
HAL Id: hal-03512910
https://hal.science/hal-03512910v1

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive segmentation: a scalable superpixel-based
method

Bérengère Mathieu, Alain Crouzil, Jean-Baptiste Puel

To cite this version:
Bérengère Mathieu, Alain Crouzil, Jean-Baptiste Puel. Interactive segmentation: a scal-
able superpixel-based method. Journal of Electronic Imaging, 2017, 26 (6), pp.1-18.
�10.1117/1.JEI.26.6.061606�. �hal-03512910�

https://hal.science/hal-03512910v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19167

To cite this version: Mathieu, Bérengère and Crouzil, Alain and
Puel, Jean-Baptiste Interactive segmentation: a scalable superpixel-
based method. (2017) Journal of Electronic Imaging, 26 (6). 1-18.
ISSN 1017-9909

Official URL

DOI : https://doi.org/10.1117/1.JEI.26.6.061606

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Abstract. This paper addresses the problem of interactive multiclass segmentation of images. We propose
a fast and efficient new interactive segmentation method called superpixel α fusion (SαF). From a few strokes
drawn by a user over an image, this method extracts relevant semantic objects. To get a fast calculation and
an accurate segmentation, SαF uses superpixel oversegmentation and support vector machine classification.
We compare SαF with competing algorithms by evaluating its performances on reference benchmarks. We
also suggest four new datasets to evaluate the scalability of interactive segmentation methods, using images
from some thousand to several million pixels. We conclude with two applications of SαF.

DOI: 10.1117/1.JEI.26.6.061606

Keywords: image analysis; interactive segmentation; superpixel; graph-factor; support vector machine; dataset; image editing

1 Introduction

Image segmentation is still a challenging research topic in
the image analysis community. Its goal is to group similar
and neighboring pixels in order to partition the image into
structures corresponding to coherent elements. However,
depending on the application context, even for the same
image, the term “coherent elements” can have different
meanings. An example is given in Fig. 1, which shows for
the same image two possible segmentations. In the first case,
we want to select only the main character, for example,
to copy and paste it on another background. In the second
case, we are interested in some details, like the clothing.

This example illustrates the complexity of finding a seg-
mentation algorithm able to deal with the variety of contexts
of use. During the last decade, convolutional neural networks
(CNNs) had led to significant advances in the semantic seg-
mentation task.1–3 However, even if results of CNN methods
are impressive, it is not yet possible to correct errors of the
produced segmentation and, to the best of our knowledge,
the user input can be used4 only during the training stage.
Even if the output of a CNN can be used as the input of
an optimization process constrained by the user input,
it requires an extensive dataset for training. Currently, we
think that there is always room for interactive methods
with an iterative process allowing the user to correct errors
of the method and to achieve any desired segmentation. For
each image, according to his needs, the user can change the
object categories and the level of details. Basically, the user
chooses some pixels (named seeds) and indicates for each of
them the element to which it belongs. Additional constraints
about the wanted segmentation are deduced by analyzing
these seeds. Adding or removing some seeds can improve
the produced result.

The two most common application scopes for these kinds
of algorithms are segmentation of a particular anatomic

structure in medical imagery5–14 and natural photograph
(such as an image taken with a smartphone or a camera)
manipulation for art or graphic design purpose.15–26 These
two application scopes correspond to distinct problems,
with substantial differences among proceeded image features
and the available prior information. Thus, in the scope of this
paper, we focus only on interactive segmentation to select
one or several objects in natural photographs.

1.1 Previous Work

Currently, several interactive segmentation methods solve
only binarization problems by separating a desired fore-
ground object from the background. These methods may
be boundary-based21–23 or region-based.15–20,24–28 Figure 2
shows the most common way to give seeds, related to each
category.

In boundary-based methods, the user provides landmark
points and the algorithm links them with a closed curve,
which satisfies both regularization and edge evidence
constraints. The combination of piecewise-geodesic paths
(CPP) is one of the most recent boundary-based interactive
segmentation methods. Proposed by Mille et al.,21 this
algorithm generates several relevant paths and selects the
one minimizing an energy function that decreases when
the path has a high probability to be on an image edge,
when the regions inside and outside the path are homo-
geneous and when the path contains few self-overlaps and
self-intersections.

In region-based methods, the user gives seeds by drawing
strokes on the objects. Pixels are grouped to form regions,
according to the similarity to object models created by the
seeds. The interactive graph cuts (IGC) algorithm, proposed
by Boykov and Jolly,16 operates by minimizing an energy
function E grouping hard constraints (seeds provided by
user interaction) and soft constraints (similarities between
pixels in spatial and intensity domains). To find the

*Address all correspondence to: Alain Crouzil, E-mail: alain.crouzil@irit.fr

Interactive segmentation: a scalable superpixel-based
method

Bérengère Mathieu,a Alain Crouzil,a,* and Jean-Baptiste Puelb
aUniversité Toulouse III, Institut de Recherche en Informatique de Toulouse, Toulouse, France
bUniversité Toulouse III, Ecole Nationale Supérieure de Formation de l’Enseignement Agricole, Toulouse, France

segmentation S , which minimizes E, Boykov and Jolly16

used a fast min-cut/max-flow algorithm on the graph
G ¼ hV; Ei with:

• V ¼ Vp ∪ Vt, where:

– Vp ¼ fv1; : : : ; vng is a set of nodes such that each
pixel pi is linked to a node vi;

– Vt ¼ fT; Sg is a set grouping two particular
nodes: the sink T and the source S;

• E ¼ Ep ∪ Et, where:

– Ep is the set of edges linking Vp nodes, under
a standard 4- or 8-neighborhood system;

– Et is the set of edges linking each node in Vp to
each node in Vt.

Each edge is weighted such that Ep edges have a strong
weight if the two linked nodes correspond to similar pixels
and Et edges have a high weight if the Vp node has a strong
probability to belong to the foreground when the second
node is the source and to the background when the second

node is the sink. The method of Boykov and Jolly16 obtained
very good results in the McGuinness interactive segmenta-
tion review,29 but it solves only a binary classification
problem.

In the McGuinness et al. review,29 the interactive seg-
mentation method using binary partition trees (BPT) of
Salembier et al.25 is the main challenger of IGC. Starting
from a hierarchical segmentation of the image represented
as a BPT, the algorithm produces a binarization by merging
regions. First, according to the seeds given by the user, some
leaf nodes of the binary tree are labeled. Then, these labels
are propagated to the parent nodes, until a conflict occurs
when the two children of a node have different labels.
In this situation, the parent node is marked as conflicting.
Finally, all nonconflicting nodes propagate their labels to
their children. At the end of this stage, some subtrees can
remain unlabeled. These unclassified regions are labeled
with the label of a previously classified adjacent region.
When several adjacent regions with different labels are
candidates to label the unclassified region, the closest one
according to the Euclidean distance is chosen.

The simple interactive object extraction proposed by
Friedland et al.17 uses seeds to generate color signatures30

(a) (b) (c)

Fig. 1 Two segmentation results of the same image. (a) Original image, (b) a coarse segmentation, and
(c) a finer segmentation.

(a) (b) (c)

Fig. 2 User interaction for the different categories of interactive segmentation methods. (a) Boundary-
based, (b) region-based, and (c) region-based multiclass interactive binarizations.

of background and foreground, represented as a weighted
set of cluster centers. The distances between each remaining
pixel and any of these centers are computed. The pixels are
merged with the region including the closest cluster.

To the best of our knowledge, the last proposition of an
interactive region-based binarization method is the segmen-
tation algorithm of Jian et al.31 using adaptive constraint
propagation (ACP). First, the image is segmented using
the mean-shift method. Then, features of corresponding
regions are extracted. During the following step of ACP, pair-
wise constraints are generated by analyzing the given seeds.
Next, ACP is performed in order to learn a global discrimi-
native structure of the image. This structure allows finally
assigning each region to the background or the foreground.

The seeded region growing (SRG) algorithm, proposed
by Adams et al.,15 the interactive multilabel segmentation
(IMS) method of Santner et al.,26 the robust IMS with
an advanced edge detector (RIMSAED) of Müller et al.,28

and the robust interactive image segmentation (RIIS) of
Oh et al.32 are attempts to solve the multiclass interactive seg-
mentation problem.

The method of Adams and Bischof15 is a very simple
recursive method, where regions are characterized by their
average color. The initial regions begin with the pixels
labeled by the user. Then, the regions are grown by including
the adjacent pixels with the most similar color. The average
colors are updated and the algorithm iterates until all the pix-
els have been grouped. In spite of its speed, this algorithm
suffers from the simplicity of its region color model.

The IMS algorithm26 has two major steps. First, the pixel
likelihood to belong to each class is computed thanks to a
random forest (RF) classifier. Then, an optimal segmentation
is found by minimizing an energy function that linearly
combines a regularization term and a data term

EQ-TARGET;temp:intralink-;e001;63;378E ¼
1

2

X

N

i¼1

PerDðEi;ΩÞ þ λ
X

N

i¼1

Z

Ei

fiðxÞdx; (1)

where Ω is the image domain, Ei are the N pairwise disjoint
sets partitioning Ω, PerD is a function encouraging to have
smooth boundaries following pixels with high gradient
value, and fi is the output of the RF classifier. During the
first stage, color and texture descriptors of pixels are com-
puted. Santner et al.26 compared several features and showed
that the combination of Lab color space and local binary
pattern texture descriptor gives the best results. Next, the
classifier is trained with the seeds. The trained classifier
gives for each pixel the likelihood to belong to each class.
These likelihoods are used during the second step, into the
data term. The regularization term penalizes the boundary
length, avoiding noisy segmentation. Santner et al.26 formu-
lated the segmentation problem like a Potts model and solve
it using a first-order primal-dual algorithm. However, this
method is rather slow. Santner et al.26 proposed a massive
parallelization and a GPU implementation of IMS, segment-
ing an image of 625 × 391 pixels into four classes on a desk-
top PC featuring a 2.6-GHz quad-core processor in about 2 s.

The RIMSAED method of Müller et al.,28 similarly to
IMS method, minimizes Eq. (1). Nevertheless, in the
RIMSAED algorithm, the term PerD does not simply use
gradient magnitude but a more accurate edge detector,33

which incorporates texture, color, and brightness. The data

term depending on fi uses color and location distributions
of seeds to deduce the likelihood of a pixel to belong to
each class. This approach is similar to the one used by
Nieuwenhuis and Cremers.34 The contribution of Müller
consists of using potential functions that allow the segmen-
tation method to correct wrong seeds by introducing a prior
probability of seeds to be erroneous.

For their proposed method RIIS, Oh et al.32 used occur-
rence (capturing global distribution of all color values within
seeds) and cooccurrence (encoding a local distribution of
color values around seeds) probabilities to detect and exclude
the erroneous seeds. Occurrence and cooccurence probabil-
ities are computed using a histogram of gray level values of
seeds. They produce a confidence score for each seed. The
final segmentation is obtained by minimizing an energy
similar to the one used by Boykov and Jolly16 The energy
function contains a data term that checks the homogeneity
of resulting regions as well as the consistency with seeds.
It also integrates a regularization term encouraging similar
pixels to be merged. As RIIS has a regularization term adopt-
ing a nonlocal pairwise connection by computing k-nearest
neighbors (k-NN) in the feature space, an approximation of
the optimal solution is found using sparse solvers.35

1.2 Contributions

The main contribution of this paper is an interactive multi-
class segmentation method, named SαF. The SαF algorithm
achieves results similar to or better than state-of-the-art
methods, while keeping a low algorithmical complexity that
allows it to correctly segment images having millions of
pixels.

The computation of an accurate segmentation is ensured
by formulating the interactive segmentation problem as a
discrete energy minimization problem, given in the form of
a factor graph.36 Notably, we propose a regularization term
that significantly reduces the required number of seeds while
allowing the correct segmentation of small objects belonging
to rare classes. The consistency of the segmentation result
regarding the image visual features and the seeds given by
the user is obtained by a supervised learning stage.

The efficiency and the scalability of SαF are ensured by
an oversegmentation initialization step. Oversegmentation is
the task of grouping pixels into small homogeneous regions,
called superpixels. During the last decade, a lot of methods
have been suggested and a recent review37 shows that five of
them achieve similar results. By providing a new evaluation
benchmark of photographs of several million pixels, we
point to unexpected difficulties encountered by these meth-
ods and justify the use of the simple linear iterative clustering
(SLIC) algorithm in SαF.

We evaluate SαF with state-of-the-art benchmarks and
we quantitatively analyze its scalability by creating and
making available four new datasets with, respectively,
big images (1800 × 1201 pixels), medium images (1350 ×
901 pixels), small images (1013 × 675 pixels), and tiny
images (500 × 334 pixels). We provide an implementation
of SαF as a Gimp plugin and we use SαF in a landscape
teaching Android application.

In the following sections, we will first explain the mod-
eling of the interactive segmentation problem as a discrete
optimization problem, represented by a factor graph. Then,
we will describe experiments to choose components that

are now parts of SαF and how we configure those compo-
nents. Finally, we will evaluate its performance by compar-
ing it to the height of state-of-the-art methods, against three
different benchmarks. We will conclude with two examples
of applications.

2 Interactive Segmentation as a Discrete
Optimization Problem

Let X ¼ fx1; : : : ; xMg be a partition of an image I inM con-
nected components. In the case of SαF algorithm, these con-
nected components are small sets of similar pixels, called
superpixels. Computing a multiclass segmentation of I
means to assign to each superpixel xi a label λj related to
the class j. Usually, λi is a positive integer and for K classes,
the set of labels that may be given for a region is
Λ ¼ fλ1; : : : ; λKg. In the case of interactive segmentation,
K is deduced by analyzing the number of colors used by
the user when drawing the seeds.

Let G ¼ hX; Ei be an undirected graph, where X is the set
of vertices (one vertex by superpixel) and E is the set of
edges, linking each pair of superpixels containing adjacent
pixels. Let c ¼ fc1; : : : ; cNg be a set of random variables,
indexed by the vertices of G, such that ci ∈ Λ. We assume
that G is a Markov random field (MRF). Thus, we can find
an optimal segmentation c of the image I by minimizing
EQ-TARGET;temp:intralink-;e002;63;476

EMRFðcjIÞ ¼ exp

"

X

N

i¼1

fdataðxi; ciÞ

þ
X

ðxi;xjÞ∈E

ωðxiÞf
regðxi; ci; xj; cjÞ

#

; (2)

where fdata is a data term, freg is a regularization term, and ω
is a weighting function. The following optimization problem
can be easily modeled by a factor graph, which represents
the structure of the underlying problem in a more precise
and explicit way than MRF can.38

A factor graph G 0 ¼ hX 0; F 0; E 0i is a bipartite graph
representing the factorization of a function of M variables,
gðx1; : : : ; xMÞ, by

• X 0 a set of vertices denoting the M variables;

• F 0 a set of vertices related to the decomposition of g in
subfunctions called factors;

• E 0 is the set of edges linking each factor to its related
variables.

Figure 3 shows the concept of factor graph.

In the case of Eq. (2), the factorization is straightforward

EQ-TARGET;temp:intralink-;e003;326;741EFG ¼
Y

N

i¼1

Idataðxi; ciÞ
Y

ðxi;xjÞ∈E

Iregðxi; ci; xj; cjÞ; (3)

where Idataðxi;ciÞ¼ exp½fdataðxi;ciÞ- and Iregðxi;ci;xj;cjÞ¼
exp½ωðxiÞf

regðxi;ci;xj;cjÞ-.

2.1 Data Term

Let X ¼ hXG; XCi be a partition of X into two sets: XG for
the superpixels containing seeds of only one class and XC for
the superpixels that do not contain seeds or contain seeds of
several classes. The set XG allows computing the probability
pðλjjxiÞ for the superpixel xi to belong to the class of label
λj. As we want to minimize Eq. (3), the data term is given by

EQ-TARGET;temp:intralink-;e004;326;575fdataðxi; ciÞ ¼ 1 − pðλjjxiÞ; where ci ¼ λj: (4)

For multiclass classification problems, the second
approach of Wu et al.39 is well known to give a satisfactory
approximation of the probability of a variable to belong to a
given class, using the result of a supervised learning method.
This algorithm has been tested both with a support vector
machine (SVM) and a RF. Section 3.3 explains how we
empirically chose one of them to compute the data term.

2.2 Regularization Term

The segmentation result obtained from the minimization of
fdata could be very noisy, with isolated superpixels having a
label different from its neighbors. On one hand, removing
this noise by adding seeds is a tedious task and degrades
the user experience. On the other hand, a regularization term
encouraging large and compact regions can remove rare
classes corresponding to small objects.

In this paper, we propose a regularization term freg,
designed to increase spatial consistency of given labels
while preserving rare classes. In a segmentation result, let
xn be a noisy superpixel (i.e., a superpixel with an erroneous
label) and xr a superpixel of a rare class. Both xn and xr have
a majority of neighbors with different labels. Let λn be the
label of xn and λr the label of xr. The fact that a superpixel
has the label λr and several adjacent superpixels with labels
different from λr is more common than the fact that a super-
pixel has the label λn and several neighbors with labels differ-
ent from λn. Figure 4 shows an example where superpixels in
blue (the rare class) are more likely adjacent to superpixels in
black than to superpixels in pink. In other words, the prob-
ability for a superpixel in blue to have neighbors in black is
higher than the probability for a superpixel in pink to have
neighbors in black. By estimating these two probabilities,
we can distinguish between correctly labeled superpixels
belonging to rare classes and noise.

The steps for the computation of the regularization term
are the following. First, SαF produces a preliminary segmen-
tation, by assigning to each superpixel the most likely label,
according to the result given by the supervised learning
method used in the data term estimation. This segmentation
is analyzed to compute for each class i, piðjÞ is the proba-
bility for a superpixel of class i to have a neighbor of class j,
where j ∈ ½1; K-.

f1 f2 f3

x1 x2 x3 x4 x5

Fig. 3 Factor graph modeling the factorization:
F 1ðX 1; X 2; X 3; X 4; X 5Þ ¼ f 1ðX 1; X 3Þf 2ðX 2Þf 3ðX 2; X 4; X 5Þ.

The regularization term is finally given by

EQ-TARGET;temp:intralink-;e005;63;515fregðxi; ci; xj; cjÞ ¼ 1 −max½piðjÞ; pjðiÞ-: (5)

2.3 Weighting Function

Weighting function ω allows balancing the influence of
the regularization term with respect to the data term.
Unlike pixels, superpixels have varying numbers of neigh-
bors. The influence of the regularization term depends on
this number and the weighting function should include it.
After several tests on a subset of state-of-the-art benchmarks
(see Sec. 4), we empirically choose the following weighting
function:

EQ-TARGET;temp:intralink-;e006;63;369ωðxiÞ ¼
0.7

jneiðxiÞj
; (6)

where jneiðxiÞj is the number of neighbors of superpixel xi.

2.4 Inference Method

Due to the number of possible segmentations, the search of
the one minimizing Eq. (3) is not realistically feasible.
Following the conclusions of Kappes et al.36 for image analy-
sis problems with superpixels, we use a generalization of
the α expansion algorithm of Boykov et al.,40 the α fusion
algorithm, with the fusion-moves and the order-reduction of
Fix et al.41

2.5 Algorithm Overview

Figure 5 shows an overview of the proposed SαF algorithm,
which can be divided into an initialization stage extracting
image features and a segmentation stage taking seeds into
account.

We consider an image I that must be segmented. During
the initialization step, SαF groups pixels of I into N super-
pixels. As explained above, superpixels are small homo-
geneous color regions, significantly less numerous than
pixels. Thus, using them as visual primitives instead of pixels
significantly reduces the execution times of the next algo-
rithm steps. In the context of SαF algorithm, superpixels

are used as an image compression tool. Their features are
extracted to produce a set P of N vectors.

The segmentation stage of SαF is iterative: as long as the
user adds or removes seeds, the segmentation is updated. We
start by analyzing seeds provided by the user to deduce K,
the number of classes. We create a set of K þ 1 labels
f0;1; : : : ; Kg with 1; : : : ; K the labels representing each
class and 0 a void label. So, we can assign to each pixel
p a label j such that j > 0 if p is a seed or j ¼ 0 otherwise.
Then, for each class, we create Sj, the set of superpixels
including at least one pixel with label j and the others
with label j or 0. Next, we train a classifier for multiclass
classification, using, for each class j, the features of the
superpixel set Sj. Finally, we compute data and regulariza-
tion terms as explained in Sec. 2 and we use α fusion algo-
rithm to find an optimal labeling of the superpixels. The label
given to each superpixel is assigned to each pixel belonging
to it, producing the segmentation.

(a) (b)

Fig. 4 Problem of the distinction between rare classes and noise in segmentation. (a) Image with three
classes, two dominant classes (in black and pink), and one rare class (in blue). (b) Example of a noisy
segmentation. Boundaries of superpixels are in white.

Data term computing

Initialization

Seeds

Superpixel descriptors

Segmentation

Image

Segmentation

Oversegmentation

Feature computing

Superpixels

Data term computing

Classifier training

Optimization

First segmentation

Regularization term

computing

Data term

computing

Fig. 5 SαF algorithm overview.

3 Experiments to Select and Tune SαFComponents

3.1 Oversegmentation

Superpixels are the results of an oversegmentation of the
image: boundaries of objects in the image should match
superpixel boundaries, but the same object can be partitioned
into several superpixels. In the context of interactive segmen-
tation, a good oversegmentation algorithm must produce as
few superpixels as possible and make as few object overlap-
ping errors as possible, because they cannot be corrected by
the next steps of the algorithms. Unfortunately, reducing
the number of superpixels requires increasing their size and,
by grouping more and more pixels into a same superpixel,
the probability of errors increases dramatically. Moreover,
the superpixel extraction has to be fast, avoiding that this
preprocessing step slows down the whole method.

According to the Stutz review,37 Felzenszwalb algorithm
(FZ),42 quick shift (QS),43 entropy rate superpixels (ERS),44

SLIC,45 and contour relaxed superpixels (CRS)46 outperform
other oversegmentation algorithms. In addition, all these
methods achieve similar results in both precision and execu-
tion time. However, the datasets used by Stutz contain only
small images (some thousand pixels). To check that these
algorithms remain competitive when dealing with big images
(several million pixels), we provide a heterogeneous size
image dataset (HSID), containing 100 images and the corre-
sponding ground truth.

We evaluated FZ, QS, ERS, SLIC, and CRS as well as
the two most recent oversegmentation methods: algorithm
of Rubio et al. [boundary-aware superpixel segmentation
(BASS)]47 and waterpixel (WP)48 algorithm. We use imple-
mentations made available by their authors.

To quantify superpixel boundary adherence, we adapt the
common boundary recall measure, using fuzzy-set theory to
introduce some tolerance error near the border pixels

EQ-TARGET;temp:intralink-;e007;63;366FBRðS;GÞ ¼
1

jBGj

X

p∈BG

exp

&

−
dðp − p 0Þ2

2σ2

'

; (7)

where G is a ground truth, S is the oversegmentation result,
BG is the set of boundary pixels in G, BS is the set of boun-
dary pixels in S, dðp − p 0Þ is the distance between p and p 0,
the nearest boundary pixel in S, p 0 ¼ arg min

pj∈BS

½dðp − pjÞ-.

The bandwidth parameter σ regulates the sensitivity to
the error by penalizing more or less the pixels far from the
boundary. According to McGuinness et al.,29 we set it to 4.

We made seven tests where methods are configured to,
respectively, produce about 500 (test 1), 700 (test 2),
900 (test 3), 1100 (test 4), 1300 (test 5), 1500 (test 6), and
1700 (test 7) superpixels (Figs. 6 and 7).

Figure 6 shows the evolution of FBR scores with respect
to the number of superpixels. The evolution of the execution
time is given in Fig. 7.

Results show that QS, BASS, CRS, and WP fail to cor-
rectly oversegment HSID images. Algorithms FZ, SLIC, and
ERS achieve similar boundary adherence with an equivalent
number of superpixels, but ERS and FZ are significantly
slower than SLIC. As the execution time is critical for
an interactive segmentation method, we chose to use SLIC.

The HSID dataset and the complete results of the
evaluation are available at Ref. 49. They are described in
a previous paper.50

3.2 Descriptor

We describe each superpixel by its normalized average RGB
color and the normalized location of its center of mass. We
made additional tests with Lab color space and obtained
results similar to those achieved with RGB. As converting
a pixel from RGB to Lab color spaces requires extra com-
putation, we chose to use only RGB color space.

This simple descriptor has the benefit of being quickly
computed and used. In addition, as explained in Sec. 4.4,
color and location are intuitive concepts for the user and
make the behavior of SαF easily predictable.

However, some previous works (for example, the method
of Gould et al. 51) show that texture information from super-
pixels is often also valuable. Thus, we designed another
version of SαF with color, location, and texture features.
As a texture descriptor, we used uniform local binary pat-
terns (LBP-U),52 which have been successfully integrated

Fig. 6 Boundary adherence evolution (FBR) with respect to the
number of superpixels.

Fig. 7 Execution time evolution with respect to the number of
superpixels.

in many applications.26 We evaluated it with the seven data-
sets and their related metrics presented in Sec. 4. While
the computation of LBP-U represents only 23% of the
total execution time of the initialization stage, the impact
of the addition of a texture descriptor in the segmentation
stage is more significant, taking 76% of the total execution
time. The segmentation stage occurs each time the user
updates the seeds, and this result led us to discard the
LBP-U version of SαF.

Moreover, on all the tested datasets, we did not find any
evidence that LBP-U information can improve accuracy or
allow reducing the number of required seeds. Because in SαF
the SLIC oversegmentation algorithm is tuned to produce
very small regions (about a few hundred of pixels) with
homogeneous colors (average standard deviation for each
color channel is about 4%), this result is not surprising.

3.3 Classifier

We evaluated the accuracy of probability distribution pre-
dicted by two different classifiers integrated in the approach
of Wu et al.: an RF and an SVM. For RF, we used the
ALGLIB implementation.53 Two parameters, the number
of decision trees and the percentage of training data used
to train each decision tree, must be given. For the SVM,
we used the C-SVM libSVM implementation54 with a radial
basis function kernel. With this kind of kernel, two param-
eters, the regularization parameter C and the kernel param-
eter γ, must be tuned. We tested each classifier with different
pairs of parameters, on a subset of Santner dataset,26 to ana-
lyze how its behavior evolves when parameters are modified.

We used the multiclass segmentation evaluation dataset
DSA

55 made available by Santner et al.26 As we reuse this
dataset to compare SαF to the state-of-the-art methods, we
use only a subset of these ground truth, made of 100 images.

Using this dataset, we estimate reference distribution
probabilities for each superpixel of each image. We compute
for each class λj the ratio of pixels belonging to superpixel xi
and having label λj in the ground truth.

We used two criteria: the average execution time for
an image and the distance between the reference probability
distribution and the one predicted using the classifier and
the approach of Wu et al.39 Execution time is calculated on
a desktop PC featuring a 2.6-GHz Intel Core i7 processor.
The similarity between the two probability distributions is
computed using

EQ-TARGET;temp:intralink-;e008;63;254IerrðPR; PclassifÞ ¼
X

Nλ

i¼1

ffi

½pclassifðλijxiÞ − pgtðλijxiÞ-
2

q

; (8)

where pclassifðλijxiÞ is the probability of superpixel xi to
belong to the class of label λi predicted by a classifier and
pgtðλijxiÞ is the related reference probability.

To train classifiers, we use randomly selected superpixels.
The same training data are used for the both RF and SVM.
The results presented in Tables 1–4 are obtained by using
about one hundred superpixels as training data. We made
additional tests by increasing or decreasing the number of
training data. Tendencies remain the same.

Tables 1 and 2 show that, for SαF with RF, a low Ierr

score is achieved with a high number of decision trees
and using a substantial percentage of training data for each

decision tree, which comes at the cost of a significantly
increased execution time.

On the contrary, Tables 3 and 4 show that there are some
pairs of values for parameters γ and C giving both a low Ierr

score and a fast classification, for example, γ ¼ 4 and C ¼ 4,
γ ¼ 4 and C ¼ 8, γ ¼ 8, C ¼ 8, etc.

We explain the difference between the two classifiers by
the fact that SVM uses the whole training data, whereas RF
trains each decision tree with a subset of the training data.
In interactive segmentation problems, the low number of
training data (especially when dealing with superpixels,

Table 1 Execution time (in a tenth of a second) of RF classifier,
achieved on a subset of the ground truth of Santner et al.26 The
first row gives the percentage of training data per tree, the first column
gives the number of trees.

10 20 30 40 50 60 70 80 90 100

100 0.8 1.6 2.6 3.3 4.1 4.9 5.7 6.6 7.4 8

200 1.1 2.1 3.2 4.4 5.5 6.4 7.5 8.6 9.8 10.5

300 1.3 2.5 3.8 5.1 6.5 7.7 9 10.3 11.8 12.7

400 1.4 2.9 4.4 6 7.3 8.8 10.8 11.9 13.5 15.2

500 1.6 3.2 5 6.6 8.3 10 11.6 13.4 15.4 16.9

600 1.7 3.5 5.6 7.5 9.3 11.1 12.9 14.8 17 18.5

700 1.9 3.8 6.5 8.1 10 11.9 14.1 16.2 18 19.6

800 2.1 4.2 6.8 8.8 10.8 12.9 15.9 17.9 19.1 21.3

900 2.2 4.5 7.3 9.4 11.7 14.1 17 19.1 20.5 22.9

1000 2.4 5 7.6 9.9 12.8 14.9 18 20.6 22 24.6

Table 2 Error rate Ierr (%) of RF classifier, achieved on a subset of
the ground truth of Santner et al.26 The first row gives the percentage
of training data per tree, the first column gives the number of trees.

10 20 30 40 50 60 70 80 90 100

100 13 13 13 13 13 13 13 13 13 13

200 10 9 9 10 9 10 10 9 9 9

300 8 8 8 8 8 8 8 8 8 8

400 7 7 7 7 7 7 7 7 7 7

500 6 6 6 6 6 6 6 6 6 6

600 6 6 6 6 6 6 6 6 6 6

700 5 5 5 5 5 5 5 5 5 5

800 5 5 5 5 5 5 5 5 5 5

900 5 5 5 5 5 5 5 5 5 5

1000 5 5 5 5 5 5 5 5 5 5

less numerous than pixels) makes the learning task difficult
for a classifier such as RF.

3.4 Parameter Values

In all our tests, following the recommendation of Achanta
et al.,45 we used the SLIC oversegmentation algorithm
with a compactness parameter equal to 10. In SαF, we
group pixels into about 3000 superpixels. For the SVM,
γ parameter was equal to 4 and C parameter was equal to 4.
On all experimental datasets, these values provide satisfac-
tory results, but are not critical.

4 Evaluation of SαF

4.1 State-of-the-Art Benchmarks

We compared SαF to results achieved by the height of
state-of-the-art methods: three region-based interactive
binarization methods (IGC,16 SIOX,17 and BPT25), one
boundary-based interactive binarization method (CPP),21 and
four multiclass methods (SRG,15 IMS,26 RIMSAED,28 and
RIIS32). Figure 8 shows examples of segmentations pro-
duced by SαF on images of state-of-the-art benchmarks.

4.1.1 Method of Milles et al.

We compare SαF to the most recent boundary-based inter-
active segmentation method: CPP. This algorithm has

been evaluated by Mille et al.21 on a subset of 10 images,
extracted from the dataset DMI provided by Microsoft.56

The accuracy of the obtained segmentations is quantified
using the AO measure of McGuinness and Oconnor29

EQ-TARGET;temp:intralink-;e009;326;313AOðR;GÞ ¼ 100
jGO ∩ ROj

jGO ∪ ROj
; (9)

where RO is the set of pixels labeled as object by the algo-
rithm, GO is the set of pixels labeled as object in the ground
truth, and jSj is the cardinality of a set S. A high value of
AO indicates that the resulting regions and the regions in
the ground truth are similar.

Milles et al.21 used automatically generated seeds: using
the ground truth, the boundary of the object is extracted and
split into N segments of equal length. For each segment, a
seed is randomly selected. For a same image, Milles et al.21

computed 20 different sets of seeds. Table 5 shows the aver-
age, the standard deviation, and the maximum value of AO

scores achieved by CPP method.
Table 6 shows the performances of SαF with the same

images using manually given seeds. During 2 min, the user
is allowed to update seeds, improving the segmentation. The
average percentage of pixels labeled as seeds by the user is
equal to 0.56%.

Unfortunately, results presented in Tables 5 and 6 are not
comparable. The seeds used for the evaluation of CPP are

2−6 2−5 2−4 2−3 2−2 2−1 1 2 22 23 24 25 26 27 28 29

2−6 1 0.9 1 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4

2−5 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.5

2−4 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.5

2−3 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5

2−2 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.5

2−1 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.5

1 0.9 0.9 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

2 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

22 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4

23 0.9 0.9 0.7 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

24 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

25 0.9 0.9 0.9 0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.6

26 1 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

27 1 1 1 1 1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

28 1 1 1 1.1 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

29 1.1 1.1 1.1 1.1 1.1 1.2 1.4 1.3 1.3 1.3 1.4 1.3 1.4 1.3 1.4 1.4

Table 3 Execution time (in a tenth of a second) of SVM classifier, achieved on a subset of the ground truth of Santner et al.26 The first row gives the
value of C parameter, the first column gives the value of parameter γ.

created using the ground truth and are more accurately
located than seeds manually given by a user. In addition,
seeds used for the evaluation of SαF are updated by the
user.

With less than three iterations, SαF is able to achieve
very satisfactory results on these datasets. In addition, SαF
execution time does not depend on the number of seeds.
Section 4.3 shows that this execution time is related to

2−6 2−5 2−4 2−3 2−2 2−1 1 2 22 23 24 25 26 27 28 29

2−6 22 22 22 22 21 18 15 13 12 11 10 10 9 8 8 6

2−5 23 22 22 21 18 15 13 12 11 10 10 9 8 7 6 5

2−4 22 22 21 18 15 13 12 11 10 9 8 7 6 5 5 4

2−3 22 21 18 15 12 11 11 10 9 7 6 5 5 4 4 4

2−2 21 18 15 13 11 10 9 8 7 6 5 4 4 4 3 3

2−1 19 15 12 11 9 8 7 6 5 4 4 4 3 3 3 3

1 16 12 10 9 7 6 5 4 4 3 3 3 3 3 3 3

2 13 10 8 7 6 5 4 4 3 3 3 3 3 3 3 3

22 13 8 6 5 4 4 3 3 3 3 3 3 3 3 3 3

23 14 7 5 4 4 3 3 3 2 2 2 2 3 3 3 3

24 16 10 5 4 3 3 3 2 2 2 2 2 3 3 3 3

25 17 15 7 3 3 3 2 2 2 2 2 2 3 3 3 3

2 6 19 18 14 6 3 3 3 3 3 3 3 3 3 3 3 3

27 18 18 17 13 5 3 3 3 3 3 3 3 3 3 3 3

28 20 20 19 18 13 6 4 4 4 4 4 4 4 4 4 4

29 20 20 21 20 20 14 7 7 7 7 7 7 7 7 7 7

Fig. 8 Examples of segmentations produced with SαF on DMI dataset
21 (columns 1 and 2), DMG data-

set29 (columns 3 and 4) and DSA dataset
26 (columns 5 and 6). The first row shows the original image,

the second row the given seeds, and the third row the result.

Table 4 Error rate Ierr (%) of SVM classifier, achieved on a subset of the ground truth of Santner et al.26 The first row gives the value of C
parameter, the first column gives the value of parameter γ.

the number of pixels during the initialization stage and to
the number of superpixels during the segmentation stages.
The initialization stage can be done once, while the user is
selecting the first seeds. So, only the execution time of the
segmentation is perceived by the user. On the contrary, CPP
execution time depends both on the image size and on the
number of seeds. The average execution time for SαF is
equal to 0.4 s for the initialization stage and to 0.2 s for
each segmentation stage. The execution time of CPP varies
between 3 and 17 s using similar hardware.

4.1.2 Methods evaluated by McGuinness et al.

The methods SRG, IGC, SIOX, and BPT have been evalu-
ated by McGuinness et al.29 on the dataset DMG provided by
the authors,56 using boundary (AB) and object (AO) accuracy
measures.29Given a segmentation result R and a ground truth
G, the boundary accuracy measure is given by

EQ-TARGET;temp:intralink-;e010;326;575ABðR;GÞ ¼ 100

P

x min½B̃GðxÞ; B̃RðxÞ-
P

x

max½B̃GðxÞ; B̃RðxÞ-
; (10)

where BG and BR are the internal border pixels for ground

truth and algorithm segmentation result, respectively, and B̃G

and B̃R are these same sets extended using fuzzy-set theory
as described in the paper of McGuinness et al.29 A high value
of AB score indicates that boundaries in the segmentation
result follow boundaries in the ground truth.

For each method, seeds are manually given by a user. The
user has 2 min to update these seeds and achieve a segmen-
tation as accurate as possible.

Table 7 shows that SαF outperforms these four methods
with a 5% increase on AB, a 3% increase on AO, and a similar
execution time.

4.1.3 Method of Jian et al.

We cannot make a rigorous comparison between SαF and
a recent interactive binarization method based on an ACP,
proposed by Jian and Jung31 Indeed, this paper does not
contain sufficient information about the dataset used,
which is an extended version of the one created by
McGuinness and Oconnor.29 We simply notice that SαF
results on McGuinness et al. dataset29 are superior to ACP
scores reported by the authors, with a 1% increase. SαF exe-
cution times are slightly superior, but this drawback must
be balanced by the possibility to compute the initialization
stage while the user gives the seeds, to obtain a perceived
SαF execution time less than or equal to ACP.

4.1.4 Methods of Santner et al. and Müller et al.

IMS and RIMSAED have been evaluated by Santner et al.26

using the dataset DSA
55 provided by the authors and the

DICE measure, suggested by Dice and defined in their
paper. This measure is an adaptation of AO for multiclass
problems

EQ-TARGET;temp:intralink-;e011;326;147DICEðR;GÞ ¼ 100
X

K

i¼1

2
jRi ∩ Gij

jRi ∪ Gij
; (11)

whereK is the number of classes, Ri is the set of pixels of the
i’th class in the resulting segmentation, and Gi is the set of
pixels of the i’th class in the ground truth.

Table 5 Performances achieved by CPP, reported from the paper of
Milles et al.21

Image CPP avg CPP std CPP max

Banana1 60.4 0.20 89.1

Banana2 47.3 0.25 88.3

Banana3 62.5 0.15 86.6

Ceramic 85.6 0.03 89.8

Doll 80.8 0.04 87.7

Flower 88.1 0.29 98.2

Mushroom 61.3 0.17 91.1

Music 97.8 0.01 98.6

Sheep 77.0 0.18 90.2

Teddy 74.9 0.17 96.7

All 73.5 0.23 91.4

Table 6 Performances achieved by SαF.

Image SαF

Banana1 97.1

Banana2 96.4

Banana3 97.9

Ceramic 97.5

Doll 98.9

Flower 98.6

Mushroom 97

Music 98.9

Sheep 96.2

Teddy 95.8

All 97.2

Table 7 Evaluation of SαF with McGuinness et al. protocol and com-
parison with IGC, SIOX, BTP, and SRG methods.29

IGC SIOX BTP SRG SαF

AO 92 85 92 88 95

AB 77 64 78 70 83

Both Santner et al.26 and Müller et al.28 used the same
seeds, given by the user during the creation of the ground
truth. These seeds are not updated to improve the segmen-
tation result.

With these seeds, the overall performance of SαF is not
satisfactory, with an average DICE score of 83. The values
vary between 40 and 99 and the standard deviation is around
14, indicating a high dispersion. A detailed analysis of
the score distribution shows that the dataset can be divided
into three groups: 32% of the images give a very good DICE
score (more than 93), 35% a good DICE score (between 80
and 93), and 33% a bad DICE score (less than 80). This latter
category of images explains the weak average performance
of SαF.

For these images, the provided seeds are not suitable to
SαF. Because SαF uses location information, it obtains
unsatisfactory results when seeds are given too far from
the object boundaries. Examples of such unsuitable locations
are given in Figs. 9 and 10. For some images, seeds need to
be located near the boundaries and more numerous (Fig. 9).

For others, modifying their locations is enough for SαF to
get good results (Fig. 10).

To produce accurate results, SαF needs an instruction to
be given to the user: “give the initial seeds near the object
boundaries.” In the case ofDSA dataset, a maximum distance
around 30 pixels is quite enough. As explained in Sec. 4.4,
this is a small price to pay for a method showing an easily
predictable behavior.

For each image, we made an additional test taking into
account the instruction and allowing the user to modify
the seeds in order to improve the segmentation result. We
calculated the DICE score obtained with two sets of seeds:
the set of initial seeds given before the first segmentation and
the set of final seeds selected when the user is satisfied with
the result. The average number of updates between the first
segmentation and the final result is equal to 3. SαF produced
accurate results with an average DICE score of 97 for the
set of initial seeds and of 98 for the set of final seeds.
The average execution time of SαF was only 1.2 s against
2 s for IMS and for RIMSAED. In addition, these execution

(a)

(b) (c)

(d) (e)

Fig. 9 Examples where seeds of Santner et al.26 are inadequate in location and number for SαF to accu-
rately segment the image. (a) Image 0011, (b) seeds of Santner et al., (c) seeds given by asking the user
to select them near the object boundaries, (d) result with seeds of Santner et al., and (e) Result with
seeds near the object boundaries.

times, on the contrary for IMS and RIMSAED, are achieved
without any specific optimization. In particular, SαF does not
require a GPU implementation.

4.1.5 Method of Oh et al.

RIIS has been evaluated on DMI and DSA datasets, both with
DICE measure, with manually given seeds. In the same con-
ditions, SαF outperforms RIIS in terms of accuracy, with a
5% increase onDMI dataset and an 8% increase onDSA data-
set (Table 8). The method SαF is also much more efficient
with an execution time of about 1 s on a simple desktop com-
puter, whereas RIIS running time is greater than 40 s.

4.2 Benefit of the Regularization Term

To analyze the benefit of the regularization term, we design
more simple versions of SαF minimizing

EQ-TARGET;temp:intralink-;e012;326;270ESCISðcjIÞ ¼
Y

N

i¼1

Idataðxi; ciÞ: (12)

The minimization of ESCIS is easily achieved by simply
keeping the classification produced by the SVM. So, we
name this algorithm SCIS for superpixel classification-based
interactive segmentation. We made tests onDMG,DMI,

29 and
DSA dataset.26 Table 9 gives the percentage of pixels used as
seeds (Pr), execution time (s) for the initialization step (T init),
and segmentation time (s) for the segmentation step, which
are required for both SCIS and SαF achieve similar accuracy.
In other words, AO and AB scores onDMG dataset,29 AO score
on DMI dataset,21 and DICE score on DSA dataset26 are
similar.

These results show that the introduction of a regularization
term in SαF reduces the required number of pixels labeled as
seeds of about 1%. Concretely, SCIS uses more than 200,000
supplementary seeds. In addition, these seeds cannot be

(a)

(b) (c)

(d) (e)

Fig. 10 Examples where seeds of Santner et al.26 are inadequate in location for SαF to accurately seg-
ment the image. (a) Image 0217, (b) seeds of Santner et al., (c) seeds given by asking the user to select
them near the object boundaries, (d) Result with seeds of Santner et al., and (e) Result with seeds near
the object boundaries.

obtained by giving a simple instruction. Figure 11 shows
an example of differences between SCIS and SαF seeds.
Execution time is not significantly increased by introducing
the regularization term. The initialization stage is not
impacted and the segmentation stage remains about 1 s.

4.3 Scalability

We also investigate the ability of SαF to segment images of
various sizes, especially images with several million pixels.
As none of the previous benchmarks provides a dataset with
such images, we selected 50 images from HSID and adapted
them to evaluate multiclass interactive segmentation meth-
ods. We created four datasets, by rescaling these images
and the ground truth: the first with big images (2,161,800 pix-
els), the second with medium images (1,216,350 pixels), the
third with small images (684,788 pixels), and the last with
tiny images (167,000 pixels).

For each dataset, we compute the mean, the standard
deviation, the minimum value and the maximum value of
the execution time for the initialization stage (Table 10),

the execution time for the segmentation stage (Table 11)
and the DICE measure (Table 12).

The low standard deviation and the small difference
between maximum and minimum values shows that the
quality of SαF results and the time required are not strongly
altered by the number of classes. The most interesting con-
clusion on this experimentation is the gap between the exe-
cution time for the initialization stage and the execution time
for the segmentation stage. As initialization must be done
only once, this stage has little impact on SαF responsiveness.
In fact, with an implementation performing this stage while
the user gives seeds, SαF can become an interactive time
application, computing the segmentation stage in less than
1 s, even for images with millions of pixels. In addition,
because the superpixel number is always around 3000, the
execution time for the segmentation stage is stable, even
if the image size is significantly increased. The DICE score
shows that this “compression” of the image is sufficient to
ensure accurate results, no matter the image size.

Table 8 Comparison between RIIS and SαF on the DMI and the DSA

datasets, with the DICE measure (%).

RIIS SαF

DMI,
21 DICE 93 98

DSA,
26 DICE 90 98

Table 9 Comparison of the required percentage of pixels labeled as seeds (Pr), execution time in seconds for the initialization step (T init) and
segmentation time in seconds for the segmentation step (T seg) for both SCIS and SαF. The three scores are obtained for segmentations of similar
accuracy.

Bench.

DMG
29 DMI

21 DSA
26

SCIS SαF SCIS SαF SCIS SαF

Pr (%) 2.08. 0.49 1.26. 0.69 2.08. 0.49 0.74. 0.36 1.42. 0.42 0.89. 0.43

T initðsÞ 0.4. 0.01 0.41. 0.01 0.6. 0.18 0.61. 0.19 0.64. 0.02 0.66. 0.02

T segðsÞ 0.06. 0.03 0.68. 0.04 0.04. 0.02 0.27. 0.02 0.06. 0.04 0.51. 0.28

(a) (b)

Fig. 11 Comparison between (a) SCIS and (b) SαF seeds.

Table 10 SαF initialization stage execution time in seconds.

Size Mean. std Min Max

Tiny 0.47. 0.08 0.42 1.03

Small 1.79. 0.06 1.71 1.98

Medium 3.25. 0.12 3.06 3.64

Big 5.73. 0.25 5.34 6.33

4.4 Usability

4.4.1 Time required to segment an image

A fully manual segmentation of an image is a time-consum-
ing task. To create the reference segmentations of HSID, we
spent around 1 h per image to achieve a level of accuracy
high enough to meet the requirements of a ground truth

data. However, we are comfortable with graphic tablets.
Beginners need more time to get an accurate segmentation.

Using SαF significantly facilitates and accelerates the seg-
mentation process. The overall time to segment an image—
including the selection of initial seeds, the corrections of
seeds and the execution time of each use of SαF—is related:

• to the number of classes: several classes require more
seeds and to often change the color of the brush-like
tool used to select them;

• to the image complexity: if an object contains a lot of
small and scattered details, selection of seeds is more
difficult.

With McGuinness et al.,29 in the worst case, the overall
time is 2 min. In the best case, only a few seconds are
required to segment an image. With Santner et al.,26 in
the worst case, this duration is around 5 min. In the best
case, only a few seconds are required to segment an
image. The selection of the initial seeds is the more time-
consuming task. The computation time of each run of the
segmentation stage of SαF is lower than 1 s. The correction
of seeds takes only a few seconds.

Table 13 shows three examples of time needed for fully
manually segmenting an image versus using SαF. The first
image (Fig. 12) is a small image of the McGuinness et al.
dataset,29 whereas the last two images (Figs. 13 and 14)
come from the HSID dataset. The overall segmentation
time using SαF is detailed into the last four columns of
this table. On these images, using SαF is 6 to 11 times faster
than a fully manual segmentation.

Table 11 SαF segmentation stage execution time in seconds.

Size Mean. std Min Max

Tiny 0.49. 0.27 0.23 1.69

Small 0.46. 0.28 0.21 1.64

Medium 0.46. 0.28 0.21 1.68

Big 0.41. 0.22 0.2 1.2

Table 12 SαF DICE score.

Size Mean. std Min (%) Max (%)

Tiny 98%. 4.72 66 100

Small 99%. 1.03 95 100

Medium 99%. 0.99 95 100

Big 99%. 1.12 95 100

Table 13 Examples of time needed for a user to perform a fully manual segmentation of an image versus using SαF (s).

Image Fully manual

Using SαF

Overall time Initial seed selection Seed corrections Initialization stage Segmentation stage

Fig. 12 216 34 27 5 0.5 1.5

Fig. 13 634 37.5 25 6 5.5 1

Fig. 14 893 76.5 62 8 5.5 1

Fig. 12 SαF seed evolution example for a binarization problem. Only two updates of seeds are required
to achieve an accurate result.

In the case of Fig. 12, where a church must be extracted
and where the foreground is clearly separate from the back-
ground, only a few seeds are necessary. The user who seg-
mented this image was familiar with SαF: drawing some
strokes to obtain the first segmentation result took only a
few seconds. Additional tests show us that less experienced
users need more time (several tens of seconds) for the first
image because they select more seeds, following more
scrupulously the object boundaries. Fortunately, they learn
quickly how to reduce the number of seeds. The correction
of errors in the result given by SαF by adding or removing
seeds is straightforward: for both novice and expert users,
each correction takes less than 1 s.

4.4.2 Predictability

The user evaluation results of the McGuinness et al. review29

highlight the necessity for an interactive segmentation
method to not only provide a fast and accurate segmentation,
but also to have a predictable behavior.

Figures 12–14 show examples of segmentations achieved
with SαF for images taken from datasets used in Secs. 4.1

and 4.3. The analysis of the given seeds shows that the
behavior of SαF is easily predictable: by putting seeds
near the objects borders, the majority of the image is cor-
rectly segmented. In the majority of the cases, the remaining
errors are quickly corrected by adding seeds over them.
If some errors are due to seeds put on the wrong object,
these seeds can be removed. This good predictability is
directly related to the choice of the superpixel features:
as color and location are extremely intuitive concepts, the
behavior of SαF is consistent with the user expectation.

Moreover, for the images of Figs. 12–14, a maximum of
two updates of the seeds allow achieving a correct segmen-
tation. Except for particularly difficult situations with, for
example, shadows or a poor contrast between objects, the
required number of iterations varies from 2 to 4. If seeds
are correctly positioned with respect the object boundaries,
only small errors have to be corrected and the accuracy of the
segmentation at each iteration is not strongly improved. For
example, on the dataset of Santner et al.,26 between the initial
and the final segmentations, the average DICE score has
improved from about 97 to 98. This fast convergence and

Fig. 13 SαF seed evolution example for a problem with three classes. Only one update of seeds is
required to achieve an accurate result.

Fig. 14 SαF seed evolution example for a problem with four classes. Only two updates of seeds are
required to achieve an accurate result.

the fact that only some strokes are required to segment an
image make us confident about the user acceptance of SαF
as a tool for multiple object selection.

However, when first seeds are not given near the boun-
dary, SαF can produce segments with significant errors.
Notably, if the seeds are given only on a small part of the
image, superpixels used as training data can be insufficient
to find the right support vector during SVM training. An
example is given in Fig. 15. Fortunately, these errors are
easily avoided by asking the user to give seeds near the
boundaries.

5 Applications

5.1 Semantic Segmentation for Landscape
Observatories

Since 2005, the European Landscape Convention of the
Council of Europe57 promotes the protection and manage-
ment of European landscapes. In this context, landscape
observatories58–60 respond to the need to study the landscape
and build awareness of society to their conservation. They
are based on digital photograph datasets, containing for sev-
eral interesting spots a chronological series of photographies,
taken regularly (for example, every month or every year).

The algorithm SαF has been implemented in an Android
application allowing to update the images of a landscape
observatory and to segment them into labeled regions,
related to landscape semantic elements (building, grass, road,
etc.). The application locates the nearest observatory spot
and downloads a previous photograph of the spot to easily
re-photograph it. Then, it uses SαF to produce semantic seg-
mentation of the photograph, which allows a quick automatic
comparison of images of the same spot to detect interesting
changes. The complete framework has been presented during
the 2017 French Conference on Multimedia, Geomatics,

Teaching, and Learning61 and will be used very soon with
school students in life and agronomy sciences and technol-
ogies and landscape design.

5.2 Photograph Enhancement

Figure 16 shows an example of SαF usage to enhance a pho-
tograph using Gimp. Thanks to SαF, three different image
regions are selected, corresponding to the sky, the building,
and the water. Notice that the original image is especially
difficult with a poor contrast between the water and the
buildings, dull colors, and thin elements. Then, we applied
to each region a specific operator to enhance it and modified
the color channels of the sky to create a sunset feeling; we
increased the contrast and the color saturation of the build-
ings and made the water darker with golden light reflections.
Each local modification allows a more visually pleasant
global image.

6 Conclusions

In this paper, we proposed an interactive multiclass segmen-
tation method, SαF. This algorithm is based on the modeling
of the interactive segmentation problem as a factor graph,
where variables are superpixels and factors allow to mini-
mize both a data term and a regularization term. By compar-
ing SαF with the state-of-the-art algorithms on current
benchmarks, we show that it is a very competitive algorithm.
We also provide extended tests, allowing to better understand
the influence of each component of the proposed method. In
particular, we made available a dataset for oversegmentation
methods evaluation, providing results missed by the previous
reviews about superpixel algorithms. In addition, we made
available three datasets to check scalability of interactive
segmentation methods and show that SαF successfully seg-
ments them.

(a) (b)

Fig. 15 SαF failing to produce an accurate segmentation when user gives wrong seeds. (a) SαF seeds
and (b) segmentation result.

Fig. 16 Usage of SαF for photo enhancement. From the left to the right: original image, seeds, segmen-
tation result, and enhanced photograph.

The performance achieved by SαF on the six tested data-
sets shows the ability of superpixels to provide an efficient
compression of the image. The execution time of SαF high-
lights their relevance to design competitive computer vision
algorithms. Here, they are the key to provide a scalable
method producing a result in interactive time.

We also described SαF usage in two different applica-
tions: photograph enhancement and semantic segmentation.

The source code of SαF, the three datasets used for
the scalability evaluation, and the seeds are made available
at Ref. 56.

Acknowledgments

The work of Bérengère Mathieu was partially supported by
ANR-11-LABX-0040-CIMI within the program ANR-11-
IDEX-0002-02.

References

1. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015).

2. A. Garcia-Garcia et al., “A review on deep learning techniques applied
to semantic segmentation,” Comput. Res. Repository abs/1704.06857
(2017).

3. D. Fourure et al., “Multi-task, multi-domain learning: application to
semantic segmentation and pose regression,” Neurocomputing 251,
68–80 (2017).

4. D. Lin et al., “ScribbleSup: scribble-supervised convolutional networks
for semantic segmentation,” in IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 3159–3167 (2016).

5. N. Ben-Zadok, T. Riklin-Raviv, and N. Kiryati, “Interactive level set
segmentation for image-guided therapy,” in IEEE Int. Symp. on
Biomedical Imaging: From Nano to Macro, pp. 1079–1082 (2009).

6. D. Cremers et al., “A probabilistic level set formulation for interactive
organ segmentation,” Proc. SPIE 6512, 65120V (2007).

7. A. X. Falcão, J. K. Udupa, and F. K. Miyazawa, “An ultra-fast user-
steered image segmentation paradigm: live wire on the fly,” IEEE
Trans. Med. Imaging 19(1), 55–62 (2000).

8. Y. Gao et al., “A 3D interactive multi-object segmentation tool using
local robust statistics driven active contours,” Med. Image Anal.
16(6), 1216–1227 (2012).

9. Y. Tong et al., “Interactive iterative relative fuzzy connectedness lung
segmentation on thoracic 4D dynamic MR images,” Proc. SPIE 10137,
1013723 (2017).

10. J. Egger et al., “US-cut: interactive algorithm for rapid detection and
segmentation of liver tumors in ultrasound acquisitions,” Proc. SPIE
9790, 97901C (2016).

11. H.-E. Gueziri, M. J. McGuffin, and C. Laporte, “A generalized graph
reduction framework for interactive segmentation of large images,”
Comput. Vision Image Understanding 150, 44–57 (2016).

12. T. Suzuki et al., “Interactive segmentation of pancreases from abdomi-
nal CT images by use of the graph cut technique with probabilistic
atlases,” in Int. Conf. on Innovation in Medicine and Healthcare,
pp. 575–584, Springer (2015).

13. P. Karasev et al., “Interactive medical image segmentation using PDE
control of active contours,” IEEE Trans. Med. Imaging 32, 2127–2139
(2013).

14. J. Petersena et al., “Effective user guidance in online interactive seman-
tic segmentation,” Proc. SPIE 10134, 101341V (2017).

15. R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans.
Pattern Anal. Mach. Intell. 16(6), 641–647 (1994).

16. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary
and region segmentation of objects in ND images,” in IEEE Int. Conf. on
Computer Vision, Vol. 1, pp. 105–112 (2001).

17. G. Friedland, K. Jantz, and R. Rojas, “SIOX: simple interactive object
extraction in still images,” in IEEE Int. Symp. on Multimedia (2005).

18. L. Grady, “Random walks for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006).

19. V. Gulshan et al., “Geodesic star convexity for interactive image seg-
mentation,” in IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition, pp. 3129–3136 (2010).

20. Y. Li et al., “Lazy snapping,” ACM Trans. Graphics 23(3), 303–308
(2004).

21. J. Mille, S. Bougleux, and L. D. Cohen, “Combination of piecewise-
geodesic paths for interactive segmentation,” Int. J. Comput. Vision
112(1), 1–22 (2015).

22. P. A. Miranda, A. X. Falcao, and T. V. Spina, “Riverbed: a novel user-
steered image segmentation method based on optimum boundary
tracking,” IEEE Trans. Image Process. 21(6), 3042–3052 (2012).

23. E. N. Mortensen and W. A. Barrett, “Interactive segmentation with
intelligent scissors,” Graphical Models Image Process. 60(5), 349–384
(1998).

24. J. Ning et al., “Interactive image segmentation by maximal similarity
based region merging,” Pattern Recognit. 43(2), 445–456 (2010).

25. P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval,” IEEE Trans. Image Process. 9(4), 561–576 (2000).

26. J. Santner, T. Pock, and H. Bischof, “Interactive multi-label segmenta-
tion,” in Asian Conf. on Computer Vision, pp. 397–410 (2010).

27. A. Blake et al., “Interactive image segmentation using an adaptive
GMMRF model,” in European Conf. on Computer Vision, pp. 428–
441 (2004).

28. S. Müller et al., “Robust interactive multi-label segmentation with
an advanced edge detector,” in German Conf. on Pattern Recognition,
pp. 117–128 (2016).

29. K. McGuinness and N. E. Oconnor, “A comparative evaluation of
interactive segmentation algorithms,” Pattern Recognit. 43(2), 434–444
(2010).

30. Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” Int. J. Comput. Vision 40(2), 99–121
(2000).

31. M. Jian and C. Jung, “Interactive image segmentation using adaptive
constraint propagation,” IEEE Trans. Image Process. 25(3), 1301–1311
(2016).

32. C. Oh, B. Ham, and K. Sohn, “Robust interactive image segmentation
using structure-aware labeling,” Expert Syst. Appl. 79, 90–100 (2017).

33. P. Dollár and C. L. Zitnick, “Fast edge detection using structured
forests,” IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570
(2015).

34. C. Nieuwenhuis and D. Cremers, “Spatially varying color distributions
for interactive multilabel segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell. 35(5), 1234–1247 (2013).

35. D. Krishnan, R. Fattal, and R. Szeliski, “Efficient preconditioning of
Laplacian matrices for computer graphics,” ACM Trans. Graphics
32(4), 142 (2013).

36. J. Kappes et al., “A comparative study of modern inference techniques
for discrete energy minimization problems,” in IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 1328–1335 (2013).

37. D. Stutz, “Superpixel segmentation: an evaluation,” in German Conf. on
Pattern Recognition, pp. 555–562 (2015).

38. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques, MIT Press, Cambridge (2009).

39. T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for
multi-class classification by pairwise coupling,” J. Mach. Learn. Res.
5, 975–1005 (2004).

40. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.
23(11), 1222–1239 (2001).

41. A. Fix et al., “A graph cut algorithm for higher-order Markov random
fields,” in IEEE Int. Conf. on Computer Vision, pp. 1020–1027 (2011).

42. P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vision 59(2), 167–181 (2004).

43. A. Vedaldi and S. Soatto, “Quick shift and kernel methods for
mode seeking,” in European Conf. on Computer Vision, pp. 705–718
(2008).

44. M.-Y. Liu et al., “Entropy rate superpixel segmentation,” in IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 2097–2104 (2011).

45. R. Achanta et al., “SLIC superpixels compared to state-of-the-art
superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell. 34(11),
2274–2282 (2012).

46. C. Conrad, M. Mertz, and R. Mester, “Contour-relaxed superpixels,” in
Int. Workshop on Energy Minimization Methods in Computer Vision
and Pattern Recognition, pp. 280–293 (2013).

47. A. Rubio et al., “BASS: boundary-aware superpixel segmentation,” in
Int. Conf. on Pattern Recognition (2016).

48. V. Machairas et al., “Waterpixels,” IEEE Trans. Image Process. 24(11),
3707–3716 (2015).

49. B. Mathieu, A. Crouzil, and J. B. Puel, “Heterogeneous size image data-
set,” image.ensfea.fr/hsid/ (2017).

50. B. Mathieu, A. Crouzil, and J. B. Puel, “Oversegmentation methods: a
new evaluation,” in Iberian Conf. on Pattern Recognition and Image
Analysis (2017).

51. S. Gould et al., “Multi-class segmentation with relative location prior,”
Int. J. Comput. Vision 80(3), 300–316 (2008).

52. O. Barkan et al., “Fast high dimensional vector multiplication face
recognition,” in IEEE Int. Conf. on Computer Vision, pp. 1960–1967
(2013).

53. S. Bochkanov, “ALGLIB®
–numerical analysis library,” www.alglib.net

(1999).
54. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology
(TIST) 2(3), 1–27 http://www.csie.ntu.edu.tw/~cjlin/libsvm (2011).

55. J. Santner, “Interactive segmentation (IcgBench) dataset,” gpu4vision.
icg.tugraz.at/index.php?content=downloads.php (2010).

56. B. Mathieu, A. Crouzil, and J. B. Puel, “Superpixel alpha fusion: source
code and datasets,” image.ensfea.fr/saf/ (2017).

57. M. Déjeant-Pons, “Presentation of the European Landscape Convention of
the Council of Europe,” rm.coe.int/16802f7dfd (2017).

58. Landscape Observatory Consortium, “The Landscape Observatory of
Catalonia, www.catpaisatge.net/eng/observatori.php (2005).

59. Fédération Inter-Environnement Wallonie, “Observatoire citoyen du
paysage (in French),” www.paysages-citoyens.be/spip.php?rubrique15
(2009).

60. D. Quesney and D. Betzinger, “Observatoire des Paysages (in French),”
observatoiredespaysages.fr/observatoires/ (2013).

61. J. B. Puel, B. Mathieu, and A. Crouzil, “Une application distribuée pour
l’enseignement du paysage,” in Journées Géomatique, Enseignement et
Apprentissage (in French), pp. 1960–1967 (2017).

Bérengère Mathieu received her MS degree in computer science
from Paul Sabatier University, Toulouse, France, in 2012. She is
currently working toward her PhD at the Institut de Recherche en
Informatique de Toulouse (IRIT) Laboratory at the University of

Toulouse. Her research interests include interactive segmentation
and oversegmentation.

Alain Crouzil received his PhD in computer science from Paul
Sabatier University, Toulouse, France, in 1997. He is currently an
associate professor at Paul Sabatier University and a member of
the Traitement et Comprehension d’Images (TCI) Group of IRIT.
His research interests concern stereo vision, shape from shading,
camera calibration, image segmentation, change detection, and
motion analysis.

Jean-Baptiste Puel received his PhD in computer science from Paul
Sabatier University, Toulouse, France, in 1997. He is currently an
associate professor at ENSFEA and a member of the TCI Group
of IRIT. His research topics include computer vision (image segmen-
tation and change detection) applied to the field of environmental
geography (multimedia landscape observatories).

