e )

2
(φhn − φhm) +

1− exp(−iAh
e )

2
(φhm + φhn) (B.1)

Let us denote

� Nh ∈ Z1
h the edge element such that its edge degrees of freedom are Nh

e = 1− exp(−iAh
e ).

� Nφh the vector of the degrees of freedom of the vector Nhφh, i.e. (Nφh)e = Nh
e (

φh
m+φh

n

2 ).

� Ph the vector such that Ph
e := −1

2
Nh
e (Gφh)e, and Ph ∈ Z1

h its associated edge element

vector field.
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This gives
(GAhφh)e = (Gφh)e + Ph

e + (Nφh)e.

We first prove the following

Lemma B.1. There exist η > 0 and C > 0 such that if h < η,

sup
[0,T ]

‖GAh
φh −Π1,h(DAh

φh)‖2h,2 ≤ Ch
2−4/p,

so that
sup
[0,T ]

‖GAh
φh −Π1,h(DAh

φh)‖h,2 −→h→0
0.

Proof. Let e = {m,n} be an oriented edge of the mesh, one has,

(GAhφh −Π1,h(DAhφh))e = (Ph)e + (Nh
e − iAh

e )
φhm + φhn

2
,

and
‖Ph + (Nh − iAh)φh)‖1,h ≤ ‖Ph‖1,h + ‖(Nh − iAh)φh‖1,h .

Furthermore,

‖Ph‖2h,2 =
∑
e

(Hh
1 )ee

∣∣∣∣exp(−iAh
e )− 1

2
(Gφh)e

∣∣∣∣2
≤

∑
e

(Hh
1 )ee
|Ah

e |2

4

∣∣∣(Gφh)e

∣∣∣2
≤ Ch2−

4
p ‖Ah‖2L∞(0,T,Lp(S))

∑
e

(Hh
1 )ee

∣∣∣(Gφh)e

∣∣∣2
≤ Ch2−

4
p ‖∇φh‖2h,2 ≤ Ch

2− 4
p ‖∇φh‖2L∞(0,T ;L2(S)) ≤ Ch

2− 4
p ,

since ∇φh is uniformly bounded in L∞(0, T, L2(S)). In addition,

‖(Nh − iAh)φh‖2h,2 =
∑
e

(Hh
1 )ee

∣∣∣∣1− exp(−iAh
e )− iAh

e

2
(φhm + φhn)

∣∣∣∣2
There exists η > 0, such that |Ah

e | is sufficiently small (from (4.11)) so that the following inequal-
ities hold for h < η

‖(Nh − iAh)φh‖2h,2 ≤ C
∑
e

(Hh
1 )ee|Ah

e |2
∣∣∣∣Ah

e

2
(φhm + φhn)

∣∣∣∣2
≤ Ch2−

4
p ‖Ah‖2L∞(0,T,Lp(S))

∑
e

(Hh
1 )ee

∣∣∣∣Ah
e

2
(φhm + φhn)

∣∣∣∣2
≤ Ch2−

4
p ‖Ah‖2L∞(0,T,Lp(S))‖Π1,h(Ahφh)‖2h,2

≤ Ch2−
4
p ‖Ah‖2L∞(0,T,Lp(S))‖Π1,h(Ahφh)‖2L∞(0,T,L2(S))

≤ Ch2−
4
p ,

where we used Lemma A.1, and uniform bounds on the Lp-norm of Ah and the H1-norm on
φh.

The following Lemma is a direct consequence of the estimate on the energy.
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Lemma B.2. There exists C > 0 such that

sup
[0,T ]

‖GAh
φh‖h,2 ≤ C. (B.2)

Lemma B.3.

‖〈Π1,h(DAh
φh),∇φ′h〉1,h − 〈Π1,h(DAh

φh),∇φ′〉‖L∞(0,T ) −→
h→0

0.

Proof. From the consistency estimate, one has

|〈Π1,h(DAh
φh),∇φ′〉1,h − 〈Π1,h(DAh

φh),∇φ′〉| ≤ Ch‖Π1,h(DAh
φh)‖L2(S)‖∇φ′‖Hl(S),

for l > 1, and from bounds established in Lemma A.1, one deduces for p > 2 a bound on
‖Π1,h(DAh

φh)‖L2(S) in terms of ‖Ah‖L∞(0,T ;Lp(S)) and ‖φh‖L∞(0,T ;H1(S)) which concludes the
proof using the obtained bounds and convergence of discrete test functions.

Lemma B.4.
‖〈∇φh, Ahφ′h〉1,h − 〈∇φh, Ahφ′h〉‖L∞(0,T ) −→

h→0
0.

Proof. Mapping consistency estimates from the reference square to any rectangle K of the mesh
(as is done in [9]) gives

|〈∇φh, Ahφ′h〉1,h−〈∇φh, Ahφ′h〉|

≤ C

h√∑
K∈Th

|Ahφ′h|2H1(K) + h2
√∑
K∈Th

|Ahφ′h|2H2(K)

 ‖∇φh‖L2(S).

The two terms
√∑

K∈Th |Ahφ
′
h|2H1(K) and

√∑
K∈Th |Ahφ

′
h|2H2(K) can be estimated by standard

techniques on the reference simplex as in Lemma A.1. It will not be detailed here since arguments
are similar to those already used in previous proofs.

One obtains

h

√∑
K∈Th

|Ahφ′h|2H1(K) + h2
√∑
K∈Th

|Ahφ′h|2H2(K) ≤ Ch
1− 2

p

√∑
K∈Th

|Ah|2H1(K)‖φ
′
h‖H1(S).

Using Lemma A.1 and A.2 and previously obtained bounds, we obtain

‖〈∇φh, Ahφ′h〉1,h − 〈∇φh, Ahφ′h〉‖L∞(0,T ) ≤ Ch1−
4
p .

Choosing p > 4 gives the result.

Lemma B.5.

‖〈Π1,h(Ahφh),Π1,h(Ahφ
′
h)〉1,h − 〈Π1,h(Ahφh),Π1,h(Ahφ

′
h)〉‖L∞(0,T ) −→

h→0
0.

Proof. From error estimates in [10], one deduces that

|〈Π1,h(Ahφh),Π1,h(Ahφ
′
h)〉1,h − 〈Π1,h(Ahφh),Π1,h(Ahφ

′
h)〉|

≤ Ch
∑
K∈Th

(
‖Π1,h(Ahφh)‖L2(K)|Π1,h(Ahφ

′
h)|H1(K)

+‖Π1,h(Ahφ
′
h)‖L2(K)|Π1,h(Ahφh)|H1(K)

)
.

So by Lemma A.1, Lemma A.2 and the bounds on Ah, φh and φ′h the result follows.
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Lemma B.6. ∫ T

0

〈Π1,h(DAh
φh),Π1,h(DAh

φ′h)〉dt −→
h→0

∫ T

0

〈DAφ,DAφ
′〉dt.

Proof. This follows from Lemma A.1, weak-* convergence of ∇φh to ∇φ in L∞(0, T ;L2(S)) and
strong convergence of Ah and φh in L∞(0, T ;Lp(S)).

Last

Lemma B.7.
‖Rh(Uh, φh, A

′
h)−Π1,h(A′hφh)‖1,h −→

h→0
0.

Proof. For h sufficiently small

‖Rh(Uh, φh, A
′
h)−Π1,h(A′hφh)‖21,h

=
∑
e

(Hh
1 )ee

∣∣∣∣∣A′he exp(−iAh
e )φhm −A′he

φhm + φhn
2

∣∣∣∣∣
2

=
∑
e

(Hh
1 )ee

∣∣∣∣∣A′he exp(−iAh
e )

φhn + φhm
2

−A′he exp(−iAh
e )

φhn − φhm
2

−A′he
φhm + φhn

2

∣∣∣∣∣
2

=
∑
e

(Hh
1 )ee

∣∣∣∣∣A′he (1− exp(−iAh
e ))

φhn + φhm
2

−A′he exp(−iAh
e )

φhn − φhm
2

∣∣∣∣∣
2

≤ C
∑
e

(Hh
1 )ee

∣∣A′he ∣∣2 ∣∣Ah
e

∣∣2 ∣∣∣∣∣φhn + φhm
2

∣∣∣∣∣
2

+
∣∣A′he ∣∣2

∣∣∣∣∣φhn − φhm
2

∣∣∣∣∣
2


≤ Ch2−
4
p

∑
e

(Hh
1 )ee

∣∣Ah
e

∣∣2 ∣∣∣∣∣φhn + φhm
2

∣∣∣∣∣
2

+
∣∣∣φhn − φhm

∣∣∣2


≤ Ch2−
4
p

(
‖Π1,h(Ahφh)‖2L∞(0,T ;L2(S)) + ‖∇φh‖2L∞(0,T ;L2(S))

)
.

The same arguments as in Lemma 4.9 gives the result.
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