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1. Introduction 1 

Humans concentrate in urban settings, with half of the world population now living in 2 

cities. This proportion is likely to rise up to 70% in 2050, according to the World Health 3 

Organization (2015), representing a population of six billions. Cities can be divided according 4 

to their main functional categories (hereafter termed morphotypes) as defined by their 5 

commercial, residential and industrial activities (e. g. Revitt et al., 2014). These morphotypes 6 

can then be subdivided according to their typologies which are defined according to variables 7 

such as: (i) land cover composition including green (e. g. parks) and blue (streams, lake) belts, 8 

(ii) land use intensity, (iii) connectivity between impervious surfaces such as car parks and the 9 

presence of urban drainage systems, roads and sidewalks, and (iv) other factors including 10 

industrial and commercial activities (Göbel et al., 2007; Revitt et al., 2014). These typologies 11 

can generate shelters for, among others, several birds, rats, spiders, and favor the development 12 

of particular microbiota (e. g. Marti et al., 2017; Aigle et al., 2021).  13 

Ecological trends among microbial communities of urban biomes (conceptualized under 14 

the term urban microbiomes) have been investigated for some typologies (see Gilbert and 15 

Stephens (2018) for review). To illustrate, the bacterial taxa recovered from surface swabs or 16 

air samples from transit systems (e. g. Danko et al., 2021), soils of urban parks (Ramirez et 17 

al., 2014), deposits and sediments from streets (Marti et al., 2017; Aigle et al., 2021) and 18 

urban waters (McLellan et al., 2015; Voisin et al., 2018) were investigated through 16S rRNA 19 

(ribosomal RNA) and tpm (thiopurine methyltransferase) meta-barcoding (meaning DNA 20 

sequence analysis of PCR products) approaches or metagenomics (meaning an exhaustive 21 

sequencing of total bacterial DNA extracts). The diversity observed on city surfaces was 22 

found to be significantly different from the ones of agricultural soils and meadows (Ibekwe et 23 

al., 2013). Skin-associated bacterial genera were significantly found among air samples of 24 

transit systems during peak commuting hours, and relative humidity and air temperature were 25 
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inversely linked to the ecological richness of these samples as inferred from 16S rRNA meta-26 

barcoding profilings (Leung et al., 2014). Interestingly, an equilibrium between indoor and 27 

outdoor air-borne microbial communities was observed in these systems e. g. Leung et al. 28 

(2014); Robertson et al. (2013). Furthermore, the microbiome of urban deposits was found to 29 

greatly evolve over time while pollutants were accumulating (Aigle et al., 2021; Marti et al., 30 

2017).  31 

Urban microbiomes are expected to be structured around core and versatile opportunistic 32 

microbial groups. These would be representative of the main sources of microbial taxa 33 

seeding a particular biotope, and being organized in efficient functional units by the 34 

prevailing selective forces. Even though stochastic microbial distribution patterns likely led to 35 

some of the observed DNA imprints among these communities (e. g. Hao et al., 2016), one 36 

can hypothesize that the principles of the r/K ecological theory (e. g. Song et al., 2017) can 37 

apply to these biomes, and gradually lead to a selection of K-like specialists (best fit). In fact, 38 

a core urban microbiome for transit systems was recently reported, supporting this hypothesis 39 

(Danko et al., 2021). Synurbic (defined as “living in the city”) microbial species thus appear 40 

to have been selected over time among urban biomes. However, on the short run, these urban 41 

infrastructures are likely to represent transient opportunities for r-ecological strategists (at the 42 

other end of this r/K gradient) which can grow rapidly, and efficiently colonize empty or 43 

disturbed habitats. These r-strategists are considered better fit for uncrowded microbiome 44 

because of their fast growth rate (e. g. Song et al., 2017) and greater metabolic versatility. 45 

These r-strategists have often been associated to human- and animal-opportunistic pathogens 46 

(Vadstein et al., 2018). However, recent investigations have shown that the numbers of 47 

virulence and antibiotic resistance genes can be more abundant among bacterial communities 48 

growing under oligotrophic growth conditions than copiotrophic ones (Song et al., 2017). 49 

These species could have selected virulence or defense genes to increase their competitivity 50 



3 

 

when resource supply rates are low. A better knowledge of these r/K gradients among urban 51 

biomes could identify risky behaviors (e. g. chemical spills) or practices that can favor 52 

undesirable opportunistic bacteria such as the human pathogenic ones.  53 

Here, the incidence of land use specificities and human activities on core (K-strategists) 54 

and versatile bacterial taxa (r-strategists) colonizing urban surfaces was investigated. To 55 

address these issues, a long term experimental site, the Mi-plaine catchment of the Field 56 

Observatory for Urban Water Management (OTHU) located in Lyon (France), was used. This 57 

catchment is an impervious area (impervious rate of 75%) drained by a separated stormwater 58 

system made of detention and infiltration basins (SIS) located at the outlet, in order to avoid 59 

flooding and allow a recharge of the connected aquifer (the one of Lyon) (e. g. Sébastian et 60 

al., 2014).  61 

Main objectives of this study were to:  62 

(1) evaluate similarities between sub-catchments based on their socio-urbanistic 63 

patterns, relative runoff volumes per rain event, and contents in classical bacterial 64 

indicators 65 

(2) investigate relationships between sub-catchments’ specificities and the numbers of 66 

core bacterial K- and versatile r-strategists recovered over urban surfaces (using 67 

runoff waters) through a 16S rRNA gene meta-barcoding approach allowing 68 

differentiation at the genus level 69 

(3) investigate relationships in the numbers of core bacterial K- and versatile r-70 

strategists recovered over surfaces (using runoff waters) through a tpm gene meta-71 

barcoding approach allowing differentiation at the species level  72 

(4) resolve co-occurrence networks between bacterial taxa inferred from the meta-73 

barcoding profilings, and identify keystone bacterial taxa indicative of sorting 74 

processes triggered by socio-urbanistic variables  75 
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2. Materials and Methods 76 

2.1. Experimental site and its main socio-urbanistic features  77 

The Mi-plaine urban catchment of the Lyon area 78 

(http://www.chassieu.fr/la_zone_industrielle_mi_plaine.html) was investigated in this study. 79 

The selected watershed is part of the town of Chassieu, and covers a 210 ha which is 80 

impervious at 75% (Fig. 1 and Fig. 2). Roads are cleaned every week by a mechanical 81 

sweeper. The watershed of Chassieu is divided into sub-catchments (Fig. S1) transferring 82 

their runoffs into the main rain water network and SIS of the catchment. These sub-83 

catchments were used as references for the socio-urbanistic surveys and definition of 84 

typologies, and for inferring relationships with the genetic structures of bacterial communities 85 

inferred from 16S rRNA and tpm DNA profilings (see section 2.3).  86 

Socio-urbanistic and industrials surveys were performed over three periods (spring, 87 

summer, and fall). Technical objects, traces and human activities over the study site that could 88 

impact the urban microbiomes were recorded. The first series of surveys (n=3) allowed 89 

defining runoff sampling points (n=21) per sub-catchment according to the observed activities 90 

and organizations shown in Table S1. Urbanistic features and objects separating private 91 

properties (gardens and parking lots, buildings) were considered to define the area leading to 92 

the observed runoffs at each sampling point (Table S1, and Fig. 2). Low concrete walls often 93 

separated the private and public areas but sometimes porous delimitations (portal, shrubs, 94 

lawn) were observed (Table S1). Economical and industrial activities at the sampling points 95 

were identified and divided into categories for further analyses (Table S2a, b, c). Twelve 96 

field surveys of the technical objects, traces and human activities completed these socio-97 

industrial profilings of the watershed (Table S2). These surveys were performed over a 98 

surface covering a 50 m diameter per sampling zone. These surveys were performed in the 99 

morning, afternoon and at night, over 30-minute long sessions per point on working days and 100 
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considering peak hours (noon and evening, and n=3 were performed at night). This allowed 101 

the identification of 54 variables representing objects and traces indicative of particular 102 

behaviors that have impacted the selected sampling sites (Table S2).  103 

2.2. Runoff water samplings, and their main physico-chemical and microbiological 104 

features 105 

Three rain events (October 16 2014, March 25 2015, and September 17 2015) were 106 

considered in this study. Meteorological parameters for these events are shown in Fig. S1. 107 

These rain events came from different geographical locations. The Canoe urban hydrology 108 

computational platform (Chocat, 2013) was used to estimate runoff flow values and volumes 109 

per sub-catchment during these events (Fig. S1). Runoff waters were collected just before the 110 

grate inlet of each sampling site except for the outlet of the separated rain stormwater 111 

drainage system (sampling point C23). Waters at the outlet were recovered from the inlet of 112 

the detention basin. One liter was collected per sampling point using a single-use manual 113 

pump. Electrical conductivity, turbidity, pH, oxygen, and temperature were measured on site 114 

using a multi-parametric probe (Horiba, Piscataway, USA) (Table S3). Samples were kept at 115 

4°C until performing the microbiological analyses described below. Numbers of total 116 

heterotrophic bacteria were estimated by plating serial dilutions of the runoff waters onto 1/10 117 

diluted TSB amended with 1.5 % agar. Numbers of intestinal Enterococci and Escherichia 118 

coli were estimated using the IDEXX most probable number methods named Colilert and 119 

Enterolert (IDEXX, Westbrook, USA).  120 

Microbial DNA extracts were produced from filtered water samples through 0.2 μm pore 121 

size polycarbonate filters (Merckmillipore, Burlington, USA) by using the FastDNA SPIN® 122 

Kit for Soil (MP Biomedicals, Carlsbad, France). Depending on the amount of suspended 123 

matters, between 23 and 100 mL of runoff waters could be filtered. DNA concentrations were 124 

measured using a Nanodrop ND1000 (Thermofisher, Waltham, USA). Triplicated qPCR 125 
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assays were applied on these DNA extracts using a Bio-Rad CFX96 qPCR device. These 126 

assays used the Brilliant II SYBR Green low ROX qPCR mix (Agilent, Vénissieux, France). 127 

The CFX Manager 3.0 software (Bio-Rad, Marnes-la-Coquette, France) was used to estimate 128 

the numbers of copies of targeted genes per ng DNA (or equivalent runoff volume). The 129 

human-specific HF183 Bacteroides qPCR assay was performed according to Seurinck et al. 130 

(2005), and the assay for the 16S rRNA gene copies of Bacteria was performed according to 131 

Park and Crowley (2006) using primers 338F and 518R. Melting T° was 60°C for all assays. 132 

Linearized plasmid DNA containing 16S rRNA genes from the targeted DNAs were run as 133 

standards using 10-fold dilutions of the plasmids. These plasmids were obtained from Marti et 134 

al. (2017). Class 1 integrons (int1) were quantified using primers targeting the integrase gene. 135 

Presence of inhibitors in the DNA extracts was checked according to Marti et al. (2017). 136 

When inhibition was detected, extracts were diluted 10 to 100 times using sterile ultra-pure 137 

water until a positive PCR product could be obtained.  138 

2.3. Meta-barcoding analyses of V5-V7 16S rRNA and tpm gene PCR products  139 

2.3.1. PCR products and their MiSeq Illumina sequencing 140 

The V5-V7 16S rRNA gene PCR products were generated using DNA primers 799F 141 

(barcode + ACCMGGATTAGATACCCKG) and 1193R (CRTCCMCACCTTCCTC) 142 

reported by Beckers et al. (2016). PCR amplifications were performed using the HotStarTaq 143 

Plus Master Mix Kit (Qiagen, USA) using the following temperature cycles: 94 °C for 3 min, 144 

followed by 28 cycles of 94 °C for 30 s, 53 °C for 40 s, and 72 °C for 1 min, with a final 145 

elongation step at 72 °C for 5 min. PCR products and blank control samples were verified 146 

using a 2% agarose gel and the electrophoretic procedures described in Colin et al. (2020). 147 

PCR products obtained from field samples showed sizes around 430 bp but blanks did not 148 

show detectable and quantifiable PCR products. Dual-index adapters were ligated to the PCR 149 

fragments using the TruSeq® DNA Library Prep Kit which also involved quality controls of 150 
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the ligation step (Illumina, Paris, France). Illumina V3 Miseq DNA sequencings were 151 

performed by MrDNA services (Shallowater, Texas, USA). DNA sequences were paired-end, 152 

and set up to obtain around 40K reads per sample.  153 

The tpm DNA libraries were also sequenced by the Illumina MiSeq V3 technology but by 154 

the Biofidal DNA sequencing services (Vaulx-en-Velin, France). PCR products were 155 

generated using the following mix of degenerated PCR primers as reported in Aigle et al. 156 

(2021): ILMN-PTCF2 (5’- P5 adapter tag + universal primer + 157 

GTGCCGYTRTGYGGCAAGA-‘3), ILMN-PTCF2m (5’- P5 adapter tag + universal primer 158 

+ GTGCCCYTRTGYGGCAAGT-‘3), ILMN-PTCR2 (5’- P7 adapter tag + universal primer 159 

+ ATCAKYGCGGCGCGGTCRTA-‘3), and ILMN-PTCR2m (5’- P7 adapter tag + universal 160 

primer + ATGAGBGCTGCCCTGTCRTA-‘3). The universal primer was 5’-161 

AGATGTGTATAAGAGACAG-‘3. The P5 adapter tag was 5’-TCGTCGGCAGCGTC-‘3. 162 

The P7 adapter tag was: 5’- GTCTCGTGGGCTCGG-‘3. PCR reactions were performed and 163 

verified as described in Aigle et al. (2021). PCR products obtained from field samples showed 164 

sizes around 320 bp but blanks did not show detectable PCR products. Still, tpm harboring 165 

bacteria being in low number among a bacterial community (about 2-3%), blank samples 166 

were run during the Miseq DNA sequencing of the PCR products. Illumina Miseq DNA 167 

sequencings of the tpm PCR products were paired-end, and set up to obtain around 40K reads 168 

per sample. Blank samples generated low numbers of tpm reads that were retrieved from the 169 

dataset by the decontam procedure. The 16S rRNA and tpm gene sequences reported in this 170 

work are available at the European Nucleotide Archive (https://www.ebi.ac.uk/ena) under the 171 

accession #PRJEB33507.  172 

2.3.2. Processing of meta-barcoding V5-V7 16S rRNA and tpm gene DNA sequences, and 173 

computation of diversity indices and taxonomic allocations 174 
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In order to select the bioinformatic processing packages for the construction of the 16S 175 

rRNA gene and tpm contingency tables, raw reads were treated by both the Mothur (Schloss 176 

et al., 2009) and dada2 packages (Callahan et al., 2016). Regarding dada2 manipulations, 177 

linker, barcode and primers were removed from the DNA reads by using the Trimgalore 178 

v0.6.5 software (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The 179 

Standard Operating Procedure (SOP) for merged reads was used for the processing of the 16S 180 

rRNA raw reads (https://benjjneb.github.io/dada2/bigdata_1_2.html) while the SOP for the 181 

paired-end reads was used for the tpm raw reads 182 

(https://benjjneb.github.io/dada2/bigdata_paired.html). Regarding Mothur, sequences were 183 

treated according to the pipeline defined by Kozich et al. (2013). In both cases, raw sequences 184 

were discarded when they were: (1) shorter than 350 bp and longer than 400 bp for V5-V7 185 

16S rRNA gene, and than 250 bp and 270 bp for tpm; (2) had few identities with reference 186 

sequences of the database, (3) contained homopolymers longer than 8 bp, (4) contained 187 

ambiguous bases. Chimeric DNA sequences were detected and discarded using the 188 

chimera.uchime command (Edgar et al., 2011). For Mothur, the number of sequences was 189 

normalized between samples by performing a random resampling at n = 10783 for the V5-V7 190 

16S rRNA gene reads and n = 8072 for the tpm reads. Operational Taxonomic Units (OTUs) 191 

were defined at 97 % identity for the V5-V7 16S rRNA gene reads or 100 % (exact sequence 192 

variants) identity for tpm reads. Contaminant OTUs which may come from the extraction kit, 193 

or the 0.2 μm pore size polycarbonate filters were detected using the Decontam v1.8.0 194 

package (Davis et al., 2018). The Decontam package was used on the OTU tables using the 195 

DNA concentration method for the 16S rRNA gene datasets (Table S4). The tpm OTU 196 

contaminants of the blank samples were identified by Decontam (Table S5). The R Decontam 197 

package detected only 370 16S rRNA contaminant gene reads (representing 0.059 % of the 198 

total reads) distributed into 50 OTUs among the dataset (Table S5). These low numbers of 199 
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contaminant reads did not have any effect on the statistical analyses. The validated OTU 200 

contingency tables are given in Tables S6 and S7. Diversity indices were computed from 201 

OTU and ASV (amplicon sequence variants), and by grouping the OTU (Table S8) and ASV 202 

(Table S9) per genus. High goodness of fit (R2) and significant correlations were observed by 203 

Spearman correlation tests using both types (OTU against ASV) of contingency tables (Fig. 204 

S2). Dada2 16S rRNA gene ASV diversity indices were significantly higher than those 205 

computed from the Mothur OTU dataset (Wilcoxon-test: p-value < 0.001). For the tpm 206 

datasets, diversity indices were similar between the ASV/OTU datasets (Wilcoxon test, p-207 

value > 0.05). Spearman correlation tests confirmed the high positive correlations between 208 

both datasets (Fig. S2). OTUs being found in higher numbers in both the 16S rRNA gene and 209 

tpm datasets, the following analyses were limited to the OTU contingency Tables. OTUs 210 

taxonomic allocations were performed by comparison with the Silva database (16S rRNA 211 

genes) or the “BD_TPM_Mar18_v1.unique_770seq” database (Aigle et al., 2021) and using 212 

the “Wang” text-based Bayesian classifier (Wang et al., 2007). Only classifications resolved 213 

with a bootstrap above 80% were considered. Some functional inferences were made from the 214 

taxonomic allocations using the Faprotax software version 1.2.1 (Louca et al., 2016).  215 

2.4. Statistical analyses 216 

Alpha diversity indices (Shannon, Simpson and Evenness) were computed using the Vegan 217 

package v2.5-6 for Rv3.5.3 as well as Hellinger transformation. Spearman correlations were 218 

computed using the R package Hmisc v4.4.0 and the correlation networks were computed 219 

using the Igraph package v1.2.6. The adjusted Wallace coefficient analyses were performed at 220 

the UMMI web site of Lisboa University (http://www.comparingpartitions.info/). Chord 221 

diagrams showing the relative abundance of 16S rRNA or tpm – based taxonomic allocations 222 

were made using the “circlize” v0.4.6 package for R. Repartition biases were investigated 223 

using the DESeq2 package v1.28.1 for R (Love et al., 2014). Co-occurrence networks and 224 
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keystone taxa were resolved using the fast greedy modularity optimization method of the 225 

Molecular Ecological Network Analyzes Pipeline (MENAp) and the Cytoscape software 226 

v3.8.0 (Deng et al., 2012). Simple linear regressions were computed using the R package 227 

ggpubr v0.4.0 and illustrated with ggplot2 v3.3.2. Confrontation between microbial datasets 228 

and the explanatory variables were also computed using a multilinear regression model 229 

described in Fig. S8a.  230 

3. Results 231 

3.1. Similarities in land-use and human behaviors between sub-catchments 232 

Socio-urbanistic indicators were recorded over the Mi-plaine Chassieu catchment, and 233 

were used to compare urban typologies and activities between sub-catchments (Table S2b; 234 

Table S2c). Overall, 559 industries were recorded over the Chassieu Mi-plaine catchment 235 

(Fig. 1). Most significant activities concerned retailing of specialized industrial materials (n = 236 

63 companies), construction (n = 53), and metal transformation (n = 33) (e. g. Fig. 2). Hotels 237 

offering up to 170 rooms, and restaurants welcoming up to 300 customers during service 238 

hours, were found in this area. 139 companies distributed into 44 commercial sectors 239 

impacted this catchment, and were involved in wholesale trading (n = 15), specialized 240 

construction works (n = 10), financial services (n = 10), metal product manufacturing (n = 8), 241 

rental and leasing (n = 7) and real estate (n = 5) (Table S2).  242 

The “land use” dataset was converted into a frequency table (Table S2c). Spearman 243 

correlations were computed from this dataset to analyze co-occurrence patterns (Fig. 3). This 244 

led to the observation of recurrent significant associations such as those of (i) the chemical 245 

and plastic industries, (ii) the entertainment – related ones, and (iii) the building and metal-246 

work industries. Similarities between these partitions per sampling point were tested by 247 

computing adjusted Wallace indices. These indices of relatedness between sites are indicated 248 

in Fig. 1, and led to the identification of two large groups termed I (C01, C02, C05, C06, C09, 249 
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C13, C14, C17) and II (C22, C07, C19, C21, C15, C16), but five sub-watersheds showed 250 

specific urbanistic organizations as observed in Table S2c. Group I sampling points showed 251 

more industries involved in specialized construction works; these points were mainly found 252 

among quiet streets and dead ends. Group II sampling points were found distributed along a 253 

large avenue showing several rental and leasing services.  254 

In order to go deeper in the understanding of variables impacting the urban surface 255 

microbiomes, technical objects and social behaviors over the catchment were investigated, 256 

and led to a dataset of 26 descriptors (Table S2b). Number of employees (total = 3421) and 257 

overall frequentations per sub-catchment were compared. Most significant movements over 258 

the catchment were associated with gasoline engines with a total number of 3880 events 259 

involving these engines per day (n=3 surveys; total = 11640 events) (Table S2b). Soft 260 

traveling modes such as walking (n = 308 events per day survey period) and cycling (n = 36 261 

events per day survey period) were also frequent. Other technical objects mobilized at 262 

daytime and behaviors were observed such as high uses of portals (n=106 mobilizations per 263 

day survey period), construction engines (n=63), lorry for horses (n=46), bus shelters (n=27) 264 

or cigarettes (n=18). Wastes were also frequently detected, and concerned feces (12 265 

observations per day survey period), food-derivatives (n=9) or hygienic products (n=5) 266 

(Table S2b). Chemical spills were observed including petrol and oil stains (n=58), clear fluid 267 

spills (n=6) or white spills (n=3). Spearman correlations were computed from these traces to 268 

highlight relationships between all socio-urbanistic parameters including the economic and 269 

industrial activities (Fig. 3). Interestingly, sampling points on streets with the highest numbers 270 

of gasoline engines (“trucks, “cars”, “2 wheels”, “commercial vehicles” and “bus”) were 271 

correlated with restaurants and rental activities of group II (Spearman correlation tests; 272 

p<0.05) (Fig. 3). Areas with the highest numbers of pedestrians and employees were 273 
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associated with higher numbers of wastes. Furthermore, quiet streets and dead ends showed 274 

more fecal matters, and night activities such as prostitution (Wilcoxon test: p-value <0.05).  275 

To avoid collinearity effects while performing statistical analyses between the socio-276 

urbanistic and microbiological datasets, the following variables were selected (Fig. 3): (a1) 277 

number of cars; also representing numbers of buses, commercial vehicles, motorized two 278 

wheels and trucks, (b1) number of employees; also representing counts of cigarettes, 279 

pedestrians and domestic wastes, (c1) number of freight lifts; also representing counts of 280 

construction materials, liquid spills and bus shelters (Fig. 3). Analysis of these social traces 281 

led to the identification of two sectors with high gasoline engines circulation (North-West and 282 

South-East) (Fig. 1 and 2) which were termed “group III”, and were composed of sampling 283 

points C02, C03, C05, C06, C07, C08, C15, C16, C17, C19 and C22. These sectors were 284 

associated with significantly higher numbers of trucks, cars, two-wheels, commercial 285 

vehicles, non-motorized scooters, and buses, but also cigarettes, food and other wastes, 286 

employees and pedestrians, and restaurants (Wilcoxon test: p-value <0.05). Dead end (C01, 287 

C14, C18 (no industrial or commercial activities)) and quiet streets (C09, C10, C11, C13, C20 288 

or C21) were defined as group IV (Fig. 1 and 2) and were characterized by significantly 289 

higher numbers of hygienic wastes, prostitution and fecal matters (Wilcoxon test: p-value 290 

<0.05).  291 

3.2. Variations in runoff volumes, physico-chemical monitoring and classical bacterial 292 

indicators between sub-catchments 293 

Geographical origin of the clouds and rain events which led to the three runoff sampling 294 

campaigns investigated in this study are indicated in Fig. S1. Runoff waters were subjected to 295 

physico-chemical monitorings (Table S3). A PCA of these datasets was performed (Fig. S3). 296 

pH values of the runoff waters of campaign 2 were higher, and their turbidity was lower, in 297 

most instances. Campaign 2 had the largest differences between the measured min-max values 298 
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for pH (pH 6.3 – 9.1). Lowest value was obtained from runoff waters recovered at site C14, 299 

and appeared related to an industrial chemical spill. This pH shift was associated with a drop 300 

in turbidity (lowest value recorded in this study) but an increase in conductivity (highest value 301 

recorded), explaining the peculiar PCA ordination of this sampling point (Fig. S3). A negative 302 

correlation between pH and the presence of chemical industries was observed (C14, C2) 303 

(Spearman correlation tests; p<0.05). High pH values were correlated to rental and leasing 304 

activities such as those of group II sampling points (Fig. 3) (Spearman correlation tests; 305 

p<0.05) (Fig. S4). High conductivity values were correlated to food catering activities 306 

(Spearman correlation tests; p<0.05) (Fig. S4), which were positively correlated to the 307 

number of food wastes on the streets (Fig. 3). Conductivity and turbidity values were 308 

positively correlated with the numbers of cars, trucks, commercial vehicles and pedestrians 309 

observed on the catchment (Fig. S5). Samples from campaign 2 had the lowest temperatures, 310 

with an average of 8.5ºC, while the runoffs had temperatures between 16-18ºC for samples of 311 

the other campaigns (Table S3). Runoff flow values and total volumes were similar between 312 

sampling campaigns 1 and 3 but campaign 2 had lower values (Table S3).  313 

Concerning the bacterial indicators, runoffs from the watershed showed high level of 314 

heterotrophic bacterial plate counts ranging from 4.0 x 105 to 1.8 x 108 CFU (colony forming 315 

units) per 100 mL (Table S3). These plate counts were positively correlated with sub-group 316 

b1 variables (employees, cigarettes, pedestrians, wastes, Fig. 3), and merchandise storage 317 

(Fig. S6; Spearman correlation tests; p<0.05). E. coli and intestinal enterococci numbers were 318 

high all over the catchment (Fig. 1; Table S3), and found to be correlated (Spearman 319 

correlation test; p<0.05). Intestinal enterococci cell numbers were negatively correlated with 320 

group b1 variables but also merchandise storage and non-motorized scooters (Fig. S6, 321 

Spearman correlation tests; p<0.05). E. coli and intestinal enterococci numbers were highest 322 

among sites of group IV (dead ends, hygienic wastes, and fecal matters) (Wilcoxon test; 323 
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p<0.05), and were associated with a higher occurrence of HF183 DNA marker confirming 324 

significant human fecal contaminations at these sites (Spearman correlation test; p<0.05) (Fig. 325 

1, Table S3). Twenty-two samples over the three sampling campaigns were found positive to 326 

HF183 by qPCR (Table S3). Relative ratios of HF183 marker (of human fecal contamination) 327 

over numbers of total bacterial 16S rRNA gene targets ranged from 3.1 x 10-6 to 3.7 x 10-3 (at 328 

sampling point C23 which is the outlet of the watershed). The relative numbers of HF183 329 

DNA targets were positively correlated with the mobilization of portals. This technical object 330 

was mainly used among quiet places or secondary roads of group IV sites (Spearman 331 

correlation tests; p<0.05). Presence of integron 1 (int1) was detected among 24 runoff 332 

samples (Fig. 1). Relative int1 counts over total 16S rRNA gene copies ranged from 6.2 x 10-7 
333 

to 3.5 x 10-3 (at sampling point C23). Integron 1 was mainly detected among group III sites 334 

associated with high counts of gasoline engines (Wilcoxon test; p<0.05).  335 

3.3. Core K- and opportunistic r-strategists observed over urban surfaces (using runoff 336 

waters) through 16S rRNA gene meta-barcoding analyses  337 

- general features 338 

Removal of chimeric sequences, short reads and a random resampling based on the lowest 339 

number of V5-V7 16S rRNA gene reads (n=10783) recovered for a runoff water sample were 340 

performed. This led to a dataset of 4 048 699 16S rRNA gene reads. These reads were divided 341 

into 9155 OTUs. Rarefaction curves showed a plateau phase in the relation between the 342 

number of reads analyzed and the number of OTUs observed per sample (Fig. S7a). Most 343 

samples had between 700 to 1000 OTUs (Table S8). Shannon, Simpson and Evenness indices 344 

showed the samples from the 1st campaign to have a significantly higher diversity than those 345 

of the 2nd and 3rd campaigns (Wilcoxon test; p < 0.05), and their content in 16S rRNA gene 346 

copies per 100 mL were slightly lower (Table S3). These indices showed that samples from 347 

group I (construction industries) (Fig. 1) had significantly more diversity than those of group 348 
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II (large avenue) (Wilcoxon test; p < 0.05) but not of groups III (high motor engines) and IV 349 

(quiet streets). NMDS analysis confirmed the significant relationships between the socio-350 

urbanistic groupings (defined in section 3.1) and the 16S rRNA gene meta-barcoding 351 

profilings. All four socio-urbanistic groups defined above were associated with significantly 352 

different profiles as computed from Adonis analyses using the Bray-Curtis dissimilarities 353 

between samples (Fig. 4).  354 

- standard partition analyses 355 

Runoff OTUs were affiliated to bacterial taxa using the Silva database in order to identify 356 

the core K- and versatile r-like bacterial taxa thriving in the investigated urban system. Thirty-357 

five phyla were inferred from the dataset (for more than 99% of the reads; Table S10). 358 

Sample C14_2 (impacted by a chemical spill) harbored the smallest number of phyla (n=11). 359 

Sample C16_1 (group III, Figs. 1 & 4) showed the greatest number of phyla (n= 24). Nine 360 

core phyla were found over the industrial catchment: Proteobacteria, Actinobacteria, 361 

Bacteroidetes, Gemmatimonadetes, Planctomycetes, Acidobacteria, Firmicutes, 362 

Saccharibacteria and Armatimonadetes. Reads allocated to the Proteobacteria, 363 

Actinobacteria and Bacteroidetes represented in average 93.6 % of the dataset and varied 364 

respectively from 39 % to 81 %, 0.70 % to 54 % and 2% to 49 % per campaign (Table S10). 365 

Proteobacteria was the dominant phylum (showing an equivalent of 2 x 109 to 2 x 105 16S 366 

rRNA gene copies per 100 mL; median value = 2,4 x 108) in all samples except C07_3 and 367 

C08_3 which were dominated by Actinobacteria. It is to be noted that C07 and C08 are part 368 

of the group III sites (Figs. 1 & 4) associated with high traffic of gasoline engines. In average, 369 

Actinobacteria were the second most dominant group over the catchment with 19.75 % of 370 

relative abundance followed by the Bacteroidetes (15.48 %). However, Bacteroidetes were 371 

more abundant than the Actinobacteria in 29 samples over 60 (Table S10). This dataset was 372 

characterized by a very low number of Firmicutes with scores ranging from 0.02 to 3.5% per 373 



16 

 

sample representing an equivalent of about 4 x 103 to 2.5 x 107 16S rRNA gene copies per 374 

100 mL (median=1 x 106). Sample C14_2 (showing a toxic chemical spill) was again 375 

characterized by unusual values with a very low relative number of reads allocated to the 376 

Actinobacteria (0.7 %; highly sensitive to the chemical spill) but very high (more than 81%; 377 

representing an equivalent of about 108 16S rRNA gene copies per 100 mL) for reads 378 

allocated to Proteobacteria (likely more resistant to the chemical spill). Similar trends were 379 

observed for sample C14_3 but this sample also showed the highest score for 380 

Saccharibacteria (5.40 %) of the TM7 phylum which are related to obligate epibiont of 381 

Actinomyces spp. (He et al., 2015).  382 

Deeper analysis of these phyla showed a differentiation into 717 genera (Table S11). 383 

Twenty-eight of these genera including the Pseudomonas (representing an equivalent of about 384 

3 x 103 to 3.8 x 107 16S rRNA gene copies per 100 mL; median=7 x 105) were conserved 385 

among all samples, representing almost 90 % of the total 16S rRNA gene reads, and were thus 386 

considered to be related to K-strategists. Fig. 5 shows the genera with a relative abundance 387 

over 0.5 % over the dataset, and highlights those which were classified as core bacterial taxa 388 

(in all samples) likely grouping K-strategists. The C14 sampling site was confirmed to be 389 

peculiar with high numbers of reads allocated to Novosphingobium (α-proteobacteria) (Table 390 

S6; Table S11). C14 also showed high numbers of DNA reads allocated to the 391 

Sulfurospirillum (ε-proteobacteria) (5.61 %) and Paludibacter (Bacteroidetes) (11.6 %). 392 

These latter enriched genera were considered r-like opportunistic strategists.  393 

Distribution biases of the above genera against the behavioral (groups III or IV; Fig. 2) and 394 

industrial/commercial activities (groups I to II; Fig. 1) were investigated by DESeq2 (Table 395 

S12). Reads from Novosphingobium were found in significantly higher proportions in the 396 

runoff water samples from group I (construction industries) and IV (quiet areas) (DESeq2; 397 

p<0.05). Reads from Actinobacteria such as Geodermatophilus, Marmoricola, and Dietzia, 398 
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and from Methylobacterium (α-proteobacteria) were found in higher proportions in samples 399 

from group II (large avenues) (DESeq2; p<0.05). Reads affiliated to Bdellovibrio were found 400 

in significantly higher proportions in the samples from group I (DESeq2; p<0.05), and those 401 

from Roseomonas and Arthrobacter in group III (DESeq2; p<0.05). Reads allocated to 402 

Pseudomonas and Gemmatimonas were in higher proportion among group IV samples 403 

(DESeq2; p<0.05). These strong relationships with particular socio-urbanistic patterns are 404 

indicative of the occurrences of K-like strategists over the catchment. 405 

The sources of the above taxa were explored by comparing their relatedness with taxa in 406 

higher numbers (i) among old urban sediments (Acidibacter, Haliangium) that had 407 

accumulated metallic trace elements and naphthalene, or (ii) among recent urban sediments of 408 

a detention basin which had high chrysene contents (Aquabacterium, Paludibacter) according 409 

to Marti et al. (2017). 16S rRNA gene reads allocated to taxa known to be enriched in old 410 

urban sediments were in very low relative abundances among the sampled runoff waters 411 

(Table S11). However, reads affiliated to taxa in higher numbers in recent sediments/deposits 412 

found in a detention basin (Peredibacter, Aquabacterium, Paludibacter and Cloacibacterium) 413 

were recorded among the sampled runoffs, with relative abundances going from 0.20 to 3.4 % 414 

(Table S11). These taxa did not show distribution biases matching the socio-urbanistic 415 

parameters of the sub-catchments, and were likely to contain K-strategists.  416 

- correlation network analyses  417 

Co-occurrence patterns between numbers of 16S rRNA gene reads and their allocation to 418 

bacterial genera were further explored through multiple Spearman correlation tests (Fig. 6a), 419 

and were considered indicative of the occurrence of K-strategists. Statistics of the most 420 

significant networks are presented in Table S14, and the modules are shown in Fig. 6a. The 421 

largest module of correlated taxa was made of 17 genera mainly grouping Actinobacteria 422 

involved in hydrocarbon degradation (based on Faprotax and literature searches). Only two 423 
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genera from another phylum were recorded in this module and belonged to the Roseomonas 424 

and Methylobacterium (α-proteobacteria). This module was in line with the above DESeq2 425 

analyses which had previously shown positive relationships between some of these genera 426 

and the group II urban typologies (Fig. 1 and Fig. 3; large avenue with high numbers of 427 

gasoline engines). The second largest module (Mod2) showed correlations between three 428 

Bacteroidetes (Cytophaga, Flavobacterium and Pedobacter) and a connection between 429 

Flavobacterium read numbers and those allocated to Pseudospirillum (hydrocarbon degrader) 430 

of the γ-proteobacteria which were further connected to Perlucidibaca, and Arenimonas 16S 431 

rRNA gene reads distribution patterns (Fig. 6a). These last three genera are known to harbor 432 

bacterial species involved in oil / hydrocarbon degradation processes (Morais et al., 2016). 433 

Module-EigenGene analyses highlighted several significant (p-value < 0.001) Spearman 434 

correlations between the selected explanatory variables and the above modules (Fig. 6a). For 435 

example, module 1 (Mod1) showed positive correlations with sub-group a1 (gasoline engines) 436 

variables represented by car numbers (ratio=0.45), and which contributed to the definition of 437 

group III socio-urbanistic patterns (Fig. 2). Genera from Mod1 showed negative relationships 438 

with hygienic wastes (-0.47) associated with group IV sampling sites located in more quiet 439 

streets (Fig. 2 and Fig. 6a). Mod2 genera were positively correlated to higher uses of 440 

construction engines (0.69) and freight_lift – like variables (0.49) of sub-group c1, and, as 441 

Mod1, were negatively associated with hygienic wastes (-0.46).  442 

Further computations using a multilinear regression model (described in Fig. S8a) were 443 

performed to confirm these relationships between the meta-barcoding, behavioral and 444 

organizational explanatory variables (Fig. S8a). Interestingly, this analysis showed that core 445 

genera likely harboring K-strategists had lower numbers of significant R² correlation values 446 

than those of the flexible r-like bacterial taxa (Wilcoxon-test: p-value < 0.001). Reads from 447 

seven r-like genera including Thauera, Sulfurospirillum, Noviherbaspirillum, hgcl_clade, 448 
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Novosphingobium, Microcella, and Phenylobacterium showed significant correlations with 449 

the physico-chemical variables (R² > 0.1). Number of reads of Sulfurospirillum were 450 

negatively correlated with the pH values (R² = -0.14), and positively correlated with the 451 

conductivity ones (R² = 0.08) (Fig. S8a), confirming an opportunistic development matching 452 

with the occurrence of a chemical spill at C14. Read numbers affiliated to Novosphingobium 453 

also showed a negative relationship with the pH values. Thaurea read numbers were 454 

negatively correlated to temperature and positively with turbidity. Several other significant 455 

relationships were detected but with low R² (Fig. S8c).  456 

3.4. Core K- and opportunistic r-strategists observed over urban surfaces (using runoff 457 

waters) through tpm gene meta-barcoding analyses 458 

- general features  459 

A high quality dataset of 910 048 tpm sequences was generated, re-sampled (n=8087), and 460 

used to infer the effects of urban land use typologies and human behaviors on tpm-harboring 461 

bacterial species. These tpm sequences were divided into 9 641 OTUs (exact sequence 462 

variants) (Tables S7 and S8). Rarefaction curves showed a plateau phase (Fig. S7b). Most 463 

samples had between 150 and 300 tpm OTUs. Diversity indices have been computed and are 464 

shown in Table S8. These diversity indices were compared with those computed from the 16S 465 

rRNA gene meta-barcoding dataset through linear regression analyses. No correlations were 466 

observed for the Shannon, Simpson and Evenness indices. In the same way, no significant 467 

differentiation was observed between diversity indices computed from the three sampling 468 

campaigns and the four socio-urbanistic groups of sampling points defined in section 3.1.  469 

NMDS and RDA analyses of the Bray-Curtis dissimilarities between the tpm gene read 470 

patterns were performed. Adonis analyses did not differentiate the tpm profilings according to 471 

the groups of samples defined from the analyzed urban typologies and activities (groups I to 472 

IV). However, RDA indicated a significant relationship between the ordinations and the 473 
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activities of group III sampling points such as high traffic of gasoline engines. Anova.cca and 474 

ordistep tests confirmed the significance of the computed RDA model and relationships with 475 

traffic (p<0.01). To illustrate, the position of tpm Otu00135 affiliated to Pseudomonas 476 

extremaustralis in the RDA plot showed higher read numbers among the runoff waters of 477 

group III samples. This OTU showed positive relationships with cars (and correlated variables 478 

shown in Fig. 3) and the quantity of food wastes observed over the watershed. Similar 479 

positive relationships on the RDA were recorded for tpm OTU00154 (a non-classified 480 

Pseudomonas species). The goodness of fit test confirmed the significance of these 481 

relationships.  482 

- standard partition analyses 483 

Taxonomic allocations at the genus level allowed a classification of 62 % of the tpm reads 484 

into 20 well-defined genera (Table S15). The genera inferred by the tpm meta-barcoding 485 

approach represented on average an equivalence of 6.28 % (0.35 to 21.53 % per sample) of 486 

the 16S rRNA gene dataset (computed from the shared genera between both datasets). Only 487 

Pseudomonas tpm reads were recorded in all the runoff samples. They represented in average 488 

35.79 % of the total tpm reads (from 0.21 to 75.93 %) (Table S15). Other tpm-harboring 489 

genera were found among at least half of the runoff samples such as Herbaspirillum, 490 

Xanthomonas and Aeromonas representing respectively 11, 5 and 0.8 % of the total tpm reads. 491 

These four genera were considered core tpm-harboring taxa circulating over the investigated 492 

urban catchment likely harboring K-strategists (Table S15).  493 

Relative abundances inferred from the tpm gene dataset showed the Pseudomonas to be 494 

fairly homogenous across the sampling points except for C16_S2 (0.21 %; group III variables 495 

associated with traffic of gasoline engines), C10_S3 (5.41 %; group IV variables associated 496 

with quiet streets) and C09_S1 (75.93 %; group I (construction industries) and IV). 497 

Herbaspirillum was not detected among the 3rd sampling campaign except for C05_S3 and 498 
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C06_S3 but with a very low relative abundance (0.01 and 0.02 %), and a high one for C14_S3 499 

(31.48 %) (Table S15). Interestingly, the pollution observed at C14 was associated with an 500 

enrichment in Herbaspirillum. C16_S2 (96.35 %) also showed an environmental burst in 501 

Herbaspirillum tpm reads (Table S15). Xanthomonas tpm reads also had a heterogeneous 502 

distribution pattern with relative abundances going from 0 to 50% (Table S15). The 3rd 503 

sampling campaign led to high relative abundances of Xanthomonas reads at C01_S3 (48.86 504 

%), C03_S3 (33.81 %) and C07_S3 (20.72 %). Xanthomonas reads were not detected during 505 

the 2nd sampling campaign except at C18_S2 but in low abundance (0.08 %). This approach 506 

also led to the recovery of Stenotrophomonas (0.65 %), Shewanella (0.30 %) and Curvibacter 507 

(0.2 %) tpm DNA reads (Table S15).  508 

At the species level, more than 50 % of the tpm reads could be allocated to 78 well-defined 509 

species (Table S16; Fig. 7). DNA reads from several species were recovered in more than 50 510 

% of the samples such as Herbaspirillum aquaticum, Pseudomonas koreensis, Pseudomonas 511 

rhodesiae, Pseudomonas stutzeri, Pseudomonas anguilliseptica and Pseudomonas aeruginosa 512 

(Fig. 7). These species were considered K-strategists. The most abundant species was 513 

Herbaspirillum aquaticum (Table S16). H. aquaticum tpm reads represented 31.32 % of the 514 

total number of reads obtained from the C14_S3 sample. Pseudomonas koreensis was the 515 

second most abundant species with an average relative abundance of 4.7 %, followed by 516 

Xanthomonas cannabis (3.85 %), Pseudomonas anguilliseptica-like (2 %), and Pseudomonas 517 

aeruginosa (2 %) (Table S16, Fig. 7). Other tpm-harboring species showing more variable 518 

distribution patterns like Aeromonas jadensis, P. putida, P. mendocina, P. pseudoalcaligenes 519 

and P. fluorescens appeared r-like strategists taking benefits for their development of some 520 

specialized C-sources available over the catchment. These latter bacteria could, in fact, be 521 

associated to hydrocarbon degradation as inferred from Faprotax analyses. It is to be noted 522 

that some of the above r/K-like taxa detected by the tpm meta-barcoding approach were found 523 
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to be well-known human, animal and plant pathogens e. g. A. hydrophila, P. mendocina, A. 524 

caviae, P. aeruginosa, P. syringae, Stenotrophomonas maltophilia, Xanthomonas axonopodis, 525 

and X. cannabis. The latter species was the most common tpm-harboring phytopathogen 526 

recorded in the samples, and was previously described to infect more than 350 plant species 527 

including Cannabis sativa (Netsu et al., 2014).  528 

The tpm reads allocated to P. aeruginosa human pathogens were recurrent in the runoff 529 

tpm dataset. They were recorded in high numbers at C21_S2 (19.25 %; group IV), C07_S1 530 

(10.36 %; group III), C22_S1 (10.06 %; group III) and C19_S3 (9.90 %; group III) (Table 531 

S16). Conversion of these latter relative abundances into Pseudomonas 16S rRNA gene 532 

copies according to Table S3 indicated an equivalence of about 104 P. aeruginosa 16S rRNA 533 

gene numbers per 100 mL in these samples. These P. aeruginosa tpm reads were further 534 

allocated to sub-lineages, and mapped over the urban watershed (Fig. S9). These reads (n = 535 

5594) were divided into 72 OTUs, and 26 were allocated to the sub-clade PAO1 (n = 2273 536 

reads), and 20 to the sub-clade PA14 (n = 214 reads). The P. aeruginosa tpm sequence types 537 

were allocated to strain characterized by Multi Locus Sequence Typing (https://pubmlst.org/) 538 

(Table S17a) using the correspondence table reported by Colin et al. (2020). The tpm 539 

OTU00592 (n = 181 reads) was found to match ST252 isolates from non-CF (cystic fibrosis) 540 

infections; the one of OTU00987 (n = 85 reads) matched ST2123/ST226 strains respectively 541 

isolated from CF patients and clinical environments; and OTU00072 (n = 1802 reads) 542 

matched ST175/ST2042 found in urinary tract and blood infections. This significant 543 

occurrence of P. aeruginosa tpm reads over the catchment led us to isolate the matching 544 

bacterial strains during the third sampling campaign. More than 200 hundred isolates were 545 

collected, and their tpm sequences were sequenced after PCR amplification (Table S17b). 546 

Most of the P. aeruginosa urban isolates harbored the tpmG type 12_15_17_18_35 which was 547 

found to be the most abundant among the tpm metabarcoding dataset. However, strains from 548 
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some other dominant meta-barcoding tpm sequence types were found more difficult to isolate. 549 

Only 7 strains harboring the tpmG type 08_24 (matching Otu00056 which showed 2256 550 

sequences) were obtained, and 2 showing the tpmG type 1 sequence (matching OTU021 551 

which showed 1878 sequences). It is to be noted that OTU numbers were attributed by using a 552 

larger tpm meta-barcoding dataset than the one reported in this study, and this explains the 553 

lack of match between OTU code numbers and number of reads per OTU among the dataset 554 

presented here. Interestingly, some strains harbored tpmG types not detected by 555 

metabarcoding such as tpmG3, tpmG4, tpmG16-26, tpmG30 and tpmG34 (Table S17). The 556 

tpm reads allocated to P. syringae could also be further allocated at the level of pathovars 557 

such as P. s. pathovar aceris (3875 reads distributed into 84 OTUs), P. s. panici (4 OTUs, 203 558 

reads), P. s. japonica (3 OTUs, 167 reads), P. s. aptata (1 OTUs, 46 reads), P. s. maculicola 559 

(1 OTUs, 26 reads) and P. s. pisi (1 OTUs, 7 reads). DESeq2 computations were performed to 560 

evaluate changes in the tpm OTU patterns according to the urban typologies and activities. 561 

Otu00056 affiliated to P. aeruginosa (subclade PA14-like) showed significantly more reads 562 

among group I (large avenue) than group II, and among group III (high gasoline engines) than 563 

IV. Otu00072 (subclade PAO1-like) reads were more abundant among samples from group 564 

IV (those from dead ends) (Table S18).  565 

The sources of tpm bacterial taxa among runoffs were explored by DNA sequence 566 

comparisons with previously reported sequence types recovered from urban deposits and 567 

sediments accumulating at C23 (which is the detention basin of the experimental site 568 

collecting the runoff waters) (Aigle et al., 2021). 17 OTUs from the runoff water datasets 569 

matched at 100 % identity with tpm sequences from sediments. Runoff tpm of Otu00013 570 

(unclassified Proteobacteria, n=5891 reads), Otu00027 (Gp_DE, n=3791 reads) matched 571 

respectively with ASV_17, ASV_32 found in old deposits containing high concentrations of 572 

poorly degradable pollutants including metallic trace elements (Cd, Cr and Ni) and 573 
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naphthalene (Table S19). 14 additional tpm runoff OTUs matched with sequences reported 574 

among recently mobilized urban deposits and containing high chrysene concentrations. To 575 

illustrate, Otu00002 (Pseudomonadaceae, n=11433 reads), Otu00016 (unclassified 576 

Gammaproteobacteria, n=5291), Otu00026 (unclassified Gammaproteobacteria, n=4410), 577 

and Otu00028 (Proteobacteria, n=4388) sequences from runoff water matched Otu013, 578 

ASV_38, ASV_51 and ASV_35 of Aigle et al. (2021) (Table S19). Otu00036 affiliated to P. 579 

syringae pathovar aceris showed higher number of reads among old sediments containing 580 

high concentrations of naphthalene, cadmium, chrome and nickel (Aigle et al., 2021).  581 

- correlation network analyses  582 

Co-occurrence networks computed by the MENA approach led to the identification of K-583 

like bacterial modules (termed Mod-tpm) supported by Spearman Rho factors > 0.7 (Table 584 

S21; Fig. 6b). Mod1-tpm showed significant (p-value < 0.001) positive correlations with the 585 

relative quantities of faeces (0.42) and hygienic wastes (0.42) differentiating social behaviors 586 

associated with group IV (Fig. 1). Mod2-tpm species were negatively correlated with faeces (-587 

0.50), and Mod3-tpm species showed positive relationships with merchandise storage 588 

activities (0.51) (Fig. 6b). The freight lift activities representing the c1 variables (Fig. 3) were 589 

negatively related to Mod4-tpm (-0.90). Multiple linear regression analyses (performed as 590 

described in Fig. S8a) were run to find r-like distribution patterns in the tpm dataset (Fig. 591 

S10). Numbers of tpm reads allocated to several species were found correlated to physico-592 

chemical parameters: (i) those of Xanthomonas hortorum and Pseudomonas amygdali were 593 

negatively correlated to conductivity values (R² = -0.023 and -0.05), and (ii) those of 594 

Pseudomonas sp. Gp_BS were positively correlated to turbidity (R² = 0.05).  595 

4. Discussion 596 

Urban surface microbial communities are expected to be made of (i) opportunistic 597 

colonizers (also termed r-strategists) coming from exogenous sources, and transiently taking 598 
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benefit of the nutrients available in these systems, and (ii) of core taxa (termed K-strategists) 599 

adapted to the living conditions prevailing among the colonized catchment including high 600 

variations in temperature, water content, and chemical pollutants. The ecology of these core 601 

and opportunistic taxa among urban biomes remain to be defined in order to avoid growth of 602 

undesirable species and hazards such as human exposure to pathogens. Furthermore, the 603 

spread and impact of synurbic bacterial taxa over the earth need to be evaluated. The 604 

Anthropocene era might be gradually leading to a major invasion of the earth’s ecological 605 

systems by these taxa. To evaluate these impacts, the core components of urban microbiomes 606 

need to be defined, and be tracked over other systems.  607 

Field surveys were carried out to identify key socio-urbanistic variables impacting the 608 

investigated catchment and related microbiomes. This led to the identification of sub-609 

catchments (sampling points) with common economical and industrial activities, leading to 610 

similar social behaviors, that could be used as references to infer relationships with particular 611 

bacterial taxa. More than 500 industries, and more than 10 000 observations were considered 612 

to assess the main socio-urbanistic forces impacting the investigated urban catchment. This 613 

catchment was found to be divided into two groups (termed I and II) of industrial / 614 

commercial activities, and two groups (termed III and IV) of social behaviors. Interestingly, 615 

streets with high numbers of gasoline engines (group III sites) were significantly associated 616 

with restaurants while areas with high numbers of pedestrians were associated with higher 617 

numbers of wastes. Furthermore, quiet streets and dead ends showed more traces of fecal 618 

matters, and night activities (group IV). Previous investigations have shown that traffic was a 619 

major contributor of surface sediments and pollutants (Revitt et al., 2014). The above groups 620 

and panels of activities were used to investigate relationships with FIB, MST (microbial 621 

source tracking) DNA markers, and DNA meta-barcoding datasets. All these datasets 622 
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confirmed the informative character of runoff waters to estimate bacterial diversity over sub-623 

catchments, and identify K-bacterial strategists living in an urban catchment.  624 

Relationships between socio-urbanistic features and runoff contents in classical bacterial 625 

indicators 626 

Significant contents in FIB were observed all over the investigated catchment among the 627 

runoff waters. These taxa (E. coli and intestinal Enterococci) were clearly core K-like 628 

bacterial strategists because of recurrent fecal contaminations coming from multiple sources 629 

including man, making available the appropriate C-sources for their survival and growth. 630 

Their high values were in line with those of Paule-Mercado et al. (2016) which showed an 631 

increase in FIB among urban settings, and related these increases to surface 632 

impermeabilization. Group IV sub-catchments (quiet streets) showed the highest FIB numbers 633 

in their runoffs, and were associated with the highest occurrences of HF183 MST DNA 634 

signatures indicative of human fecal matters. Group a1 variables grouping all sorts of gasoline 635 

engines, and variables associated with merchandise storage areas were negatively correlated 636 

to FIB contents of the runoffs. These results are in agreement with a previous study which 637 

showed road pollutants such as PAHs to be negatively correlated to FIB contents (Bernardin-638 

Souibgui et al., 2018). Such pollutants were suggested to reduce their numbers (Ukpaka et a 639 

al., 2014). In fact, only variables indicative of the occurrences of wastes and fecal matters 640 

were found positively associated with high FIB contents in the runoffs. These observed high 641 

contents of FIB in city runoff samples were not surprising, and similar trends had previously 642 

been reported for other urban contexts (Ellis, 2004; Lee et al. 2020; Ahmed et al., 2010; Sauer 643 

et al., 2011; Sidhu et al., 2012; Chong et al., 2013). However, the relationships between FIB, 644 

urbanistic issues, and social behaviors were inferred for the first time.  645 

Integrons of class I, previously shown to have an abundance positively correlated with the 646 

ones of urban pollutants (Wright et al., 2008), were also observed in the collected runoff 647 
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waters. These integrons can harbor resistance genes toward antibiotic, metallic elements and 648 

disinfectants. Class I integron DNA targets were detected in about 40% of the runoff water 649 

samples, and showed a higher occurrence among group III sites associated with high numbers 650 

of motor-engines generating petrol-related pollutants. As expected, the distribution of 651 

integron 1 genetic elements did not match the one of fecal pollutions, and confirmed that 652 

runoff waters DNA imprints can differentiate ecological trends between sub-catchments.  653 

  654 
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K-like bacterial strategists among urban surface microbiomes 655 

- Inferences from 16S rRNA meta-barcoding analyses 656 

As indicated above, E. coli and intestinal enterococci were clearly demonstrated, in this 657 

study, to be part of the K-bacterial taxa colonizing urban surfaces. DNA meta-barcoding 658 

analytical schemes further confirmed the success of such fecal bacterial taxa over the city. In 659 

fact, fecal bacterial DNA reads reported by McLellan and Roguet (2019) and Noyer et al. 660 

(2020) among the 16S rRNA meta-barcoding dataset could be tracked, and their distribution 661 

patterns were in line with the ones of the FIB and HF183 MST marker for human fecal 662 

contaminations. The 16S rRNA gene reads from Bacteriodes, Cloacibacterium, and 663 

Macellibacteroides showed a high prevalence over the catchment, and were found to be part 664 

of the core urban taxa likely harboring K-strategists. However, DNA sequence reads allocated 665 

to fecal Arcobacter and the Ruminococcus showed more variations in their distribution 666 

patterns, and these genera were considered to be part of the r-opportunistic taxa.  667 

Overall, twenty-eight core genera likely harboring K-strategists were found conserved 668 

among the sampling points of the catchment. Most of these genera had previously been 669 

reported among other urban settings such as Blastococcus, Massilia, Flavobacterium, and 670 

Sphingomonas (McLellan et al., 2015; Marti et al., 2017; Leung et al., 2014; Robertson et al., 671 

2013). Nevertheless, a few discrepancies in the bacterial taxa distribution patterns between 672 

those recorded in this work and other reports were observed. In fact, Spirosoma, Alkanindiges, 673 

Rubellimicrobium, and Novosphingonium 16S rRNA gene reads were recorded all over the 674 

investigated catchment but not always in the other urban settings. Conversely, some taxa had 675 

been described as recurrent in other reports among the urban microbiome but here showed 676 

more versatile r-like patterns as observed for Acidibacter, Psychrobacter and 677 

Propionibacterium. This is in line with the hypothesis of a selection of specialized taxa by 678 

certain urban morphotypes as suggested by Saxena et al. (2015). Here, the investigated 679 
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morphotype showed high industrial and economical activities with little green areas and no 680 

residential zones. This morphotype was previously shown to be associated with a high 681 

occurrence of chemical pollutants and related microbial degraders through the analysis of 682 

sediments and deposits transferred into the detention basin located at the extremity of the 683 

catchment (Aigle et al., 2021; Marti et al., 2017). Correlation network analyses confirmed this 684 

conclusion. The largest modules of correlated distribution patterns between genera (mainly 685 

made of Actinobacteria) was associated to hydrocarbon-degraders. The most significant K-686 

like actinobacterial taxa among these modules were Modestobacter, Williamsia, 687 

Marmoricola, and Blastococcus, but also involved three Bacteroidetes (Cytophaga, 688 

Flavobacterium and Pedobacter) and a γ-proteobacteria (Pseudospirillum). This module was 689 

positively correlated with variables of group II (large avenue) and III (high number of 690 

gasoline engines), but was inversely correlated to group IV variables related to hygienic 691 

wastes. It is to be noted that bacterial taxa previously recorded in high numbers among road 692 

sediments/deposits (Peredibacter, Aquabacterium, Paludibacter and Cloacibacterium) by 693 

Marti et al. (2017) were found among the sampled runoffs. The broad distribution pattern of 694 

these taxa confirmed their tropism for city surface habitats.  695 

- Inferences from tpm meta-barcoding analyses 696 

The tpm meta-barcoding marker allowed a deeper characterization of some of the K core 697 

taxa down to the species level. Nine species were highly conserved over the catchment: 698 

Pseudomonas koreensis, Herbaspirillum aquaticum, P. rhodesiae, P. stutzeri, P. syringae, P. 699 

anguilliseptica and P. aeruginosa. Interestingly, three of these species, P. stutzeri, P. 700 

aeruginosa, and P. koreensis, were also part of the most common taxa observed in urban 701 

transit systems (Danko et al., 2021), confirming their synurbic status. Some of these K core 702 

species were previously shown to use hydrocarbons as C-sources such as P. aeruginosa and 703 

P. stutzeri. Moreover, P. koreensis was reported to degrade, among others, hexadecane, 704 
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engine oil, pyrene and phenanthrene (Bučková et al., 2013). H. aquaticum and P. stutzeri are 705 

also known producers of polyhydroxyalkanoates and polyhydroxybutyrate storage molecules 706 

allowing survival under extreme growth conditions (Yan et al., 2008; Langenbach et al., 2006; 707 

Timm and Steinbuchel, 1992) such as those occurring over road surfaces. H. aquaticum tpm 708 

reads were highest among the most polluted sites (those showing a drop in pH values). These 709 

bacteria are known to be plant growth-promoting rhizobacteria (Marques et al., 2015) but had 710 

not been associated with urban pollutants, so far. Correlation network analyses were 711 

performed with the tpm metabarcoding dataset to further evaluate the occurrence of K-like 712 

strategists, and revealed a large module of correlated species associated with hygienic wastes.  713 

r-like bacterial strategists among urban surface microbiomes 714 

Multilinear regression models and DESeq2 analyses highlighted r-like genera. Point source 715 

pollutions revealed by changes in pH values were related to environmental bursts of 716 

Novosphingobium and Sulfurospirillum in the runoff waters of a few sub-catchments. These 717 

bursts were associated with an unusual drop in Actinobacteria (0.7 %). The BASOL database 718 

of the French ministry of the ecological and solidarity transition (https:// 719 

basol.developpement-durable.gouv.fr/) indicated a recurrent pollution by trichloroethylene 720 

and halogenated solvents in this area. Sulfurospirillum was previously found to be enriched by 721 

organohalides, arsenate and selenite, and chlorinated ethenes (Luijten, 2003; Nijenhuis et al., 722 

2005; Buttet et al., 2018). Similarly, Novosphingobium was previously found to be enriched 723 

by phenol, aniline, nitrobenzene and phenanthrene (Liu, 2005; Sohn, 2004; Jiao et al., 2017).  724 

RDA of the tpm meta-barcoding dataset also revealed r-like taxa such as Pseudomonas 725 

extremaustralis. In fact, one OTU of this species showed positive relationships with car 726 

numbers and the quantity of food wastes over the catchment. This species was previously 727 

shown to degrade phenols and alkanes (Tribelli et al., 2012). Other r-like tpm-harboring 728 

species likely taking benefits from the occurrence of hydrocarbon pollutants over the 729 
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catchment were further detected by Faprotax analyses such as Aeromonas jadensis, P. putida, 730 

P. mendocina, P. pseudoalcaligenes and P. fluorescens. Furthermore, three OTUs showed a 731 

distribution pattern indicative of an opportunistic development among old deposits containing 732 

high concentrations of poorly degradable pollutants including metallic trace elements (Cd, Cr 733 

and Ni) and naphthalene, and fourteen among recent deposits/sediments previously shown 734 

enriched in chrysene content (Aigle et al., 2021).  735 

Microbiological hazards associated with urban surface microbiomes 736 

Previous reports suggested an increase in virulence gene loads among K-strategists from 737 

highly selective systems (e. g. Song et al., 2017). Bacterial pathogens were thus searched 738 

among the tpm meta-barcoding dataset, and their distribution biases were analyzed. The 739 

following bacterial pathogens were recorded over the catchment: Aeromonas hydrophila, A. 740 

caviae, Stenotrophomonas maltophilia, P. aeruginosa, P. anguilliseptica, P. mendocina, P. 741 

syringae, P. amygdali, Xanthomonas axonopodis, X. hortorum and X. cannabis. The latter 742 

species, X. cannabis, was the most common tpm-harboring phytopathogen recorded in the 743 

samples, and was previously described to infect more than 350 plant species including 744 

Cannabis sativa (Netsu et al., 2014). However, most of these tpm-harboring bacterial 745 

pathogens appeared to have r-like distribution patterns except P. aeruginosa and P. syringae. 746 

Viable P. aeruginosa cells had previously been recorded among urban sediments of the 747 

detention basin of this catchment at about 105 CFU g dw−1 (Bernardin-Souibgui et al., 2018). 748 

Furthermore, P. aeruginosa was found to have a conserved distribution pattern in these 749 

sediments, whatever their pollution content, through the tpm meta-barcoding approach (Aigle 750 

et al., 2021). This latter species was thus clearly part of the K strategists being able to survive 751 

and grow over the city surfaces. Interestingly, variations in P. aeruginosa cell counts or of 752 

their matching tpm DNA read numbers were not found correlated with the FIB dataset 753 

suggesting distinct habitats over the catchment.  754 
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Urban socio-urbanistic patterns associated with the distribution of the tpm sequence types 755 

of P. aeruginosa and P. syringae were investigated at the sub-species level. This led to the 756 

first observation of P. s. pathovar aceris, P. s. panici, P. s. japonica, P. s. aptata, P. s. 757 

maculicola, and P. s. pisi among urban runoffs. Otu00036 affiliated to P. syringae pathovar 758 

aceris previously showed higher number of reads among old sediments containing high 759 

concentrations in naphthalene, cadmium, chrome and nickel (Aigle et al., 2021). However, 760 

this latter OTU did not show any particular distribution biases over the catchment. Regarding 761 

P. aeruginosa, using the correspondence table reported by Colin et al. (2020), the recorded 762 

tpm sequences could be attributed to PAO1- and PA14-like sub-clades and MLST groups 763 

such as ST252 involved in non-CF (cystic fibrosis) infections, and ST2123/ST226 and 764 

ST175/ST2042 found in lung, urinary tract and blood infections. The PA14 OTU00056 765 

showed a tropism for sampling sites with high numbers of gasoline engines, suggesting a use 766 

of petrol-derivatives as C-sources. The above classifications were validated through the 767 

analysis of P. aeruginosa isolates obtained from runoffs. These analyses confirmed the 768 

occurrence of bacterial pathogens among urban surface K-strategists. However, contribution 769 

of their virulence properties in their establishment among urban surface microbiomes remains 770 

to be demonstrated.  771 

5. Conclusions 772 

Understanding the complexity of urban surface microbiomes requires (i) the identification of 773 

the sources of microbial taxa seeding these systems, and (ii) of the key selective forces 774 

triggering changes in their assemblages, and favoring the emergence of efficient functional 775 

units. Here, socio-urbanistic surveys were undertaken to better define these forces and 776 

sources. The surveyed variables led to significant groupings of urban typologies matching 777 

segregations observed among the microbiological datasets (FIB, MST, DNA meta-barcoding) 778 

generated from runoff samples. This was clearly indicative of well-established K-like 779 
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synurbic bacterial taxa over the catchment. The most significant selective forces explaining 780 

the success of these K taxa were related to urban pollutants. A large module of co-occurring 781 

actinobacterial taxa involved in hydrocarbon degradation was resolved from the 16S rRNA 782 

gene dataset. Among these K-like hydrocarbon degraders, bacterial pathogens were observed 783 

such as P. aeruginosa and P. syringae. These urban surface bacterial assemblages were also 784 

found to be made of opportunistic r-like taxa. In fact, an industrial point source pollution 785 

likely involving trichloroethylene and halogenated solvents was associated with a significant 786 

re-shuffle of the microbiota, and a burst in Novosphingobium and Sulfurospirillum. The high 787 

impact of urban pollutants on these urban microbiomes was also further supported by the 788 

observation of r-like tpm-harboring species known to play part in hydrocarbon degradation 789 

such as P. extremaustralis.  790 

The generated meta-barcoding datasets presented here, and the investigated long – term 791 

experimental site, will be highly useful for studies to come on the evaluation of the ecological 792 

benefits associated with a reduction of gasoline engines over a city. The evolving state of the 793 

genetic structures of a surface urban microbiome is likely to be a very good indicator of the 794 

ecological benefits associated with such changes.   795 
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Figure captions 1019 

Fig. 1. Graphical representations of (A) the Mi-plaine catchment of Chassieu (Suburbs of 1020 

Lyon, France) and (B) of the adjusted Wallace inferences indicating organizational 1021 

proximities between the observed industrial and commercial activities of this catchment. (A) 1022 

Relative importance of shops, restaurants and industries in terms of number of employees was 1023 

indicated by a grey scale (dark values = high numbers). Runoff water sampling sites (C code) 1024 

are numbered and positioned on the map. The outlet of the watershed is located at C23, and 1025 

corresponds to a stormwater infiltration system (SIS). Industrial, commercial, and social 1026 

activities and their traces are listed in Tables S1 and S2. These activities were analyzed over 1027 

an area of 50 m of diameter around each sampling point. In (B), Adjusted Wallace inferences 1028 

allowed to identify two large groups, I (brownish dotted lines) and II (dark green dotted lines) 1029 

of industrial/commercial activities. In (A), groups III (red background – high intensity area) 1030 

and IV (blue background – low intensity area) were defined according to significant 1031 

relationships inferred from the behavioral variables. Representative sites of groups III and IV 1032 

are shown in Fig. 2. Fig. 3 indicates the main socio-urbanistic variables impacting these sites. 1033 

Yellow circles in (A) indicate human fecal contaminations, yellow and green circles indicate a 1034 

human fecal contamination associated with the presence of integron 1, and green circles of 1035 

integron 1. E. coli and intestinal enterococci were recorded among all sub-catchments (Table 1036 

S3).  1037 

Fig. 2. Representative urban typologies for the socio-urbanistic groups III and IV observed 1038 

over the Mi-plaine catchment. Group III was illustrated by sampling point C19, and group IV 1039 

by C18. See Table S1 for a description of the other sampling points. Aerial views show the 1040 

runoff water flow directions which led to a delimitation of the sub-catchment. Economical 1041 

activities, traffic intensity, human behaviors and wastes recorded during the socio-urbanistic 1042 

surveys are also indicated by symbols defined on the figure. Photographs (the yellow arrow 1043 
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indicates the direction of the selected view) illustrate the main typologies observed over the 1044 

selected sub-catchments, and were taken from the sections indicated by dotted yellow 1045 

rectangles on the aerial views. Position of the sampling code numbers (C18 or C19) indicated 1046 

the point of collect of runoff waters. Human fecal contamination is indicated by a small 1047 

yellow circle while the yellow/green circle indicates a human fecal contamination associated 1048 

with integron 1.  1049 

Fig. 3. Spearman correlation tests exploring relationships between the repartition of industries 1050 

and commercial activities, and of general descriptors of human activities, over the Mi-plaine 1051 

urban catchment. Only Rho factors > 0.6 that linked significantly (p<0.05) these variables 1052 

were considered to draw these networks. Green circles represent the surveyed industries; 1053 

orange ones represent general descriptors of human activities. Variables in agreement with the 1054 

definition of Group II (shown in Fig. 1) are circled with a plain line. Socio-urbanistic 1055 

variables with high correlations are shown with dotted circles, and the selected representative 1056 

variables of these groups were circled with a plain line. The datasets are shown in Tables S2b, 1057 

c.  1058 

Fig. 4. NMDS representation of the Bray-Curtis dissimilarity matrix (Table S13) computed 1059 

from the 16S rRNA gene OTU profiles (Table S6) of runoff water samples (except C14) 1060 

according to the groups of sampling points defined by the socio-urbanistic surveys. (a) group I 1061 

and II and (b) group III and IV. See Figs. 1 and 2 and text for a description of these groups. 1062 

Adonis statistical tests showed significant differentiation between 16S rRNA gene OTU 1063 

profiles of (a) groups I and II, and (b) groups III and IV, (p<0.01).  1064 

Fig. 5. Chord diagram showing the distribution of the 19 dominant 16S rRNA-inferred genera 1065 

(relative abundance > 0.5 %) among the runoff water samples from the investigated urban 1066 

catchment. Full dataset of taxonomic allocations is shown in Table S11. These genera 1067 
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grouped about half of the reads and almost 80% of those that could be allocated to well-1068 

defined taxa. The average relative abundance (among the three sampling campaigns) is 1069 

indicated for each genus. Genera in bold were affiliated to the core-microbiome (present in all 1070 

the samples). 1071 

Fig. 6. Correlation networks computed from the fast greedy modularity optimization method 1072 

of the MENA pipeline for (a) the 16S rRNA gene inferred genera and (b) the tpm-harboring 1073 

bacterial species. Only bacterial taxa detected in at least 25 (for the 16S rRNA gene dataset) 1074 

or 10 (for the tpm one) runoff water samples were used to compute the correlation networks. 1075 

Spearman correlations above 0.7 are presented. Global properties of the two networks are 1076 

indicated in Tables S14 and S21. Module-EigenGene analyses were computed to highlight 1077 

relationships between 16S rRNA-based or tpm modules, and the physico-chemical or socio-1078 

urbanistic variables. The significant correlation ratios between the modules and the 1079 

explanatory variables are indicated in boxes. Only correlations over 0.5 (for the 16S rRNA 1080 

gene dataset) or 0.4 (for the tpm one) are shown. Asterisks indicate Spearman correlations p-1081 

values < 0.001. Genera and specie showed in bold indicate taxa involved in hydrocarbon 1082 

degradation.  1083 

Fig. 7. Chord diagram showing the distribution of the 44 dominant tpm-harboring bacterial 1084 

species (relative abundance > 0.1 %) among the runoff water samples from the Mi-Plaine 1085 

catchment of Chassieu (Table S16). These species grouped 45 % of the tpm reads. Average 1086 

relative abundances (among the three sampling campaign) of each tpm-harboring bacterial 1087 

species are indicated. Species in bold were affiliated to the core-microbiome of the runoff 1088 

water and had a prevalence >50%.  1089 
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