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Self-organizing multi-agent systems for the control of complex systems

Jérémy Boes ∗, Frédéric Migeon

IRIT, University of Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9, France 

a b s t r a c t 

Because of the law of requisite variety, designing a controller for complex systems implies designing a complex system. 

In software engineering, usual top-down approaches become inadequate to design such systems. The Adaptive Multi-

Agent Systems (AMAS) approach relies on the cooperative self-organization of autonomous micro-level agents to tackle 

macro-level complexity. This bottom-up approach provides adaptive, scalable, and robust systems. This paper presents a 

complex system controller that has been designed following this approach, and shows results obtained with the automatic 

tuning of a real internal combustion engine. 
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1. Introduction

Controlling a system means being able to perform the adequate

modifications on its inputs in order to set the outputs on a de- 

sired state. Over the course of History, humans made tremendous

efforts to control systems that are more and more complex: non- 

linear, dynamic, noisy, with a large number of inputs and outputs,

and so on. Yet, the law of requisite variety ( Ashby, 1956 ) implies

that the complexity of a controller has to be greater than or equal

to the complexity of the target system. Thus, the design of a con- 

troller involves the design of a complex system. This is a challenge

for engineering.

Complexity is often tackled a posteriori, to study existing sys- 

tems. On the contrary, methods enabling the design of complex

systems that meet strict requirements are quite rare. The main

feature of a complex system is that its behavior can not be eas- 

ily predicted ( Heylighen, 2008 ). Usual design methods, for in- 

stance in software engineering, seek to a priori eliminate any un- 

expected event. The design process must ensure that everything

will be smooth at runtime. But, as any other complex system, com- 

plex programs sometimes have unexpected, unpredictable behav- 

iors, and these classical methods fail.

For instance, in the field of system control, the usual methods

in the industry rely on the construction of a fine mathematical

model of the target system, that is later used to compute the com-
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mands to perform, given some set points. The cost and difficulty of

the construction (and the tuning) of a mathematical model is high.

An often used alternative is machine learning. Giving the ability to

learn to a controller enables it to learn the behavior of the tar- 

get system and build a model from data. However, this method

shows its limits when used with complex systems. Nonlinearities

in the learnt model lead to overcostly or impossible computations

in the control system. Another possibility exists: directly learning

the adequate commands, instead of a model that will later lead to

the said commands. We then focus only on the inputs and out- 

puts of the controlled system, without trying to decipher its inter- 

nal mechanisms.

Another difficulty is scalability. While various control methods

exist, they (almost) all fail to scale when a large number of inputs

and outputs are involved. Most advanced solutions rely on the dis- 

tribution of the control. Instead of letting a central controller han- 

dle all the inputs, each input is controlled by one local controller,

and all controllers try to cooperate to control the whole system.

Multi-Agent Systems (MASs), composed of autonomous entities,

are naturally distributed. They can be very useful to the problem of

the control of complex systems, for instance with multi-objective

optimization ( Khamis and Gomaa, 2014 ). Moreover, they bring in- 

novative design methods. In particular, Adaptive Multi-Agent Sys- 

tems (AMASs) are designed to be able to self-adapt at runtime to

any unexpected event. Instead of wasting time trying to cope with

any possible event during the design phase, we let the system deal

with the unexpected at runtime. Driven by cooperation principles,

agents self-organize locally to produce and maintain the desired

global function.

http://dx.doi.org/10.1016/j.jss.2017.08.038 



This paper presents experimental results obtained with an

AMAS designed to control complex systems, and applied to the

calibration of real heat engines. This system is fully described in

English for the first time in this paper. Able to learn and control

simultaneously, it provides a generic and robust solution to the

problem of control. It is a good example of the ability of AMASs

to be efficient in real life conditions.

Section 2 gives a quick background on control. Section 3 intro- 

duces our approach and Section 4 presents our system. Results, ob- 

tained in simulated as well as in real conditions, are showed in

Section 5 . Section 6 concludes with our perspectives.

2. Related works

Our work is at the crossroad of the fields of complex systems,

control, and machine learning. It is inspired by the ideas of Edgar

Morin on complexity ( Morin, 2008 ), which we apply here to the

design of self-adaptive control systems.

2.1. Complex systems 

The notion of complexity reflects the difficulty to analyze a

system and to forecast its behavior. Nonlinearities, inner feedback

loops, large number of inputs/outputs/inner parts, uncertainty on

the measures, and unpredictable behaviors are some of the re- 

curring features of complex systems. However, there is no com- 

mon agreement on a definition. For instance, Kolmogorov defines

the complexity of a string as the length of the shortest descrip- 

tion of said string ( Kolmogorov, 1998 ). While it is largely accepted,

this measure implies that a purely random string is of maxi- 

mal complexity, as it can only be described by its full enumera- 

tion. However this contradicts one of the key features of complex- 

ity: it is situated somewhere between total order and total chaos

( Heylighen, 2008 ). Moreover, a complex system is dynamic, it is

able to spontaneously change its state. It is important not to ne- 

glect this aspect during the analysis or the design of a system.

Measures such as Kolmogorov complexity give too much attention

to static, structural features of systems, and not enough to their dy- 

namics. To this end, dynamical depth is based on the idea that the

degree of complexity of a system is not given by its part and their

causal relations, but by the imbrication of the different dynamics

that drive its behavior ( Deacon and Koutroufinis, 2014 ).

Furthermore, the general system theory states that the classical

analytical approach can only be applied on systems whose parts

are linear and share negligible interactions ( Von Bertalanffy, 1968 ).

This lets a lot of systems out of its scope, in particular complex

systems. We need to follow a different approach than the reduc- 

tionist top-down analysis for complex systems control as well as

for complex systems design. The Adaptive Multi-Agent Systems

theory is being developed in this regard.

2.2. Control 

Control approaches also find their limits when faced with com- 

plexity. Artificial Intelligence (AI), and in particular machine learn- 

ing, are used to overcome these limits.

The objective with AI in control is to automatically learn either

the model of the target system, the tuning of the model, the cali- 

bration of the controller, or directly control laws from observations.

For instance, Jesus and Barbosa (2013) uses a genetic algorithm to

learn the optimal tuning of PIDs. This approach gives excellent re- 

sults but needs a large number of iterations. Moreover, if the be- 

havior of the controlled system changes over time (for instance,

because of mechanical wear), the tuning must be entirely redone,

it is not adaptive.

The biggest difficulty of dual control is to find the correct bal- 

ance between probe actions and control actions. A way to do this is

to use neural networks to learn this balance from data ( Fabri and

Bugeja, 2013 ). This approach is limited to control affine systems,

i.e. systems that reacts linearly to modifications on their inputs.

The most promising approach for scaling up, i.e. for control- 

ling a large number of inputs with many criteria on many out- 

puts, is to distribute the control. For instance, Bull et al. (2004) and

Choy et al. (2006) control road traffic junction signals on several

crossroads. In these approaches, there is no central controller that

handles all the traffic junctions, each crossroad is controlled by a

local controller. Bull et al. (2004) uses learning classifier systems,

while Choy et al. (2006) uses a combination of neural networks,

genetic algorithms and fuzzy logic. They obtained very interesting

results, but the difficulty to instantiate their approaches to real life

problems is a severe drawback.

Our approach uses feedback loops to learn not the model of the

controlled system but the control laws themselves, and distributes

a controller on each controlled input. Inner feedback loops ensure

an adequate balance between exploration and exploitation of the

model.

2.3. Machine learning 

A program learns when it is able to improve its functional- 

ity using its experience, i.e. data acquired during its execution

( Mitchell, 2006 ). Machine learning has been heavily influence by

the way we think the human mind works. The two well-known

methods for machine learning are supervised learning and unsu- 

pervised learning, whether examples of the expected results are

presented to the learning program or not. However, this distinc- 

tion is merely technical and does not allow to highlight the funda- 

mental differences between machine learning algorithms. We pre- 

fer the following five categories: Behaviorism, Cognitivism, Connec- 

tivism, Evolutionism, and Constructivism.

Behaviorism considers the learner as a black-box. Learning oc- 

curs when the observed behavior changes in response to the dy- 

namics of the environment. In machine learning, the behavior is

then a product of the initial state of the program and its progres- 

sive conditioning by its environment through a feedback loop. Re- 

inforcement learning can be considered as a behviourist machine

learning approach. It is notably popular in robotics ( Kober et al.,

2013 ). Its most well-known algorithm is Q-Learning ( Watkins and

Dayan, 1992 ).

On the contrary, cognitivists consider that what is important is

not what the learner does but what he knows. Cognitivist machine

learning algorithms classically rely on symbol manipulation, and

thus on a predefined set of symbols, which is not adequate when

dealing with complexity ( Raghavan et al., 2016 ).

Connectionism considers learning at a lower level in the brain:

the dynamic interconnection of neurons. In machine learning,

it regroups all the artificial neural network algorithms, from

back-propagation perceptrons to the more recent Kohonen maps

( Astudillo and Oommen, 2014 ) and deep learning algorithms

( Deng and Yu, 2014 ). They show impressive results but need a huge

amount of data and computing power.

Evolutionism considers learning at the scale of a species rather

than an individual. Evolutionary algorithms evolve a population of

solutions towards better solutions by evaluating them, mutating

them, and crossing the best individuals. These algorithms are in- 

teresting because they can tackle problems for which there is no

known solution, but they are time-consuming and the fitness func- 

tion can be difficult to obtain ( Bongard, 2013 ).

Constructivism is the idea that humans have the ability to con- 

struct knowledge in their own mind through interactions with the

environment. Constructivist artificial intelligence aims at designing



self-constructive systems ( Thórisson, 2012 ). In such systems, not

only the knowledge but the means to acquire it are learned. The

focus is made on self-organization and bottom design methods.

Note that there are no hard boundaries between these cate- 

gories. Most advanced machine learning algorithms actually take

simultaneously from several of them. For instance Learning Clas- 

sifier Systems stem from Behaviorism since they are reinforce- 

ment learning algorithms, but they also incorporate an evolution- 

ary component ( Urbanowicz and Moore, 2009 ).

The Adaptive Multi-Agent Systems approach is constructivist: it

focuses on self-organization and shares the same long term goal of

designing a fully self-constructed artificial intelligence. It also has

a link with connectionism with the idea that a complex task can

be achieved by a set of several simple entities.

3. Approach

Top-down classical methods have severe shortcomings

when it comes to complexity: scale, integration, and flexibility

( Thórisson, 2012 ). This section presents the Adaptive Multi-Agent

Systems (AMASs) theory, that aims at overcoming these limitations

thanks to the natural modularity of MASs and the cooperative

self-organization of agents.

3.1. Adaptive multi-Agent systems 

Wooldridge defines an agent as follows: An agent is a computer

system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its delegated 

objectives. Wooldridge (2009) “Autonomous action” means an agent

takes its own decision on what to do and when to do it. It indefi- 

nitely follows a lifecycle of perception, decision and action without

any external control.

A system composed of several agents in interaction in the same

environment is called a Multi-Agent System (MAS) ( Ferber, 1999 ).

Knowledge, computation, and control are distributed among the

agents of a MAS. Such systems are based on collective problem

solving, the idea that local behaviors within a group can ensure

the achievement of a given global task. Multi-agent systems pro- 

vides interesting features when dealing with complexity, such as

scalability, robustness and adaptivity ( Ren and Cao, 2013 ).

The function of a MAS is dependent on its organization (the

agents, their relations, their behavior). A change in the organiza- 

tion of the MAS is a change of its global function. When agents de- 

cide themselves to dynamically change their behavior or their rela- 

tions, the system is self-organizing. Di Marzo Serugendo et al. de- 

fine self-organization as the process with which a system changes

its structure without any external control to respond to changes

in its operating conditions and its environment ( Di Marzo Seru- 

gendo et al., 2011 ). It is very natural and powerful for a MAS to

perform learning and self-adaptation this way.

The Adaptive Multi-Agent Systems approach aims at facilitating

the design of multi-agent systems for solving complex problems by

designing simple agents that self-organize to generate a complex

global function ( Georgé et al., 2011 ). In this approach, the process

of self-organization is driven by cooperation principles. Local deci- 

sions from each agent may provoke local changes that in turn lead

to changes in the global function of the system.

This approach is based on the theorem of functional adequacy

( Georgé et al., 2011 ). Applied to MASs, one of the consequences of

this theorem is the assurance that the global function of a system

is adequate if all agents maintain interactions with their environ- 

ment that are favorable to themselves and to their environment

(they are said to be in a cooperative state ). Then, the challenge is

to find the behavior for each agent that enables each of them to re- 

main in a cooperative state despite changes in their environment.

To this end, each agent has two sets of rules. Nominal rules en- 

able an agent to achieve its function when it is already in a cooper- 

ative state. However, it is highly probable that the agent eventually

finds itself unable to achieve its function, due to changes in its en- 

vironment, or to a simple lack of knowledge. Such cases are called

Non-Cooperative Situations (NCSs) and are probable cause of failure

for the global system to achieve its task. There are seven types of

NCSs:

• Incomprehension: the agent is not able to extract information

from the perceived signal.
• Ambiguity: the agent can interpret the perceived signal in sev- 

eral different manners.
• Incompetence: the agent is not able to decide anything based

on its current knowledge and skills.
• Unproductiveness: the decision of an agent is to do nothing.
• Concurrence: the agent thinks its action will have the same ef- 

fects as the action of another agent.
• Conflict: the agent thinks its action is discordant regarding the

action of another agent.
• Uselessness: the agent thinks that its action will have no con- 

sequences on its environment.

When a NCS occurs, the involved agents switch from their nom- 

inal behavior rules to their cooperative rules, which seek to solve

the NCS by provoking changes in the MAS (in other words, by

triggering self-organization). An agent has several means to solve

a NCS: tuning internal parameters, reorganizing its relations with

other agents, creating a new agent, or self-destructing.

In the current state of the approach, the AMAS designer has

to design the cooperative behavior for each NCS. A methodology

named ADELFE (French acronym for Toolkit for Developing Soft- 

ware with Emergent Functionalities) guides the design of AMASs

( Bonjean et al., 2014 ). It is a bottom-up and iterative design process

that encourages the designer to focus on the local function of each

agent, and to forget the global function of the system. A strong

focus is put on decomposing the problem instead of the solution.

The resulting agents will often be following simple (yet intricated)

reactive behavioral rules, and thus will seem too simple to solve

anything. It is the point of our approach: dodging complexity by

thinking exclusively within a local scope. If agents behave accord- 

ingly to the AMAS principles of cooperation, the emerging global

function shall be adequate. Originally based on the Rational Unified

Process ( Kruchten, 2004 ), ADELFE incorparates specific steps and

guidelines to help identify the entities of the problem and which

ones should become agents, and find their NCSs and their coopera- 

tive behaviors. It has been used for the development of the system

presented in 4.

3.2. Objectives in terms of control 

Other than pushing forward the experimental verification of the

AMAS approach, the main objective of this work is to design a sys- 

tem able to learn in real time how to put a complex system in a

desired state. In our case, the controlled system may have multi- 

ple inputs and outputs (MIMO), and the desired state is described

as a combination of criteria. A criterion may affect one or several

inputs or outputs. There are three types of criteria:

• Constraint: a threshold to meet
• Setpoint: a target value
• Optimization: a value to minimize or to maximize

An additional requirement is that the controller must be easy to

implement for real-life complex systems. In particular, this means

the controller should not need a heavy tuning and should not re- 

quire any predefined model. In other words, prerequisite knowl- 

edge on the controlled system has to be minimal.



Fig. 1. A view of all the agents of ESCHER. 

Moreover, the learning process has to be perpetual and in real

time. It has to occur simultaneously to the control, so the con- 

troller adapts itself to changes in the controlled system (such as

failures, wear, etc). Our controller sees the controlled system as a

black box: it only has access to the inputs and the outputs of the

black box, not to the internal processes that drives its behavior.

4. ESCHER, An adaptive MAS to learn the control of complex
systems

In this section we present a multi-agent system called ESCHER,

for Emergent Self-adaptive Controller for Heat Engine calibRation.

Thanks to cooperative self-organization, it is able to learn in real- 

time the control of a system. It has been designed and tested dur- 

ing a project revolving around automotive thermal engines, but has

been design under the assumption that nothing is known about

the controlled system, except its number of inputs and outputs.

The goal is to make the controller generic enough to be used

on any other systems without any modifications other than the in- 

terface. Following a “black box” approach of the control, ESCHER

plays with the inputs of the controlled system, observes the effects

on the outputs and infers the actions that will lead to compliance

with the user-defined criteria.

4.1. System overview 

The environment of ESCHER is composed of the controlled sys- 

tem and of the user defined criteria. This means that ESCHER ob- 

serves the inputs and outputs of the controlled system, and also

the control criteria defined by the users. Among the inputs of the

controlled sytem, there may be some that are not controlled by

ESCHER but have an impact on the controlled system. For instance

the atmospheric pressure cannot be controlled but can significantly

alter the output of a thermal engine. If such a sensor is available,

it can be taken into account by ESCHER.

ESCHER itself is composed of four types of agents:

• Variable Agents are the eyes of the system, there is one Variable

Agent for each input and output of the controlled system.
• Criterion Agents represent user-defined criteria, the desired

state of the controlled system.

• Context Agents can be seen as the memory of the system,

they represent a part of the state space of the environment for

which the consequences of a given action are known.
• Controller Agents are the hands of the system, they interact

with a set of Context Agents to find the most adequate action

to perform in the environment.

Fig. 1 shows an overview of the system, with the links between

the four types of agents. Note that this view is intended for the

reader, agents do not have a global view of the system.

4.1.1. Context agents and controller agents 

Each Controller Agent is coupled with a set of Context Agents

whose memorized action is related to the effector associated to

this same Controller Agent. The Controller Agent selects the next

action to perform among the received suggestions and notifies

the Context Agents which has sent a suggestion. There is no di- 

rect interaction between Context Agents, neither between Con- 

troller Agents. The only link between them is through the environ- 

ment: the action of a Controller Agent will have an impact on the

controlled system which will be perceived from other Controller

Agents through Variable Agents and Criterion Agents.

A Controller Agent and its set of Context Agents can be seen

as an automous MAS. Its environment would be made of Vari- 

able Agents and Criterion Agents. A Context-Controller “sub-MAS”

is able to synchronize its actions with the other sub-MASs by ob- 

serving the controlled system’s inputs and outputs variations. A

Controller Agent does its best to decrease the critical levels by per- 

forming actions on only one input, locally, without caring about

how the other inputs are handled. There is no global decision pro- 

cess to find the adequate actions on each input at once. This fea- 

ture is the key to scalability. Moreover, the distribution of control

makes ESCHER modular. The addition or the removal of a new Con- 

troller Agent does not impact the others.

4.1.2. Variable agents and criteria agents 

To fulfill its function, each agent besides Variable Agents, needs

to know the current state of the controlled system. This is why

Variable Agents send value update to every other types of agents

(the relevant Criterion Agents, every Context Agent, every Con- 

troller Agent). This broadcast may seem harmful for scalability, but

it is not. Indeed, agents of ESCHER are not physically distributed,



Fig. 2. Examples of criticality functions. 

the cost of message sending is very low. On the contrary, the cost

of reading the value of a physical sensor is high, since it involves

external systems, and probably networking. Hence, it is way more

efficient to have an agent per sensor, broadcasting its value to oth- 

ers than to give access to a sensor to every agent needing this par- 

ticular value.

Criterion Agents transform the variable values into critical lev- 

els, representing the satisfaction of the criteria (i.e. a idea of how

far from the desired state is the current state of the controlled sys- 

tem). Variable Agents and Criterion Agents give ESCHER a complete

representation of its environment.

At a given moment, if every agent in the system is able to prop- 

erly perform its function, then ESCHER is in a cooperative state

and its global function is adequate. However, numerous cases exist

where at least one of the agents is unable to execute its function.

These cases are the Non-Cooperative Situations, that are presented

in Section 4.3 .

4.2. Function and nominal behavior of ESCHER agents 

This section presents a decomposition of the activity of control

in elementary tasks. Agents in charge of these tasks are detailed.

4.2.1. Observing the controlled system 

The first thing we need when it comes to controlling a system

with a “black box” standpoint is to be able to observe it. A spe- 

cific type of agents is in charge of the perception of the controlled

system: Variable Agents . To each input and output of the system is

associated a Variable Agent. During its lifecycle, a Variable Agents

perceives the value of its designated variable on the controlled sys- 

tem and forwards it to the other agents which may need this infor- 

mation. If necessary, a Variable Agents may embed a noise filtering

algorithm.

4.2.2. Representing control criteria 

The controller needs to have an internal representation of the

objectives of the user, of the desired state for the controlled

system. Giving such a representation is the function of Criterion

Agents . There are three types of Criterion Agents:

• Threshold: the agent expresses the will to maintain a variable

either above or below a user-defined threshold.
• Setpoint: the agent expresses the will to set a variable to a

user-defined value.
• Optimization: the agent expresses the will to minimize or to

maximize the value of a variable.

Each Criterion Agent receives updates from the relevant Vari- 

able Agents, computes a critical level , and sends it to other agents

which may need this information. This critical level reflects the

satisfaction of the criterion represented by the agent. The critical

level ranges from zero (the critrerion is fully satisfied) to 100 (the

criterion is far from being satisfied).

Fig. 2 shows examples of criticality functions used by Criterion

Agents to compute their critical level. For instance the threshold

criticality function returns zero if the threshold is met, otherwise a

value up to 100. The criticality function for a setpoint returns zero

only when the target value has been reached. The criticality func- 

tion of an optimization criterion is asymptotic to zero. The curves

of these functions can be adjusted by the user to define the rela- 

tive significance of its needs.

Criterion Agents apply a transformation from the space of the

controlled system variables to the space of the criteria. The criti- 

cal levels decrease when their criterion is being satisfied. Hence,

agents perceiving critical levels seek to decrease them. The only

way to do so is to perform adequate actions on the input of

the controlled system. Finding these adequate actions requires the

analysis of the current state of variables and criteria to try to un- 

derstand the dynamics of the system.

4.2.3. Analyzing the state of the environment 

With the Variable Agents and the Criteria Agents, ESCHER has

an internal distributed representation of its environment. To be

able to decide which actions to perform, an analysis of this en- 

vironment is needed. This is the function of Context Agents .

A Context Agent memorizes the effect, on each critical level, of

a particular action performed on a particular effector. The agent

also memorizes the state of the environment when the action is

performed. This provides information about the expected conse- 

quences of a particular action if the action is performed while the

environment is in a particular state.

Concretely, a Context Agent is composed of:

• an action, i.e. an offset to be performed on an input of the con- 

trolled system,
• a set of forecasts, which contains a value for each Criteria

Agent, representing the expected variations of critical level,
• a set of validity ranges , which contains a value range for each

Variable Agent, representing the state of the controlled system.

A Context Agent receives value updates from Variable Agents,

and critical level updates from Criterion Agents. When the current

value of each Variable Agent is inside their corresponding validity

range, the Context Agent is said valid . This means the controlled

system is in a state in which the forecasts of the agent are relevant.

When a Context Agent becomes valid, it sends a notification which

contains its action and its forecasts. This notification is actually an

action suggestion. Let p a suggestion (1)

p := (a, F ) (1)

where a is an action and F is a set of critical levels forecasting

functions. Thus, a function f i ∈ F returns the critical level of Cri- 

terion Agent i forecasted by the Context Agent if a is performed.



Such a function can be expressed as (2)

f i (a ) = c i + δi (a ) (2)

where c i is the current critical level of Criterion Agent i , and δ
i

is a function resulting from the learning of the Context Agent. In

practice, a Context Agent sends an action suggestion together with

a set of values f i ( a ), not a set of computable functions f i . We only

show expression (2) to explicit a part of the learning of Context

Agents, which will be discussed later.

A notification is also sent when the Context Agent becomes

non-valid so its suggestion is withdrawn. These suggestions and

notifications are received by the Controller Agent in charge of the

affected effector. This new type of agent is presented in the next

paragraphs.

4.2.4. Performing the most adequate action 

A Controller Agent is associated to each input controlled by ES- 

CHER. The function of a Controller Agent is to perform the most

adequate action on this input, i.e. the action which will provoke

the greatest decrease of critical level. An action may be increasing,

decreasing, or maintaining the value of the input.

Let u t the current value of the input controlled by the Controller

Agent, and a t the action performed by the Controller Agent at its

lifecycle t . The next value of the input is given by Eq. (3) .

u t+1 = u t + a t (3)

At each lifecycle t , the Controller Agent chooses a t according to its

internal representations, which are composed of

• C t , the set of critical levels, updated at lifecycle t .
• P t , the set of action suggestions from valid Context Agents at

lifecycle t .

Among P t (the received suggestions), the Controller Agent

chooses the action associated with the greatest decrease of the

highest critical level. If the highest critical level is not expected to

vary, according to the forecasts, then the Controller Agent seeks to

decrease the second highest critical level, and so on.

Hence, for each suggestion p k t ∈ P t , the Controller Agent looks

at f k max ∈ F k t , the function which returns the highest critical level

(in other words, the function corresponding to the most critical

Criterion Agent). This function is defined by Eq. (4) .

f kmax := f k t ∈ F k t , f 
k 
t (a 

k 
t ) = max 

f∈ F k t 

( f (a kt )) (4)

The chosen a t is the action from the suggestion with the low- 

est f max (a ) , while being lower to the current highest critical level

( Eq. (5) ).

a t := a i ∈ A t , f 
i 
max (a 

i ) = min 
k 

( f k max (a 
k )) ∧ f i max (a 

i ) ≤ max C t (5)

where A t is the set of actions contained in the suggestions from

P t .

The Controller Agent then performs the action a t and sends:

• an acceptance notification to the currently valid Context Agents

whose action has been selected and performed,
• a rejection notification to the currently valid Context Agents

whose action has not been selected,
• in case of the current action is different from the action of the

previous step, a waiver notification to the Context Agents which

suggested the previous action.

Of course, at any given time, a Controller Agent may not be

able to make a good decision (i.e. a decision that will lead to the

decrease of critical levels), because of false or incomplete infor- 

mation. These cases are Non-Cooperative Situations (NCSs). They

occur when ESCHER has not sufficiently learned and is not fully

adapted to its environment. For instance, if the condition 6 is not

met, then Eq. (5) cannot be applied.

∃ p i t ∈ P t , ∃ f i max ∈ F i t , f 
i 
max (a 

i ) ≤ max C t (6)

The occurence of a NCS triggers a specific behavior (the cooper- 

ative behavior) of the involved agents to solve it and set the agents

in a cooperative state. Solving NCSs drives the whole system to- 

wards a state of functional adequacy. NCSs and their resolution are

presented in Section 4.3 .

4.3. Non-Cooperative situations 

This section explains how agents detect and solve NCSs. Since

they provoke changes in the organization of the system, NCSs and

their resolution are the key to the self-adaptativeness of AMASs.

Each agent locally solves the NCSs it detects, thanks to specific ac- 

tions. In ESCHER, NCSs mainly occur for Context Agents and Con- 

troller Agents. They motivate the system to self-organize, in partic- 

ular by creating, modifying, or deleting Context Agents.

4.3.1. NCS 1 : Controller agent incompetence 

Detection: When a Controller Agent does not receive any action

suggestion, P t = ∅ , hence A t = ∅ . In this situation, the agent is not

able to choose an adequate action using Eq. (5) : it finds itself in a

NCS of incompetence.

Resolution: The resolution of this NCS has two steps. First, the

Controller Agent has to choose an action on its own. Its choice is

based on the effects of its previous action. If the critical levels are

increasing, the new action is chosen as the opposite of the previ- 

ous action, otherwise the previous action is repeated ( Eq. 7 ).

a t :=

{

a t−1 if max C t < max C t−1
−a t−1 otherwise

(7)

If t = 0 , then the new action is randomly chosen.

If the previous action had been selected from P t−1 and is con- 

tinued, the Controller Agent does not send a waiver notification to

the Context Agents that had suggested it at t −1 , even if they are

now non-valid. They may need this information to learn (see NCS

6).

Otherwise, after having determined its new action, but before

performing it, the Controller Agent creates a new Context Agent.

This new Context Agent is initialized with the new action, and

memorizes the current value of all variables. While the highest

critical level decreases, the Controller Agent continues the same

action. During this time, the new Context Agent observes the vari- 

ations of all critical levels to set its forecasts. Finally, when the ac- 

tion is abandoned, the Context Agent sets its validity ranges with

the minimum and maximum observed on each variable.

4.3.2. NCS 2: Controller agent unproductiveness 

Detection: When none of the received action suggestions con- 

tains forecasts of a decrease of the highest critical level (condition

6 is not met), the Controller Agent is in a NCS of unproductive- 

ness. Its nominal decision process (select the action associated to

the biggest decrease of the highest critical level) does not produce

any action. There are two ways of solving this NCS, depending on

the received suggestions. Let A the set of all possible actions for

the Controller Agent, at each time step t we have A t ⊆ A .

Resolution 1: If A t = A , in other words if every type of actions

(increment, decrement, stay) has been suggested, the Controller

Agent thinks that the highest critical level can not be decreased,

whatever the agent may do. Then, the agent attempts to decrease

the second highest critical level (without increasing the highest

critical level). If it is not possible, it will look at the third highest

critical level, and so on. If there is no forecasted decrease at all,



the agent chooses the least harm: the action associated with the

smallest increase of the highest critical level is chosen ( Eq. (8) ).

a t := a i ∈ A t , f 
i 
max (a 

i ) = min 
k 

( f k max (a 
k )) (8)

Resolution 2: The second case is when A t 6 = ∅ ∧ A t 6 = A . It means

that some actions have not been suggested, they have not been

tested in the current state of the environment. Since none of the

received action suggestions contains forecasts of decrease of the

highest critical level, they actually contain actions to avoid. Let

A c = A − A t the set of candidate actions, i.e. actions that are not

currently suggested. The Controller Agent then decides to select an

action among the ones which are not suggested (which we call

candidate actions). The selection of the new action is similar to

the resolution of the NCS 1 but is, this time, conditioned by the

presence of this action in A c (9) .
{ 
a t = a t−1 if a t−1 ∈ A c ∧ max C t < max C t−1
a t = −a t−1 if − a t−1 ∈ A c ∧ max C t ≥ max C t−1
a t = rand (A c ) otherwise

(9)

With the same conditions than in the NCS 1, the Controller Agent

may create a new Context Agent, initialized in the same manner.

4.3.3. NCS 3: Controller agent conflict 

Detection: When a Controller Agent applies an action suggested

by a Context Agent, it expects that the critical levels will vary in

the way indicated by the forecasts. If the Controller Agent notices

that it is not the case, it thinks that the action that has just been

performed may be harmful, it is a conflict NCS.

Resolution: The action must be stopped. The Controller Agent

abandons the action and notifies the Context Agents which had

suggested it when it was selected. Moreover, if the Context Agents

which were wrong are still valid, they will be temporarily ignored

in future step.

4.3.4. NCS 4: Context agent conflict (false forecasts) 

Detection: When the action of a valid Context Agent is being

performed, said agent observes the variations of critical levels.

When the action is terminated, the agent compares the observed

variations with its forecasts. There is a conflict NCS if at least one

of the observed variation contradicts the forecast (their direction

of variation is different).

Resolution: An error in the direction of variation of a forecast is

probably more than a simple mistake in the initial observation, it

is not a problem of forecast adjustment. This rather indicates that

the Context Agent should not have sent its suggestion, it should

not have been valid. To correct this situation, the Context Agent

will reduce its validity ranges, bringing closer the nearest bound

to the current value of the corresponding variable.

4.3.5. NCS 5: Context agent conflict (inaccurate forecasts) 

Detection: This NCS is similar to NCS 4. But this time, the ob- 

served variations are in the same direction as the forecasts, but

not of the same amount. This kind of observation is sensitive to

noise on the perception of variable values, hence small differences

(under 5% of criticality) are ignored.

Resolution: An error in the amplitude of variation is less seri- 

ous than an error in the direction of variation. The Context Agent

only needs to adjust its forecast. Thus, in this case, the agent does

not change its validity ranges, but rather increase or decrease the

erroneous forecasts so they fit its observations.

4.3.6. NCS 6: Context agent incompetence 

Detection: It happens that a Context Agent whom action is be- 

ing performed becomes non-valid, but does not received any reject

nor waiver notification from the Controller Agent (it is a possible

outcome of NCS 1). The Context Agent is then in an incompetence

NCS, this situation is not covered by its nominal behavior.

Resolution: From its standpoint, this situation means that the

Controller Agent considered that its action can be kept a little

longer. Hence, to keep sending what could be a good suggestion,

the Context Agent extends the validity ranges that make him non- 

valid.

4.3.7. NCS 7: Context agent uselessness 

Detection: Sometimes, after several NCS 4, some validity ranges

of a Context Agent have been so shrinked that their amplitude is

near zero. If the amplitude of at least one validity range falls under

the threshold of minimal size, the Context Agent is in a uselessness

NCS, the chances of being valid are too low. By default, the thresh- 

old is equal to one hundredth of the domain of the variable. This

NCS is ignored for unbounded variables.

Resolution: A useless Context Agent can do nothing else than

delete itself to solve this situation. Indeed, a Context Agent can

only learn if its action is selected while valid. If the agent is never

valid, it never brings information to the system and never learns.

By deleting itself, the agent frees computation ressources. This NCS

is not pivotal for ESCHER. The presence of useless agents does not

prevent the adaptation and functional adequacy of the whole sys- 

tem. But this NCS avoids overages of Context Agents. To avoid that

too many deletions and a loss of memory, we advise to set

4.3.8. NCS 8: Context agent unproductiveness (validity ranges) 

Detection: This NCS concerns a Context Agent which has been

valid, selected, then became non-valid, and observed a decrease of

critical levels. This is an ideal cases, everything went fine. This is

why a Context Agent in this situation considers that its action may

still be relevant, even if the agent itself is now non-valid. This is

an unproductiveness NCS: the nominal decision process results in

doing nothing (since the agent is not valid), while there is good

chances that sending an action suggestion should be a good thing

to do.

Resolution: The Context Agent expands the validity ranges that

make it non-valid, so it is now valid. The agent also sends an ac- 

tion suggestion. If the agent was wrong to send a suggestion, a NCS

4 will occur and the ranges will be shrinked. Likewise NCS 7, this

situation is not crucial for the system, but enables a finer adapta- 

tion for a limited risk.

4.3.9. NCS 9: Context agent unproductiveness (suggested action) 

Detection: A Context Agent whose action has been selected sev- 

eral times in a row considers itself in unproductiveness NCS. In- 

deed, the agent thinks that the ideal case would be that its action

should provoke a greater decrease of critical level so it only has

to be performed once. The Context Agent hence seek to adjust the

amplitude of the suggested action, in a way to maximize the de- 

crease (or minimize the increase) of critical levels.

Resolution: The adjustment of the amplitude of the action is

based on the estimation of the effects of the variation of the am- 

plitude on the variation of critical levels. The idea is to increase

or decrease the amplitude of the action in a way to accelerate the

decrease (or slow down the increase) of critical levels. To this end,

a Context Agent which has been selected several times in a row

slightly and randomly changes the amplitude of the suggested ac- 

tion and correlates this variation with the speed variation of criti- 

cal levels. Hence, if the highest critical level is decreasing:

• quicker while the amplitude has been increased: the Context

Agent keeps increasing the amplitude;
• quicker while the amplitude has been decreased: the Context

Agent keeps decreasing the amplitude;
• slower while the amplitude has been increased: the Context

Agent decreases the amplitude;



Fig. 3. Typical convergence of an adaptive value tracker. 

• slower while the amplitude has been decreased: the Context

Agent increases the amplitude;

The Context Agent does the exact opposite if the highest crit- 

ical level is increasing, although this rarely happen since it is not

frequent that an action is continued if it has provoked a rise of the

highest critical level. Note that a maximal amplitude can be set in

order to avoid too brutal actions.

4.3.10. Conclusion on non-Cooperative situations 

This section has presented the NCSs encountered by the agents

of ESCHER. In particular, the resolution of these situations provokes

the creation, the deletion, and the modification of Context Agents,

which are the memory of the system. In other words, NCSs pro- 

voke the memorizing, the forgetting, and the correction of knowl- 

edge based on observations of the real system: their resolution en- 

ables ESCHER to learn and self-adapt.

NCSs 1 and 2 correspond to the acquisition of new informa- 

tions. They occur when ESCHER is discovering a new part of the

state space of its environment. They open the system as they add

new Context Agents.

NCS 3 enables ESCHER to not persist in error. It is partially

solved thanks to the reorganization of the relations between a Con- 

troller Agent and some of its Context Agents. Indeed, the Controller

Agent ignores some of the Context Agents if they have been wrong.

Context Agents always self-evaluate. Hence, NCSs 4 to 9 are de- 

tected if one of the parts is no longer adapted to the environment.

They are solved by the adjustment of the agents (except for NCS

7 which is solved thanks to openness). Hence, ESCHER is always

self-evaluating and self-adapting.

4.4. Learning and adjustment 

A large part of the learning of the system relies on the tuning of

Context Agents’ internal parameters during the resolution of a NCS.

All these parameters are tuned thanks to Adaptive Value Trackers

(AVT, ( Lemouzy et al., 2011 )). These parameters are: the boundaries

of the validity ranges, the amplitude of the suggested action, and

the values of the forecasts.

An AVT converges towards a value thanks to binary feedbacks:

lower if the real value is lower, or greater if the real value is greater.

Both the value and the variation step of the tracker are dynami- 

cally tuned. The variation step is increased when two consecutive

feedbacks are equal, and decreased otherwise. These variations fol- 

low user-defined coefficients. Fig. 3 shows an example of the vari- 

ation of the value of an AVT with standard settings (two equal

consecutive feedbacks double the variation step, two different con- 

secutive feedback divide the variation step by three). A plus sign

means the AVT received a greater feedback, a minus sign means it

received a lower feedback.

A Context Agent transforms its observations and received noti- 

fications into feedbacks for its numerous numerous AVTs. For in- 

stance, a Context Agent in NCS 5 observing a greater variation of

critical levels than what its forecast indicates will send a greater

feedback to the corresponding AVT. The tracker then increases its

value. Of course, the new value of the forecast may not be equal

to the observation. But given the dynamics of the environment and

the inevitable noise on real sensors, perfectly fitting to the obser- 

vations is not desirable.

AVTs quickly converge toward a value, are able to stabilise, and

to move again quickly toward a new further value. They match

our needs, as the parameters of agents often have to change, of- 

ten drastically.

4.5. Comparison with existing approaches 

ESCHER has been presented as a control system because it has

been designed to control. Nevertheless, learning plays a crucial role

in this system. This section explores this two complementary sides

of our system and their links through comparisons with the Dual

Control Theory and with Learning Classifier Systems.

4.5.1. Comparison with dual control. 

In the Dual Control Theory, the controlled system is partially

known. The controller applies either probe actions to learn and re- 

fine its model of the controlled system, or control actions to put

the controlled system in the desired state ( Feldbaum, 1961 ). Too

many probes hampers the control, but too many control actions

makes a small gain. Finding the balance between probe actions

and control actions requires to solve the difficult Bellman equation,

which is not easily feasible in real cases.

Like dual controllers, ESCHER faces unknown systems and

learns from its actions. However, it learns from all of its actions

and all of its actions seek to put the controlled system in the

desired state. All of its actions are probes and control actions at

the same time. Moreover, unlike dual controllers, ESCHER does not

need a predefined model that is later adjusted by learning.

The need to lower the critical levels (even when no agent in- 

dicates how to do it), combined to the fact that ESCHER learns

from each of its actions, can be seen as an approach to solve

the problem of balance between probes and control actions. The

control process drives the learning process towards interesting

states of the environment, while getting closer to the desired state

(and thus preventing to stray away and visit uninteresting distant

states).

4.5.2. Comparison with learning classifier systems. 

Learning Classifier Systems (LCSs) are reinforcement learning

systems ( Urbanowicz and Moore, 2009 ).They are composed of a set

of behavior rules, a pairing system which matches states of the en- 

vironment with rules conditions, a selection mechanism between

simultaneously triggered rules, and a genetic algorithm to tune the

set of rules.

There are several similarities between a LCS and a Controller

Agent coupled with its set of Context Agents. Context Agents play

the same role than the pairing system (with their validity ranges)

and the set of rules (each Context Agent can be seen as a behav- 

ior rule since it suggests an action under certain conditions). The

Controller Agent plays a similar role than the selection mechanism,

chosing an action among several suggestions from valid Context

Agents.

The main difference comes from the fact that Context Agents

are autonomous, they learn by themselves. On the contrary, the

rules of a LCS are processed by a genetic algorithm, to with- 

draw the weakest and generate new and presumably more adapted

rules. The fitness function of this algorithm is usually a reward sig- 

nal, perceived from the environment. A great difficulty in the in- 

stanciation of a LCS is to adequately split the reward between the

different rules. This difficulty does not exist in ESCHER, because



Table 1 

Parameters of ESCHER and their significance. 

Parameters Significance 

Number of controlled variables Important 

Number of observed variables Important 

Variables references Important 

Criticality functions Important 

Variation ranges Optional 

Maximal size of an action Incidental 

Minimal size of a validity range Incidental 

Minimal step of an AVT Incidental 

Coefficients of an AVT Incidental 

of the autonomy of Context Agents. They evaluate their adequacy

themselves, and adjust themselves if needed. On certain aspects,

the notion of critical levels may be assimilated to the reward sig- 

nal, as it enables to evaluate the adequacy of the rules.

By self-adjusting, Context Agents suggest actions that are more

and more adequate, with a more and more adequate timing, along

with more and more reliable forecasts. Thus, the learning process

feeds the control process.

4.6. Settings 

For ESCHER to be easy to instantiate to a particular system, the

number of parameters has to be as low as possible, and setting

them should not require the use of elaborate calibration methods.

The only knowledge about the controlled system that ESCHER

needs is quite simple

• the number of controlled variables, and their references;
• the number of observed variables, and their references.

It is possible to give the lower and higher bound for each vari- 

able. ESCHER works without this information, but it can be of use

for the criticality functions. Anyway, this is basic knowledge about

the controlled system, it is not an obstacle.

The only difficulty in the instanciation ESCHER is the definition

of the criticality functions. Controller Agents focus on the most

critical Criterion Agent. This means that the compromise between

several criteria is expressed through the definition of the criticality

functions. For instance, in an absurd case, if we want to maximize

and minimize the same variable, ESCHER will stabilize on the value

where the two criticality functions meet. This knowledge concerns

not only the controlled system, but also the objectives of the user.

Finally, some other parameters are secondary. They have a very

limited impact on the overall performance of the system, they do

not require to be specifically set each time, their default values

work fine. It is, for instance, the minimal size of validity ranges

(that triggers NCS 7), the maximal size of an action (to prevent

ESCHER to perform brutal actions, for safety reasons), or the inter- 

nal parameters of AVTs. The strong and quick adaptiveness of the

agents reduces the impact of these parameters. Table 1 shows all

the parameters of ESCHER and their significance.

5. Experiments: Real-Time control of combustion engines

The first experiments presented in this section have been con- 

ducted on automatically generated synthetic black boxes. Then, ex- 

periments on a real combustion engine are shown. The implemen- 

tation of ESCHER used for these experiments is a prototype writ- 

ten in Java 1.7 using Eclipse and a component-based multi-agent

architecture generator called Make Agent Yourself ( Noël, 2012 ). It

runs on a laptop with an Intel i7 2.67 GHz CPU and 4 GB of RAM.

The duration of a lifecycle of ESCHER (i.e. a lifecycle of each of

its agents) depends mainly on the number of agents. It is approxi- 

mately 20 ms with 10 agents, and 500 ms with 800 agents. This is

something that should be improved by code optmization, but this

is not the immediate concern for ESCHER. Here the goal is to show

that the agents are indeed able to learn how to control several in- 

puts of an unknown system, regarding several criteria.

5.1. Criticality functions 

The function 1 used in our experiments to compute critical lev- 
els is defined over R as follows ( Eq. (10) ) :

f (x ) = 



 




 
 
 






 
 







 
 




 
 
 
 

100 if x ≤ 0 

γ (x −η) 2

2 η + γ (x − η) + δ if 0 < x ≤ η

−γ (x −η) 2

2(ǫ−η) + γ (x − η) + δ if η < x ≤ ǫ

0 if ǫ < x ≤ sup − ǫ

−γ (sup−x −η) 2

2(ǫ−η) + γ (sup − x − η) + δ if sup − ǫ < x ≤ sup − η

γ (sup−x −η) 2

2 η + γ ( sup − x − η) + δ if sup − η < x ≤ sup 

100 if sup < x 

(10)

with

γ = −2
100

ǫ

and

δ = −γ
(ǫ − η)

2

Parameters sup , ǫ et η are defined by the user. The curve of this

function is symmetrical with respect to the center of [0; sup ], it

decreases on [0; ǫ], and increases on [ sup − ǫ; sup] . Parameter η
defines the inflection point, sup acts as the upper bound of the

function, above this value the critical level is always 100, and ǫ
defines the interval [ ǫ; sup − ǫ] where the critical level is always
zero.

In our implementation, it is possible to shift the function so the

slopes happen in an arbitrary interval instead of [0; sup ]. It is also

possible to make the function asymmetrical by defining different ǫ
and η for each half of the interval. For instance, by setting ǫ = 0

for the left half only, we obtain a curve similar to the threshold

one from Fig. 2 .

It is worth remembering that each Criterion Agent has its own

function set differently. It is up to an expert of the controlled sys- 

tem domain to set the parameter of each criticality function. This

is how the balance between all criteria is expressed to ESCHER, as

it always try to lower the most critical criterion before the oth- 

ers. However, our prototype has a simplified procedure regarding

the experiments. The user does not have to directly manipulate

Eq. (10) , she or he only needs to select each critical variable and

indicate whether the function he or she wants is a threshold, a

setpoint, a minimization or a maximization. After specifying the

threshold value or the setpoint value, ǫ and η are generated auto- 

matically.

5.2. Experiments on synthetic black boxes 

The use of a black box generation tool ( Boes et al., 2013 ) en- 

abled us to test ESCHER over 50 cases of various complexity, with

up to dozens of inputs and outputs. We present here two very

simple cases to provide a better understanding on how ESCHER

reaches a compromise between several criteria, and how it is ro- 

bust to perturbations. In these experiments, a cycle corresponds to

a lifecycle of each agent followed by a simulation step of the black

box.

1 Function whose formula was proposed by our colleague Sophie Jan, at the 

Toulouse Institute of Mathematics. 



Fig. 4. Optimization of two criteria. 

5.2.1. Optimizing two criteria 

In this experiment, the black box has one input (I1) and two

outputs (O1 and O2) varying from zero to 100. The setpoint on

both outputs is 50. There are two Criterion Agents, one for each

output, each with the same criticality function. Hence, both criteria

have the same weight. However, this setpoint is not reachable on

both output at the same time, there is no value for the input that

put both output at 50. ESCHER has to find a compromise, i.e. to

minimize the highest critical level.

Fig. 4 shows the variations of the input and outputs of the con- 

trolled black box, of the number of Context Agents in the system,

and of the critical levels. The input is initialized to 1.1, which sets

O1 to 21.8 and O2 to 1.8. O2 is further from the setpoint than

O1, its critical level is therefore higher. ESCHER has no preliminary

knowledge on the black box. Its action at the first step is a mistake,

ESCHER slightly increase the input which provokes a small increase

of both critical levels. A Context Agent for this action is created.

The following step, ESCHER corrects this mistake, and find the ac- 

tion which push the outputs towards the setpoint. A second Con- 

text Agent is created, which action is kept until the highest critical

level stops decreasing.

The critical level of O1 reaches 0 at lifecycle 76. However, the

critical level of O2 is then at 26.1, and still decreasing. The ac- 

tion is continued, since the highest critical level is decreasing, even

though the other critical level is increasing.

At lifecycle 96, critical level of O1 becomes higher than critical

level of O2. In consequence, ESCHER modifies its action, and criti- 

cal levels cross again. A serie of oscillations follows, during which

3 new Context Agents are created. Finally, the value of the input

is stabilized, slightly oscillating around 3. O1 oscillates around 60

and O2 around 40. Both critical levels oscillate around 5. ESCHER

has reached the best compromise (according to the criticality func- 

tions), since the highest critical level is the lowest possible.

This experiment shows how a Controller Agent is able to deal

with an input that control several outputs with antinomic criteria.

Different criticality functions would have lead to a different com- 



Fig. 5. Robustness to perturbations at runtime. 

promise. For instance, one can prioritize one output over the other

by making a criticality function always greater than the other.

5.2.2. Robustness 

This experiment shows how ESCHER reacts to perturbations in

its environment. Here, ESCHER controls two of the three inputs (I1

and I2) of a black box. The third input (I3) is manually controlled.

These three inputs have an influence on the same output (O1), on

which a setpoint criterion is applied. First, we let ESCHER make

O1 meet the setpoint by modifying I1 and I2. Then, we manu- 

ally change the value of I3, provoking a perturbation on O1, which

abruptly go away from the setpoint. ESCHER must adapt itself to

this modification by finding new values for I1 and I2.

Fig. 5 shows the variations of the input and outputs of the black

box, along with the number of Context Agents and the critical level

of the setpoint criterion. Inputs are initialized to 1, which sets the

output to 68. The setpoint is 50. ESCHER reaches the setpoint in

less than 100 lifecycles by increasing I2 only.

At lifecycle 160, I3 is manually set to 50. This makes O1 de- 

crease, jumping out of the setpoint, resulting in a peak of critical

level, which rises from 0 to 12. This is resorbed by ESCHER, which

decreases I2 until the setpoint is reached again.

I3 is once again modified at lifecycle 220, from 50 to 100. This

provokes a huge increase of the output, therefore a rise of critical

level (from 0 to 72). Once again, ESCHER self-adapts to this pertur- 

bation. First, I1 is increased, then I2. The critical level is brought

back to 0 at lifecycle 350, while new Context Agents have been

created. Two other perturbations are later performed. Each time,

ESCHER is able to bring back the output on the setpoint.

This experiment shows that ESCHER is able to react to pertur- 

bations on the controlled system. It self-adapts to changes to main- 

tain an adequate control. Here, each perturbation is big enough to

provoke the creation of new Context Agents.

5.3. Experiments in real conditions 

The results presented in this section have been obtained dur- 

ing tests driven on a 125 cc monocylinder fuel engine. The engine

was instrumented so ESCHER has access to temperatures, pres- 



Fig. 6. Experimental Set-Up for the Tests on a Real Engine. 

Fig. 7. IMEP optimization while controlling two parameters. 



Fig. 8. Inputs and critical levels during a multi-objective optimization. 

sures, and others, via the Engine Control Unit (ECU) and a gas an- 

alyzer.

The link between the engine and the ECU is assured thanks to

various specific instruments. A Controller Area Network (CAN) bus

enables the communication of external systems with the ECU. CAN

buses are widely used in the automotive industry. A computer soft- 

ware called ControlDesk enables the reading on the ECU (in partic- 

ular of the variables measured by the sensors), the computation

of values from read variables, and the modifications of parame- 

ters (such as the ignition advance). ESCHER is connected to Con- 

trolDesk via a specific communication protocol, MCD-3 (stands for

Measurement, Calibration, Diagnostics) over Ethernet, enabling our

system to read and write values on the ECU. Finally, a gaz analyzer

is plugged onto the engine exhaust. It measures gas concentration

of various pollutants (carbon monoxide, for instance), and sends

data via a serial output (RS232/DB25) interfaced with the USB port

of the computer on which ESCHER runs. Fig. 6 shows this set-up.

For these experiments, ESCHER had to be slowed down and wait at

least 10 s between each lifecycle in order to let the engine stabilize

after changing its parameters. For the second experiment, ESCHER

had to wait 10 more seconds between each lifecycle for the gas

analyser to provide data.

5.3.1. Torque optimization 

In this experiment, the engine is put at 50 0 0 rpm, with a load

of 870 mbar in the intake manifold. ESCHER controls the total in- 

jected fuel mass and the ignition advance. The only control crite- 

rion is to maximize the indicated mean effective pressure (IMEP),

which reflects the torque.



Fig. 9. Engine outputs during a multi-objective optimization. 

The injected fuel mass is measured in milligrams per shot

(mg/shot), and the ignition advance in crankshaft degrees ( °c), i.e.

the position of the piston in the cylinder when the combustion

is triggered. IMEP is measured in bars. IMEP is a very unstable

variable, in particular with monocylinder engines. Working at high

rpm and high load, as it is the case in this experiment, reduces the

instability.

The criticality function is strictly decreasing (since we want to

maximize IMEP). We do not know a priori what is the maximal

reachable IMEP, therefore we can not set the criticality function in

a way that it returns 0 when the maximal PMI is reached. Thus,

we do not expect the critical level to be zero at the end of the

test, but we do expect it to be lower at the end than at the start.

This is true for every criticality function used with the real engine.

Fig. 7 shows the variations of the controlled inputs, the opti- 

mized output, the number of Context Agents and the critical level.

At the start, the injected fuel mass is low (7 mg/shot) regarding

the current operating point. The engine is on the verge of stalling.

Of course, ESCHER which does not have any knowledge about the

engine, is not aware of this fact. Its first action is a mistake: ES- 

CHER decreases both parameters, which leads to a drop of IMEP

(and a rise of critical level).

ESCHER quickly finds a way to make the critical level decrease,

by increasing first the injected fuel mass, then the ignition ad- 

vance. IMEP finally reaches its maximum (about 9 bars), the criti- 

cal level stops decreasing. ESCHER stabilizes itself at 11.50 mg/shot

of injected fuel, with a 2424 ◦c ignition advance. The decrease of

these inputs at lifecycle 24 is explained by nose on the IMEP. But

the system quickly corrects itself.

ESCHER managed to improve the IMEP by 3 bar in 9 lifecycles

(about 90 s), reaching the maximal IMEP possible for the consid- 

ered operating point. Obtaining the same result takes a skilled en- 



gineer, used to this particular engine, around 20 min with usual

methods.

5.3.2. Multi-Objective optimization 

For this test, the engine is put in another operating point (2500

rpm, 750 mbar). ESCHER controls the injected fuel mass the igni- 

tion advance, but also the start of injection (SOI). This new param- 

eter is the timing of the injection relatively to the position of the

piston, it is measured in crankshaft degrees. There are criteria on

four outputs:

• IMEP must be maximized;
• fuel consumption, measured in g/kWh, must be minimized;
• hydrocarbons (HC) emission must be under 500 ppm (parts par

million);
• carbon monoxide concentration (CO) must be under 3%.

The last three criteria are contradictory with the first one. In- 

deed, the most efficient way to improve IMEP is to inject more fuel.

However, this also increase fuel consumption and pollutants emis- 

sions. We need to adjust ignition advance and SOI to extract more

power from the combustion. This is what ESCHER has to learn.

Fig. 8 shows the variations of the controlled parameters and the

critical levels, while Fig. 9 shows the variations of the outputs. At

the beginning, the highest critical levels is that of fuel consump- 

tion. Thus, ESCHER seeks to decrease the fuel consumption critical

level in priority. The system manages to do so during the first 20

lifecycles, in particular by increasing the ignition advance from 10

to 26 ◦C and by decreasing the SOI from -150 to −400 ◦C, while the

fuel injection oscillates between 6 and 7 mg/shot.

At lifecycle 10, IMEP maximization becomes the most critical

criterion, however, its critical level is decreasing, so the same ac- 

tions are continued. At lifecycle 20, the CO threshold is crossed,

its critical level rises. ESCHER explores new actions to solve this

problem. It continues to decrease SOI but start to decrease ignition

advance. This lead to a peak of consumption and a drop of IMEP

between lifecycles 45 and 50, along with small excesses of hydro- 

carbons. Finally, after some oscillations, ESCHER manages to put

the pollutants under their respective thresholds, while maintaining

a high IMEP and a low consumption.

At the end of the test, IMEP is around 8 bar (2 bar higher than

the begining), while fuel consumption is around 275 g/kWh (165

g/kWh less than the initial value). Pollutants emissions are higher

than their initial values, but they meet their threshold. ESCHER has

successfully completed a standard engine optimization (i.e. opti- 

mizing torque and consumption while respecting pollution thresh- 

olds) without having any prior knowledge about engines. This test

lasted 123 lifecycles, around 41 min (ESCHER has to wait for the

gaz analyzer). This is about twice as fast than a human expert with

usual methods for a similar end result.

6. Conclusion and perspectives

This article presented ESCHER, a system that illustrates the con- 

tributions of the AMAS approach to the field of control systems

and calibration. This article focused on the full presentation of the

system, and showed results obtained both with unrelated black- 

box simulations and real engines. The goal with the experiments

on black-boxes was to illustrate how ESCHER works on basic cases.

Experiments on the real engine show its applicability in real con- 

ditions and its robustness to noisy data. Overall, the automatic cal- 

ibration performed by ESCHER is faster than methods used in the

industry for a similar resutlt. However these experiments highlight

a limitation of ESCHER. We had to make it wait between its lifecy- 

cles for the engine to stabilize and for the gaz analyzer to provide

data. This is due to its inability to correlate actions and effects if

the effects become sensible too long after the action. Further pa- 

pers will present comparisons with other learning methods, detail- 

ing the advantages and limitations of each.

The AMAS approach breaks with the traditional top-down de- 

sign of artificial systems. It focuses on the local behavior of

agents, leaving them the task of controlling their own organiza- 

tion. An adequate global function emerges from this local self- 

organization process. We hope this is the first step towards a fully

self-reconfigurable ECU.

Other AMASs have tackled the problem of learning and control

with similar Context Agents, for instance with model generation

( Nigon et al., 2016 ) and ambient robotics ( Verstaevel et al., 2016 ).

Context Agents are being generalized and standardized to become

a pattern for context learning in a multi-agent system ( Boes et al.,

2015 ).

AMASs are a young technology compared to the majority of AI

methods used in intelligent control, such as artificial neural net- 

works or genetic algorithms. Our future work must focus on the

formalization of the approach to enable a priori proofs of AMAS

properties. This is a work in progress, which first steps have been

made with Event-B ( Graja et al., 2014 ) and continuous approxima- 

tion ( Stuker et al., 2014 ).
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