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Abstract

This work deals with the evaluation of decision power in Multi-dimensional

rules. Courtin and Laruelle [2020] introduced a decision process that specifies

the collective acceptance or rejection of a proposal with several dimensions. The

decision process is modeled as follows: (i) There are several individuals. (ii)

There are several dimensions. (iii) Each of the individuals expresses a binary

choice (”Yes” or ”No”) on each dimension. (iv) A decision process maps each

choice to a final binary decision (”Yes” or ”No”). We extend and characterize

six well-known power indices within this context: the Shapley-Shubik index

(Shapley and Shubik [1954]), the Banzhaf index (Banzhaf [1965]), the Public

good index (Holler [1982]), the Null individual free index (Alonso-Meijide et al.

[2011]), the Shift index (Alonso-Meijide and Freixas [2010]) and the Deegan-

Packel index (Deegan and Packel [1978]).

KEYWORDS: Multi-dimensional rules; Power index; Shapley-Shubik index;

Banzhaf index; Public good index; Deegan-Packel index.

JEL Classification: C71, D71

1 Introduction

At university, various subjects are taught throughout different periods. A student in

a Master degree in economics (four periods) will take several tests, mostly in Microe-

conomics, Macroeconomics, Industrial organization, Game theory... The students’
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success depends mainly on their various test scores. The final results are also corre-

lated with the students’ progress from one year of study to the next. Can a period

be compensated by another one? Are there any compulsory tests? Are the subjects

(periods) equally weighted? In a parliament, when a bill is under discussion, the

members have to express their choices on various sections of the bill. The decision

process is key in the final enforcement of the bill. Are some sections more ”impor-

tant” than others? Do all the sections have to be adopted in order for the bill to be

adopted? In different fields, the decision process is not a one-dimensional one1 since

individuals express their choices on many questions simultaneously.

In this paper, we follow the model of Courtin and Laruelle [2020] who intro-

duced multi-dimensional rules. The decision process is modeled as follows: (i) There

are several individuals. (ii) There are several dimensions. (iii) Each individuals ex-

presses a binary choice (1 or 0) on each dimension. (iv) A decision process maps each

choice to a final binary decision (1 or 0) . The university example can be modeled

by the following multi-dimensional rules: (i) the individuals are the subject which

are supposed to be all taught in the different periods, (ii) the dimensions are the dif-

ferent periods, (iii) the result of the test in each subject and each period gives us the

binary choice, (iv) the student does or does not obtain her degree. The associated

multi-dimensional rules of the parliament example are such that: (i) the individuals

are the members of parliament, (ii) the dimensions are the different sections of the

bill, (iii) the vote of each member on each section gives us the binary choice, (iv) the

output is dichotomous, i.e. the bill is or is not passed.

As a real-life example, one can present the parliamentary vote of the French gov-

ernment budget. The vote is organized in two steps: expenses are first approved

or rejected ministry after ministry, the search for a majority agreement on the over-

all expenses and tax revenues being made afterwards. Here the individuals are the

members of the parliament, the dimensions are the different ministry, the dichoto-

mous nature of choice refers to a ”yes-no” position on each partial budget. The

decision process is the following: as a first step, the parliament’s members make

their global opinion on each partial budget (dimension) by simple majority and, in

the second step, the global opinions of the parliaments members are aggregated by

simple majority and the government budget is or is not adopted.

Courtin and Laruelle [2020] studied some of the properties of multi-dimensional

1see Andjiga et al. [2003] and Laruelle and Valenciano [2008] for a detailed description of these
one-dimensional processes.
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rules, such as separability and weightedness. Separability refers to rules that can be

decomposed by unidimensional rules, whereas weightedness concerns rules where

each binary choice can be weighted.

Our aim, in this paper, is different. We focus on how a given individual can af-

fect the final result. Given a student’s passing grades rule, how is ”game theory”

an important subject? Is a given member of parliament more influential than an-

other? To answer these questions we use the tools that are power indices. Power

indices evaluate the decision power of a given individual or a given dimension. In

a single-dimensional context, Holler [1982] divided the different power indices into

two categories: private and public. The common factor in the first category is that,

once formed, the value of a coalition of individuals is shared among the coalition

members even though it was created collectively. The amount of power received

by individuals of a given coalition can be different. The second category assumes

that the value of the coalition cannot be seen as a ”private good” but as a ”public

good”. This means that once a coalition is achieved, all the individuals must be

treated equally regardless of their own or of others’ manner of contribution (with

the exception of those who do not contribute). In other words, individuals can have

different contributions but share the same amount of power.

In this paper we extend these two categories to multi-dimensional rules. In

particular, we consider two well-known private indices, the Shapley-Shubik index

(Shapley and Shubik [1954]) and the Banzhaf index (Banzhaf [1965]). We also take

into consideration three public indices: the Public good index (Holler [1982]), the

Null individual free index (Alonso-Meijide et al. [2011]) and the Shift index (Alonso-

Meijide and Freixas [2010]). We also extend the Deegan-Packel index (Deegan and

Packel [1978]) which is an index behind the private indices and the public indices.

A full characterization of each of these six power indices is provided. Our character-

ization results can be seen as straightforward extensions of characterization results

for the one-dimensional framework. Since the beginning of the use of game theory

to study the distribution of power in voting systems, a wide collection of studies

providing different games, different power indices notions have been developed. We

understand our approach as a complementary step in this research line.

This paper is structured as follows. Section 2 introduces the general framework

of multi-dimensional rules. Section 3 defines and characterizes the Shapley-Shubik

index and the Banzhaf index for multi-dimensional rules, while the Deegan-Packel

index and the public index for multi-dimensional rules category is discussed in Sec-
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tion 4. Section 5 concludes.

2 General Framework

Let N = {1, ...,n} be a set of n individuals (generic individuals will be denoted by i, j,

k), and letM = {1, ...,m} be a set ofm dimensions (generic dimensions will be denoted

by a, b, c). Each individual faces a binary choice and casts a positive or a negative

decision on each dimension. Let sai ∈ {0,1} be the decision cast by individual i on

dimension awith sai = 1(0) when i casts a positive (negative) decision. LetZmn denote

the set of n ×m matrices of 0 and 1. A configuration is a matrix S ∈Zmn where the

element of row i and column a is sai :

S =


s11 sm1

s1n smn

 .
We denote by s the number of positive votes in the configuration S. Let S and T be

two configurations then, we will write S ≤ T if sai ≤ t
a
i for any i ∈ N , a ∈M. Matrix

Imn is the n×m matrix of 1, and Om
n is the n×m matrix of 0.

A multi-dimensional rule specifies the configurations of Zmn that lead to a posi-

tive final decision and those that lead to a negative one.

Definition 1. A multi-dimensional rule with n voters and m dimensions is a function

w : Z
m
n → {0,1}

S 7−→w(S)

with: w(Imn ) = 1; w(Om
n ) = 0; w(S) = 1⇒w(T) = 1 for all S ≤ T.

We denote by Wm
n the set of all multi-dimensional rules. We refer to the config-

urations that lead to a positive outcome as winning configurations, the other ones

being referred to as losing configurations. The set of winning configurations for a

rule w is denoted by W (w). A configuration S is minimal winning if w(S) = 1 and

for all configurations T , S with T ≤ S we have w(T) = 0. Note that a given multi-

dimensional rule w can also be represented by its set of minimal winning configu-

rations, denotedM(w).

4



Given two rules w, w̄ ∈Wm
n , we have:

1. rule w∨ w̄ ( max rule ) defined as (w∨ w̄)(S) =max{w(S),w̄(S)}

2. rule w∧ w̄ ( min rule ) defined as (w∧ w̄)(S) =min{w(S),w̄(S)}

Note thatW (w∨ w̄) =W (w)∪W (w̄) andW (w∧ w̄) =W (w)∩W (w̄)

One can also present a specific class of multi-dimensional rules, the one of multi-

dimensional unanimity rules.

Definition 2. For all configurations S , Om
n , the multi-dimensional unanimity rule uS

with n players is defined as

uS(T) =
{ 1 if S 6 T

0 otherwise

Note that whenever s = 1, uS is called dictatorial.

The following proposition shows that multi-dimensional rules can be derived

from a combination of multi-dimensional unanimity rules.

Proposition 1. Let w be a multi-dimensional rule with M(w) = {S1, ...,Sk} the set of
minimal winning configurations. w can be expressed as w = uS1

∨ ...∨uSk
.

Proof. Consider a configuration T ∈Zmn .

Suppose that w(T) = 1 then, there exists at least one minimal winning configura-

tion Sl 6 T. Therefore, uSl
(T) = 1 and w(T) = uS1

(T)∨ ...∨uSk
(T) = 1

Suppose that w(T) = 0 then, for all l = 1, ..., k, Sl � T which implies that uSl
(T) = 0

for all l = 1, ..., k. Therefore w(T) = uS1
(T)∨ ...∨uSk

(T) = 0

Before presenting our main results, we introduce the notion of power indices.

Definition 3. Let w be a multi-dimensional rule, a power index is a mapping φ which
assigns to the multi-dimensional rule w a vector φ(w) = (φ1(w), ...,φn(w)).

For a given individual i, φi(w) can be seen as the power/influence of i over the

rule w. We make the choice of presenting the evaluation of power from the indi-

vidual perspective. However, the power indices present in this paper will also be

relevant in evaluating the power for each dimension.

We called ia a representative which is designated by each individual i for each

dimension a. Thus, there are n.m representatives. The set of all the representatives
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will be denoted by N ∗. We define φia(w) as the power index of the representative ia

of individual i in dimension a. Since we assume that all the representatives of an in-

dividual of any dimension are a priori equally powerful, we are φi(w) =
∑m
a=1φia(w).

This is a particular class of power indices, other less restrictive classes could be ex-

plored in further research.

Finally, a representative ia is called decisive in a configuration S if [w(S)−w(S−
ia)] = 1 with S− ia = (T ∈Zmn : tai = 0, sai = 1 and taj = saj for all a and for all j , i) 2. We

denote by Dai (w) the number of configurations where ia is decisive.

3 Private index for multi-dimensional rules

In this section, we extend the classical Shapley-Shubik index and the Banzhaf in-

dex to multi-dimensional rules. As previously mentioned, in a single-dimension

context, for these two indices, the power can be inequitably distributed in a given

coalition, unlike the public good indices. Another similarity of these two indices, is

that they only consider the formation of winning coalitions as relevant. The benefit

of a winning coalition is then assigned to decisive individuals. A decisive individual

changes a coalition from a losing one to a winning one. The more an individual is

decisive, the bigger her influence and the greater the power she derives. We apply

this approach to define two new indices for multi-dimensional rules and we outline

an axiomatic approach for these two indices.

3.1 Shapley-Shubik index

In the same spirit as Shapley and Shubik [1954], the Shapley-Shubik index for multi-

dimensional rules is based on the notion of permutation.

1. We suppose that all of the representatives of a player are randomly queuing up

to enter a room to make a decision. All the permutations of these representa-

tives are possible, i.e there are (n.m)! ways in which the representatives can be

ordered in the queue.

2. When a representative ia enters the room, she expresses the binary choice of

the individual i she represents for this dimension a.

2We also have S− {ia, jb} = (T ∈Zn×m : tai = tbj = 0, sai = sbj = 1 and tck = sck for all kc , ia, jb) .
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3. When a representative of individual i for a dimension a enters and expresses

a positive vote which allows the configuration to be a winning one, this repre-

sentative is then decisive.

4. The representatives who already expressed a positive vote before the decisive

representative do not have enough votes to reach a decision ((s−1)! orderings),

and the representatives who come after the decisive representative do not re-

ally count ((n.m− s)! orderings)

5. Thus, each representative receives an amount of power depending on the num-

ber of times she is decisive, when all the orders in the queue have the same

probability.

6. Finally, the Shapley-Shubik index of an individual i is simply the sum of the

power received by each representative of this individual.

Definition 4. Let w be a multi-dimensional rule, the Shapley-Shubik index for a player
i ∈N is given by:

SHi(w) =
∑
a∈M

SH ia

with

SH ia(w) =
∑

S∈Zmn

(s−1)!(n.m−s)!
(n.m)! [w(S)−w(S− ia)]

We assume here that no representative of an individual i has more weight than any

other. A given representative can bring more power than another solely on account

of the framework of the multi-dimensional rule. We also notice that for a single

dimension (|m| = 1), the Shapley-Shubik index for a multi-dimensional rule is equiv-

alent to the Shapley-Shubik index introduced by Shapley and Shubik [1954].

Example 1. Consider a university program in which three subjects (n = 3) are taught
over two periods (m = 2). The process of going on to the next year is the following: for the
first subject, the first-period test is compulsory and at least two positive tests in the second
period are needed. More formally, w :Z3

2→ {0,1} with

w(S) =

 1 if s11 = 1 and s2i = 1 for at least two i
0 otherwise.
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That is,

M(w) =




1 1

0 1

0 0

 ,


1 1

0 0

0 1

 ,


1 0

0 1

0 1


 .

For period 1 (a = 1), we have SH11(w) = 1
2 and SH21(w) = SH31(w) = 0.

For period 2 (a = 2), we have SH12(w) = SH22(w) = SH32(w) = 1
6 .

Then SH1(w) = 1
2 + 1

6 = 2
3 and SH2(w) = SH3(w) = 1

6 .
The first subject has more impact than the other ones since it is compulsory for the first

period.

On the efficiency property

Axiom 1. (Efficiency)
For all w ∈Wm

n ,
n∑
i=1
φi(w) =

n∑
i=1

m∑
a=1

φia(w) = 1

Axiom 1 states that the total aggregated power of the individual is the same in any

multi-dimensional rule, and also equals one.

On the null individual property

An individual is a null individual if the decision she makes never makes any differ-

ence. More formally, for all S ∈Zmn , let us define S̄ ∈Zmn with s̄ai = 0 for all a ∈M and

s̄aj = saj for all a ∈M and for all j , i. i is a null individual if S ∈W (w)⇔ S̄ ∈W (w).

Note also that we call a representative ia a null representative if, in any minimal win-

ning configuration, she always casts a null vote; i.e. if sia = 0 for all S ∈M(w). Thus

an individual is a null individual if all of her representatives are null representatives.

Axiom 2. (Null individual)
For all w ∈Wm

n , and any individual i ∈N , if i is a null individual for rule w then,

φi(w) = 0.

For a null individual i, since all its representatives are null representatives, an im-

plication of this axiom is that φia(w) = 0 for each a ∈M.

According to Axiom 2, an individual or a representative whose action has no influ-

ence on the final decision, has a null power.
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On the anonymity property

For all S, let S̃a↔bi↔j ∈ Z
m
n denotes a configuration where representative ia and repre-

sentative jb permute their decisions: s̃ck = sck for any k , i, j and for any c , a,b and

s̃ai = sbj and s̃bj = sai .

Let π be any permutation of the set N ∗ then, the multi-dimensional rule πw is given

by πw(S) = w(πS) where πS =
{
S̃a↔bi↔j ∈Z

m
n for any a,b and for any i, j

}
.

Axiom 3. (Anonymity)
Let w ∈Wm

n . For any permutation π of N ∗, and any representative ia ∈N ∗,

φπ(ia)(πw) = φia(w)

Axiom 3 says that the amount that a representative receives does not depend on her

label or relative position in N ∗.

On the transfer property

We extend to multi-dimensional rules the transfer axiom introduced by Dubey and

Shapley [1979] which reflects a principle of linearity.

Axiom 4. (Transfer)
For all w, w̄ ∈Wm

n

φ(w) +φ(w̄) = φ(w∨ w̄) +φ(w∧ w̄)

When considering two multi-dimensional rules, Axiom 4 means that the total influ-

ence of an individual is simply the sum of influences availables in the min rule and

in the max rule.

The Shapley-Shubik index for multi-dimensional rules is the only index that si-

multaneously satisfies all four previous axioms.

Theorem 1. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 4 if and only if φ = SH .

Before introducing the proof of Theorem 1, we present the following Lemma.

Lemma 1. Let w be a multi-dimensional rule and let uS be the corresponding multi-
dimensional unanimity rule. If φ satisfies Axiom 1, Axiom 2 and Axiom 3 then, φia(uS)

is unique and for any i ∈N and any a ∈M is given by
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φia(uS) =

 1
s if sai , 0

0 otherwise

Proof. Let w be a multi-dimensional rule and let uS a unanimity multi-dimensional

rule associated to a configuration S.

Every individual i such that sai = 0 for all a ∈M is a null individual in uS. Thus

each of her representative ia is a null representative in uS. Therefore, by Axiom 2,

φia(uS) = 0 for such i and each a ∈M.

If π is the permutation that interchanges ia and jb, for some i, j ∈ N and some

a,b ∈N such that sai = sbj = 1, and the other votes remains unchanged then, πuS = uS

and thus, by Axiom 3, it follows that φjb(πuS) = φjb(uS) = φia(uS).

Therefore, φai is uniquely determined if φ exists. Using Axiom 1, for each a ∈M

and for each i ∈N , φia(uS) =

 1
s if sai , 0

0 otherwise

We can now present the proof of Theorem 1.

Proof. Theorem 1
Uniqueness

Let w be a multi-dimensional rule andM(w) = {S1, ...,Sk} be the set of minimal

winning configurations. For all configurations Sl, we define the unanimity multi-

dimensional rule uSl
by uSl

(T) =
{ 1 if Sl ∈ T

0 otherwise
. By Proposition 1 w can be written

as w = uS1
∨ ...∨uSk

.

In order to prove the uniqueness of φ , an induction on the number of minimal

winning configurations and on their cardinality is performed.

Let η(w) = min {q ∈ Z+|there exists a minimal winning configuration S such that s = q}
and let η̄(w) be the number of minimal winning configurations S such that s = η(w)

.

Step 1: η(w) = n.m

For η(w) = n.m, the only winning configuration for the rule w is Imn then, Imn is

the unique minimal winning configuration and, therefore, w = uImn . By Lemma 1,

φai (uImn ) = 1
n.m which implies that φ(w) is obviously unique.

Step 2: η(w) < n.m

In order to prove that φi(w) is unique when there are minimal winning coalitions

with s < n.m, we consider two cases.
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Case A: Suppose that φ(w) is unique for all w such that η(w) > q and η̄(w) = 1.

We will see that it is also unique for w when η(w) = q and η̄(w) = 1. Let Sq be such a

configuration with cardinality q.

a) If Sq is the only minimal winning configuration then, w = uSq
. By Lemma 1,

we know that for any i ∈N and any a ∈M, φia(uSq
) = φia(w) =

 1
sq

if sq
a
i = 1

0 otherwise
which

implies that φ(w) is uniquely determined.

b) If there are any other minimal winning configurations S1, ..., Sk such that sl > q

for all 1 ≤ l ≤ k then, by Proposition 1, w = uS1
∨ ... ∨ uSk

∨ uSq
which can also be

written w = w′ ∨ uSq
with w′ = uS1

∨ ...∨ uSk
. It follows that η(w′) > q then, φ(w′) is

unique by the induction hypothesis.

Now consider w′ ∧ uSq
. By the definition of ∧, it is obvious that η(w′ ∧ uSq

) > q.

Therefore, φ(w′ ∧uSq
) is also unique by the induction hypothesis.

Applying Axiom 4 leads to φ(w) = φ(w′∨uSq
)=φ(w′)+φ(uSq

)−φ(w′∧uSq
). Since

all the right terms are unique then, φ(w) is unique.

Case B: Suppose that φ(w) is unique for all w such that [η(w) > q] or [η(w) = q

and η̄(w) = h,h , 1]. We will show that it is also unique for w when η(w) = q and

η̄(w) = h+ 1.

Let S1, ..., Sh+1 such that sl = q for all 1 ≤ l ≤ h + 1 and let T1, ..., Tp be other

minimal winning configurations with tl > q for all 1 ≤ l ≤ p.

By Proposition 1, w = uT1
∨ ... ∨ uTp

∨ uS1
∨ ... ∨ uSh

∨ uSh+1
which can also be

expressed as w = w”∨uSh+1
with w” = uT1

∨ ...∨uTp
∨uS1

∨ ...∨uSh
.

From the definition of ∨, we determine that there are h minimal winning config-

urations with cardinalities equal to q for w”, i.e. η(w”) = q and η̄(w′′) = h meaning

that φ(w”) is unique.

Similarly, from the definition of ∧, it appears that η(w” ∧ uSh+1
) > q and then,

φ(w”∧uSh+1
) is unique. By Axiom 4, we have φ(w) = φ(w”∨uSh+1

)=φ(w”)+φ(Sh+1)−
φ(w”∧uSh+1

). Since all three vectors on the right-hand side are unique, so is φ(w).

Therefore, we have proved that φ(w) is unique for any feasible number of, i.e for

all w ∈Wn×m

Existence
It is obvious that SH satisfies the efficiency, the null player, the symmetry and the

transfer axioms.
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3.2 Banzhaf index

Unlike the Shapley-Shubik index, the Banzhaf index for multi-dimensional rules

depends on the number of combinations, rather than the number of permutations

of the representative players. When a representative ia expresses a positive decision

which allows for a configuration to be winning, then this representative is decisive.

Thus, each representative receives a share of power based on the number of times

she is decisive over the total number of configurations where she expresses a positive

decision (2m.n−1 configurations where ia expresses a positive decision). The Banzhaf

index of individual i is the sum of the power received by each of her representatives.

Definition 5. Let w be a multi-dimensional rule, the Banzhaf index for a player i ∈N is
given by :

BZi(w) =
∑
a∈M

BZ ia

with

BZ ia(w) =
∑

S∈Zmn

1
2n.m−1 [w(S)−w(S− ia)] =

Dai (w)
2n.m−1

Note that for |m| = 1, the Banzhaf index for multi-dimensional rules is equivalent

to the Banzhaf index for a simple rule (one dimension).

Example 2. We compute the Banzhaf index for the previous example.
For a = 1, we have BZ11(w) = 15

32 and BZ21(w) = BZ31(w) = 0.
For a = 2, we have BZ12(w) = BZ22(w) = B̄Z32(w) = 8

32 .
Then BZ1(w) = 15

32 + 8
32 = 23

32 and BZ2(w) = BZ3(w) = 8
32

Since the Banzhaf index does not satisfy the efficiency axiom, we introduce a new

axiom.

On the efficiency* property

Axiom 5. (Efficiency*)
For all w ∈Wm

n ,

n∑
i=1
φi(w) =

n∑
i=1

m∑
a=1

φia(w) = 1
2n.m−1

n∑
i=1

m∑
a=1

Dai (w) =
Dai (w)
2n.m−1

12



with Dai (w) the total number of decisive representative individuals.

According to Axiom 5 the total influence is distributed among the individuals ac-

cording to the total number of decisive representative individuals.

Theorem 2. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 2,
Axiom 3, Axiom 4 and Axiom 5 if and only if φ = BZ.

Lemma 2. Let w be a multi-dimensional rule and let uS be the corresponding multi-
dimensional unanimity rule. If φ satisfies Axiom 2, Axiom 3, and Axiom 5 then, φai (uS)

is unique and for any i ∈N and any a ∈M is given by

φia(uS) =

 1
2s−1 if sai , 0

0 otherwise

Proof. The beginning of the proof is similar to the proof of Lemma 1 and omitted.

Only the last sentence of the proof of Lemma 1 is replaced by: Using Axiom 5, for

each a ∈M and for each i ∈N , φia(uS) =

 Dai (w)
s.2n.m−1 = 2n.m−s

2n.m−1 = 1
2s−1

0 otherwise
.

Proof. Theorem 2
Lemma 1 will be replaced by Lemma 2 in the proof. The rest of the proof is

similar to that of Theorem 1 and omitted.

In one dimensional context, Lehrer [1988] introduces the two-efficiency property

in order to characterize the Banzhaf index.

On the two efficiency property

To extend this property in the context of multi-dimensional rule one need to intro-

duce two new rules.

Let S = {ia ∈ N ∗, sai = 1} be a set of representatives derived from a configuration

S ∈ Zmn , and S ⊆ N ∗. Let Zn∗ be the set of all set of representatives. A representative

rule with n∗ representatives is a function

w : Zn∗ → {0,1}
S 7−→ w(S)
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such that for all S in N ∗ derived from S, w(S) = w(S).

For ia and jb in N ∗, ia , jb , let wiajb the amalgamated rule obtained from w when

representative ia and jb amalgamate in a new representative p = {ia, jb}, i.e. N ∗
ia,jb

=

{N ∗ \ {ia, jb})∪ {p}} and for every S ⊆N ∗
ia,jb

wiajb(S) =

 w(S) if p < S

w((S \ p)∪ {ia, jb}) otherwise

Axiom 6. (Two-efficiency)
For all w ∈Wm

n and pair of representative ia, jb in N ∗

φia(w) +φjb(w) = φp(wiajb)

with φp(wiajb) the power index of p in the game wiajb .

Axiom 6 describes how the power should behave when two representatives of the

original game are not allowed to act in-dependently anymore. Indeed, this axiom

state that the power of the representatives should be immune against such changes.

Theorem 3. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 2,
Axiom 3, Axiom 4, and Axiom 6 if and only if φ = BZ.

Lemma 3. Let w be a multi-dimensional rule and let uS be the corresponding multi-
dimensional unanimity rule. If φ satisfies Axiom 2, Axiom 3, Axiom 4, and Axiom 6
then, φai (uS) is unique and for any i ∈N and any a ∈M is given by

φia(uS) =

 1
2s−1 if sai , 0

0 otherwise

Proof. Let φ satisfies Axiom 2, Axiom 3, Axiom 4, and Axiom 6. We proceed by two

inductions, first on the number of representatives |N ∗| and second on the number s

of positive votes on a configuration S ∈Zmn .

Suppose first that φ is unique for all unanimity multi-dimensional rule with

|N ∗| ≤ nm and all s ≤ nm. Secondly suppose that φ is unique for all unanimity

multi-dimensional rule with |N ∗| = nm+ 1,(denoted u+1
S ) and s ≤ k , and determined

for any i ∈N and for any a ∈M by

φai (u
+1
S ) =

 1
2s−1 if sai , 0

0 otherwise

14



We will see that φ is also determined for all unanimity multi-dimensional rule

with |N ∗| = nm+ 1 and s = k + 1. Let S̄ be its corresponding minimal winning config-

uration and assume that for representative ia, s̄ai = 1, and let S̃ = S̄− ia .

By Transfer, φ(u+1
S̃
∨u+1

ia )+φ(u+1
S̃
∧u+1

ia ). = φ(u+1
S̃

)+φ(u+1
ia ). Note that (u+1

S̃
∧u+1

ia ) =

u+1
S̄ .

By null representative and anonymity there are constants x, y, z such that for each

a ∈M, and each j ∈N ,φaj (u
+1
S̄ ) =

 x if s̄aj , 0

0 otherwise
andφaj (u

+1
S̃
∨u+1

ia ) =


y if s̃aj , 0, j , i

z if s̃aj , 0, j = i

0 otherwise

By the induction hypothesis and the two previous equations we have x+y = 1
2s̃−1 =

1
2k−1 and by null representative x+ z = 1.

We apply now two-efficiency. First take two representatives ia and jb from S̄ the

representative set obtained from S̄ and amalgamate them to one representative. The

amalgamated rule obtained is wiajb = uS̃, (after identifying jb, where s̃bj = 1 with

the new representative). Hence by two-efficiency φai (u
+1
S̄ ) +φbj (u

+1
S̄ ) = φjb(uS̃) , then

2x = 1
2s̃−1 = 1

2k−1 .

Now in the game (u+1
S̃
∨u+1

ia ), amalgamate the representative ia with any representa-

tive jb from S̃ the representative set obtained from S̃ . The amalgamated rule obtain

is dictatorial then z+ y = 1.

Therefore we have 2x + y + z = 1 + 1
2k−1 All the previous inequalities permit us to

conclude that 2x = 1
2k−1 , and therefore x = 1

2k
which determine φai on u+1

S̄ .

Proof. Theorem 3
Existence

BZ satisfies the null player, the anonymity and the transfer axioms. Let us prove

that BZ satisfies the two-effciciency axiom.

Let w be a multi-dimensional rule, then by the definition of BZ we have

= 2nm−1[BZ ia(w) +BZjb(w)]

=
∑

S∈Zmn
[w(S)−w(S− ia)] +

∑
S∈Zn×m,

[w(S)−w(S− jb)]

=
∑

S∈Zmn ,sjb=1
[w(S)−w(S− ia) + w(S− jb)−w(S− {ia, jb})] +

∑
S∈Zn×m,sia=1

[w(S)−w(S− jb) +

w(S− ia)−w(S− {ia, jb})] .

= 2
∑

S∈Zmn ,sai =sbj =1
[w(S)−w(S− {ia, jb})]
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= 2.2nm−2BZp(wia,jb)= 2nm−1BZp(wia,jb) for p = {ia, jb} which concludes the proof.

Uniqueness
Lemma 1 will be replaced by Lemma 3 in the proof. The rest of the proof is

similar to that of Theorem 1 and omitted.

4 Public index for multi-dimensional rules

For a single-dimension context, in Barry [1980] and Holler [1982], it has been ar-

gued that private indices are inadequate measures since a coalition formation is not

about sharing benefits but about achieving a decision result which cannot be ob-

tained by separate individuals. Therefore, the category of public indices assigns

the same amount of power to the coalition members of a coalition that was created

collectively, unlike the private indices in which inequalities between members can

arise. The question is not to distinguish between the individuals in a coalition but

rather to determine which winning coalitions take into account the evaluation of

power. In the one-dimension literature, three types of winning coalitions have been

considered: minimal (Holler [1982]), shift (Alonso-Meijide et al. [2011]) and null

individual free (Alonso-Meijide and Freixas [2010] ).

4.1 Public good index

Holler [1982] introduced the ”Public good” index by assuming that only the minimal

winning coalitions are relevant in evaluating the power. A winning coalition is a

minimal winning coalition when the removal of any of its individuals would prevent

the coalition from being a winning one. Intuitively, an individual, who is not needed

to raise the result above a certain threshold, has no influence on the final decision.

Furthermore, she has no incentive to be rewarded. We can extend this argument to

multi-dimensional rules.

Definition 6. Let w be a multi-dimensional rule, the Public good index for a player i ∈N
is given by:

PGi(w) =
∑
a∈M

PGia

with

16



PGia(w) = |Mia (w)|∑
ia∈N ∗ |Mia (w)| .

withMia(w) being the set of minimal winning configurations where representative ia

makes a positive vote.

The PG for multi-dimensional rules is then based on the following principles:

1. The configurations that are not minimal are irrelevant when it comes to mea-

suring power. Indeed, in some winning configurations, a representative might

feel unhappy because she thinks that she could obtain more power by exclud-

ing some other representative.

2. Since all the representatives belong to a configuration, not adding a second

principle would lead to giving equal power to all the representatives regardless

of the rule. We choose to give power only to representatives who express a

positive vote, following Holler [1982]’ approach. Each of them receives one

unit of power.

3. A given representative will be rewarded according to the total number of min-

imal winning configurations she belongs to, normalized by the sum of these

numbers for all representatives.

4. The sum of all the power received by the representatives of a given individual

gives us the final power of this individual.

Example 3. We apply the PG for multi-dimensional rules to the first example.
For a = 1, we have PG11(w) = 3

9 and PG21(w) = PG31(w) = 0.
For a = 2, we have PG12(w) = PG22(w) = PG32(w) = 2

9 .
Then, PGI1(w) = 3

9 + 2
9 = 5

9 and PGI2(w) = PGI3(w) = 2
9

Subjects 2 and 3 are more influential than with Shapley since they are rewarded by
belonging to minimal winning configurations.

It is obvious that the PG for multi-dimensional rules satisfies the efficiency, the

null individual and the anonymity properties, but not the transfer property. We

extend the Merger axiom (see Holler [1982]) to multi-dimensional rules in order to

fully characterize this index.

17



On the merger property

Let w and w̄ be two multi-dimensional rules. The rules w and w̄ are said to be

mergeable if, for all S ∈ M(w), it holds that S <W (w̄) and for all S ∈ M(w̄) it holds

that S <W (w). In words, w and w̄ are mergeable if each minimal winning configu-

ration related to one of the two rules is also a minimal winning configuration for the

max rule w∨ w̄.

Axiom 7. (Merger)
Let w, w̄ ∈Wm

n , w and w̄ mergeable implies that for all ia ∈N ∗,

φia(w∨ w̄) =

∑
ia∈N ∗

|Mia (w)|∑
ia∈N ∗

|Mia (w∨w̄)|φia(w) +

∑
ia∈N ∗

|Mia (w̄)|∑
ia∈N ∗

|Mia (w∨w̄)|φia(w̄)

Axiom 7 states that the amount of power of a representative in a union rule is a

weighted mean of its power in the two component rules, where the weights come

from the number of minimal winning configurations in each component rule.

Theorem 4. Let φ be an index for multi-dimensional rules. Then φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 7 if and only if φ = PG.

Proof. Uniqueness
Let φ be an index that satisfies Axiom 1, Axiom 2, Axiom 3, and Axiom 7 . We

shall prove that φ = PG. In order to do so, let w be a multi-dimensional rule. We

will proceed by induction on the number of minimal winning configurations of w.

Let us first assume that |M(w)| = 1. S is the only minimal winning configuration

then, w = uS. By Lemma 1, we know that for any i ∈ N and any a ∈ M, φia(uS) =

φia(w) =

 1
s if sai = 1

0 otherwise
, which is equivalent to PGia(w). Thus, PGIi(w) = φi(w).

Let k > 1 and assume that PGIia(w) = φia(w) holds for all rules w for which there

are at most k−1 minimal winning configurations. Consider a rule w with k minimal

winning configurations, say S1, ...,Sk. The rules w1∨ ...∨wk−1 and wk are mergeable,

where wl, l = 1, ...k is the multi-dimensional rule with the single minimal winning

configuration Sl. Furthermore, w = [w1∨ ...∨wk−1]∨wk and it follows, from Axiom

6 that
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φia(w) =

∑
ia∈N ∗

|Mia (w1∨...∨wk−1)|∑
ia∈N ∗

|Mia (w)| φia(w1 ∨ ...∨wk−1) +
∑
ia∈N ∗ |Mia (wk)|∑
ia∈N ∗

|Mia (w)| φia(wk)

=

∑
ia∈N ∗

|Mia (w1∨...∨wk−1)|∑
ia∈N ∗

|Mia (w)| PGia(w1 ∨ ...∨wk−1) +

∑
ia∈N ∗

|Mia (wk)|∑
ia∈N ∗

|Mia (w)| PGia(wk)

(thanks to the induction hypothesis)

= PGia([w1 ∨ ...∨wk−1]∨wk) (because PG satisfies Axiom 7)

= PGia(w)

In conclusion, for all multi-dimensional rules w and all players ia ∈ N ∗, φia(w) =

PGia(w). Therefore, φi(w) = PGIi(w) for all i ∈N .

Existence
It is obvious that PG satisfies Axiom 1, Axiom 2 and Axiom 3,

Let us prove that PG satisfies Axiom 7 . Let w and w̄ be two multi-dimensional

rules in Wm
n and let i ∈ N . If w and w̄ are mergeable then,Mia(w∨ w̄) =Mia(w)∪

Mia(w̄) for each representative ia of individual i, and Mia(w) ∩Mia(w̄) = ∅, which

implies that |Mia(w∨ w̄)| = |Mia(w)|+ |Mia(w̄)| . Therefore,

PGia(w∨ w̄) = |Mia (w∨w̄)|∑
ia∈N ∗

|Mia (w∨w̄)| = |Mia (w)|+|Mia (w̄)|∑
ia∈N ∗

|Mia (w∨w̄)|

= |Mia (w)|∑
ia∈N ∗

|Mia (w∨w̄)| +
|Mia (w̄)|∑

ia∈N ∗
|Mia (w∨w̄)|

= PGia (w).
∑
ia∈N ∗ |Mia (w)|∑

ia∈N ∗
|Mia (w∨w̄)| +

PGia (w̄).
∑

ia∈N ∗
|Mia (w̄)|∑

ia∈N ∗
|Mia (w∨w̄)|

=

∑
ia∈N ∗

|Mia (w)|∑
ia∈N ∗

|Mia (w∨w̄)|PGia(w) +

∑
ia∈N ∗

|Mia (w̄)|∑
ia∈N ∗

|Mia (w∨w̄)|PGia(w̄)

When there is only one dimension, Alonso-Meijide et al. [2008] charaterizes the

PG index by the PG minimal monotonicity property, which can be extended to the

multi-dimensional case in the following way.

On PG-minimal monotonicity property

Axiom 8. (PG-minimal monotonicity)
Let w, w̄ ∈Wm

n , for all representatives ia ∈N ∗ such thatMia(w̄) ⊆Mia(w),
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φia(w)
∑

ia∈N ∗
|Mia(w)| ≥ φia(w̄)

∑
ia∈N ∗

|Mia(w̄)|

According to Axiom 8, if the set of minimal winning configurations including a rep-

resentative ia in rule w̄ is a subset of the set of minimal winning configurations

including the same representative ia in another multi-dimensional rule w then, the

power of ia in w is no lesser than the power of ia in w̄. In other words, if ia improves

her position for a multi-dimensional rule, her influence must increase.

Theorem 5. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 8 if and only if φ = PG.

Proof. Uniqueness
Let φ be an index that satisfies Axiom 1, Axiom 2, Axiom 3 and Axiom 8. Let w

be a multi-dimensional rule. Again, we will proceed by induction on the number of

minimal winning configurations of w.

If |M(w)| = 1, φia(V ) = PGia(w).

Now let us assume that PGIia(w) = φia(w) holds for all rules w for which there

are at most k − 1 minimal winning configurations and consider a rule w with k > 1

minimal winning configurations, say S1, ...,Sk. Take L = {ia ∈ N ∗|sl ia = 1 for all l =

1, ..., k}.
First case: ia < L

For each ia, let us define the multi-dimensional rule w0 byM(w0) =Mia(w). Then,

by definition of w0,Mia(w0) =Mia(w) , applying Axiom 8 leads twice toφia(w0)
∑

ia∈N ∗
|Mia(w0)| =

φia(w)
∑

ia∈N ∗
|Mia(w)| . Since ia < L, the multi-dimensional rule w0 has less than k min-

imal winning configurations. Thus, φia(w0) = PGia(w0) due to the induction hypoth-

esis. On the other hand, as PG satisfies Axiom 8, we have PGia(w0)
∑

ia∈N ∗
|Mia(w0)| =

PGia(w)
∑

ia∈N ∗
|Mia(w)| .

We conclude that φia(w)
∑

ia∈N ∗
|Mia(w)| = φia(w0)

∑
ia∈N ∗

|Mia(w0)| = PGia(w0)
∑

ia∈N ∗

|Mia(w0)| = PGia(w)
∑

ia∈N ∗
|Mia(w)| which implies φia(w) = PGia(w).

Second case: ia ∈ L
By Axiom 3 , φia(w) = φjb(w) and PGia(w) = PGjb(w) for all ia, jb ∈ L; and, fur-

thermore, for all ia < L, φia(w) = PGia(w). By Axiom 1 (of φ and PG), we have:∑
ia∈L

φia(w) +
∑
ia<L

φia(w) = 1 =
∑
ia∈L

PGia(w) +
∑
ia<L

PGia(w). This implies that
∑
ia∈L

φia(w) =∑
ia∈L

PGia(w), that is, |L|.φia(w) = |L|.P Gia(w) and finally, φia(w) = PGia(w).
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Existence
We know that the PG index satisfies Axiom 1, Axiom 2 and Axiom 3. In addition,

PG satisfies Axiom 8 because if ia is a representative such that Mia(w̄) ⊆ Mia(w),

then |Mia(w̄)| ≤ |Mia(w)|which means that PGia(w̄)
∑

ia∈N ∗
|Mia(w̄)| ≤ PGia(w)

∑
ia∈N ∗

|Mia(w)|

4.2 Null individual free index

Alonso-Meijide et al. [2011] extends the PG index when considering a set of coali-

tions bigger than the set of minimal winning coalitions and smaller than the set

of winning coalitions. This set is based on the notion of a null individual. One

can extend their index as follows. A winning configuration S is a null individual

free winning configuration if there are no null representatives ia casting a positive

vote. More formally, the set of null individual free winning configurations is given

by NIF (w) = {S ∈ W | sia = 0 for all null representatives ia}. The set of null indi-

vidual free winning configurations in which ia casts a positive vote is denoted by

NIF ia(w) = {S ∈ NIF (w) | sia = 1}.

Definition 7. Let w be a multi-dimensional rule, the Null individual Free Index index
for a player i ∈N is given by:

NIFi(w) =
∑
a∈M

NIFia(w)

with

NIFia(w) = |N IF ia (w)|∑
ia∈N ∗

|N IF ia (w)| .

The main idea behind this index is to exclude winning configurations with null

representatives. This index is less restrictive than the PG index which also excludes

configurations with surplus representatives (representatives not needed to pass the

final decision).

Example 4. Once again, we apply our index to the first example. As a reminder,

M(w) =




1 1

0 1

0 0

 ,


1 1

0 0

0 1

 ,


1 0

0 1

0 1


 .
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Representatives 21 and 31 are null representatives. Therefore,

NIF (w) =




1 1

0 1

0 0

 ,


1 1

0 0

0 1

 ,


1 0

0 1

0 1

 ,


1 1

0 1

0 1


 .

For a = 1, we have NIF11(w) = 4
13 and PG21(w) =NIF31(w) = 0.

For a = 2, we have NIF12(w) = PG22(w) = PG32(w) = 3
13 .

Then NIF1(w) = 4
13 + 3

13 = 7
13 and NIF2(w) =NIF3(w) = 3

13

In order to characterize this new index, one can replace the axiom of PG minimal

monotonicity with the axiom of null individual free minimal monotonicity .

On the NIF-minimal monotonicity property

Axiom 9. (NIF-minimal monotonicity)
Let w, w̄ ∈Wm

n , for all representatives ia ∈N ∗ such thatNIF ia(w̄) ⊆NIF ia(w),

φia(w)
∑

ia∈N ∗
|N IF ia(w)| ≥ φia(w̄)

∑
ia∈N ∗

|N IF ia(w̄)|

Similarly to Axiom 8, Axiom 9 implies that when a representative improves her

position for a multi-dimensional rule, her influence must increase.

Theorem 6. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 9, if and only if φ =NIF.

Proof. The proof follows immediately from a similar reasoning to the one used in

the proof of Theorem 5.

4.3 Shift index

Alonso-Meijide and Freixas [2010] argues that not all minimal winning coalitions

will be formed in one dimension, and uses a smaller set of minimal winning coali-

tions - the shift coalitions. The idea is to consider winning coalitions where there are

no surplus individuals but also no individuals who can be replaced by a weaker in-

dividual. The notion of a weaker individual is based on the notion of the desirability

relation (Isbell [1958]).
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We follow two principles to extend Alonso-Meijide and Freixas [2010]’s results to

multi-dimensional rules. Firstly, we assume that every representative wishes to form

part of a minimal winning configuration by giving a positive vote. Secondly, every

representative prefers to partner with weaker players, as long as the configuration

is winning. Therefore, we consider a smaller set than the set of minimal winning

configurations: the shift minimal configurations.

To introduce these special configurations, one needs to introduce the notion of desir-

ability for multi-dimensional rules as an extension of Isbell [1958]’s relation. In one

dimensional context the desirability relation consists in ranking players with respect

to how much influential they are. It is a preordering on the set of players. Instead

of comparing players influence with a cardinal approach, the desirability relation

permits an ordinal comparison. A given player who is never needed in any mini-

mal winning coalition may be regarded as not being of any influence at all. On the

contrary, if that player is indispensable to every minimal winning coalition, we may

think that he is very influential. Most often, it is within these two extreme limits

that the majority of players lie.

Desirability relation for multi-dimensional rules

In a multi-dimensional rule w, representative ia is said to be more desirable than

representative jb, denoted by ia � jb if the following two conditions are fulfilled: i)

for every configuration S such that sai = 0 and sbj = 0 , S + Ibj ∈ W (w)⇒ S + Iai ∈ W (w)

with S + Iai = {T ∈ Zmn : tai = 1, tak = sak for all a and for all k , i} and S + Ibj = {T ∈ Zmn :

tbj = 1, tbk = sbk for all b and for all k , j}; ii) there exists some configuration T such

that tai = 0 and tbj = 0, such that T + Iai ∈ W (w) and T + Ibj <W (w). Individuals ia and

jb are said to be equally desirable, denoted by ia ∼ jb if: for any configuration S such

that sai = 0 and sbj = 0 , S + Iai ∈W (w)⇐⇒ S + Ibj ∈W (w).

The desirability relation denoted by � is defined onN ∗ as follows: ia � jj if ia � jb

or ia ∼ jb.

Shift index for multi-dimensional rules

Let a rule w and its desirability relation �. A configuration S ∈M(w) is shift minimal

if for every ia and jb such that sai = 1, sbj = 0 and ia � jb, it holds that S̄ <W (w) with

S̄ = {T ∈Zmn : tai = 0, tbj = 1, tak = sak for all a and for all k , i, j}. The set of shift minimal

configurations will be denoted by SM(w) and we use the notation SMia(w) as the
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set of shift minimal winning configurations in which representative ia expresses a

positive vote.

Definition 8. Let w be a multi-dimensional rule, the Shift Index for a player i ∈ N is
given by:

SFi(w) =
∑
a∈M

SFia

with

SFia(w) = |SMia (w)|∑
ia∈N ∗

|SMia (w)| .

Example 5. In Example 1, we have the following desirability relation: 11 � 12 ∼ 22 ∼
32 � 21 ∼ 31. Therefore, SM(w) = M(w). This implies that SF1(w) = PG1(w) and
SF2(w) = SF3(w) = PG2(w) = PG3(w).

We present a second example in which the set of minimal winning configurations

is different from the set of shift minimal winning configurations.

Example 6. Consider that six subjects (n = 6) are taught in two periods (m = 2). To
pass the year, the following conditions need to be met: i) the test in the first subject is
compulsory for the first period; ii) for the second period, at least two tests, including the
first subject or at least three tests including the second subject, are needed regardless of
subject six.
We have the following desirability relation: 11 � 12 � 22 � 32 ∼ 42 ∼ 52 � 21 ∼ 31 ∼ 41 ∼
51 ∼ 61 ∼ 62. Therefore, we have'

&

$

%



1 1

0 0

0 1

0 0

0 0

0 0


,



1 1

0 0

0 0

0 1

0 0

0 0


,



1 1

0 0

0 0

0 0

0 1

0 0


,



1 0

0 1

0 1

0 1

0 0

0 0


,



1 0

0 1

0 1

0 0

0 1

0 0


,



1 0

0 1

0 0

0 1

0 1

0 0


SM(w)



1 1

0 1

0 0

0 0

0 0

0 0


M(w)

The last configuration is not shift minimal since we can replace 22 with 32, a weaker
representative, and the configuration remains a winning one.
Public Good Index:

For a = 1, we have PG11(w) = 7
24 and PGi1(w) = 0 for all j = 2, ...,6.
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For a = 2, we have PG12(w) = 4
24 , PG22(w) = 4

24 , PGi2(w) = 3
24 for i = 3,4,5 and

PG62(w) = 0.
Then, PG1(w) = 7

24 + 4
24 = 11

24 , PG2(w) = 4
24 , PGi(w) = 3

24 for i = 3,4,5 , and PG6(w) =

0

Shift Index:
For a = 1, we have SF11(w) = 6

21 and SFi1(w) = 0 for all j = 2, ...,6.
For a = 2, we have SF12(w) = 3

21 , SF22(w) = 3
21 , PGi2(w) = 3

21 for i = 3,4,5 and
SF62(w) = 0.

Then, SF1(w) = 6
21 + 3

21 = 9
21 , SF2(w) = 3

21 , SFi(w) = 3
21 = 5

9 for i = 3,4,5 , and
SF6(w) = 0

The axiom of PG minimal monotonicity can be replaced by the axiom of SF min-

imal monotonicity .

On the SF-minimal monotonicity property

Axiom 10. (SF-minimal monotonicity)
Let w, w̄ ∈Wm

n , for all representatives ia ∈N ∗ such that SMia(w̄) ⊆ SMia(w),

φia(w)
∑

ia∈N ∗
|SMia(w)| ≥ φia(w̄)

∑
ia∈N ∗

|SMia(w̄)|

Theorem 7. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 10, if and only if φ = SF.

The interpretation of Axiom 10 is similar to the two previous monotonicity axioms.

Proof. The proof is similar to the one used in the proof of Theorem 5.

4.4 Deegan-Packel index

Similarly to the ”Public good” index, the Deegan-Packel index (Deegan and Packel

[1978]) results from assuming that only the minimal winning coalitions are likely to

form intentionally. But contrary to the ”Public good” index where all the players in

a minimal winning coalition received one unit of power, the Deegan-Packel index

divides this unit of power equally among the players in the minimal coalition. We

extend the Deegan-Packel index to multi-dimensional rules as follows.

Definition 9. Let w be a multi-dimensional rule, the Deegan-Packel index for a player
i ∈N is given by:
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DPi(w) =
∑
a∈M

DP ia

with

DP ia(w) = 1
|M(w)|

∑
S∈Mia (w)

1
s .

According to this index, only representatives who express a positive vote in a

minimal winning configuration receive power. And the representatives with a pos-

itive vote who belong to the same minimal winning configuration divide the power

equally. Note that each minimal winning configuration has an equal probability of

forming.

Example 7. Once again, we apply our index to the first example.
For a = 1, we have DP 11(w) = 1

3 ∗ (
1
3 + 1

3 + 1
3 ) = 1

3 and DP 21(w) =DP 31(w) = 0.
For a = 2, we have DP 12(w) =DP 22(w) =DP 32(w) = 1

3 ∗ (
1
3 + 1

3 ) = 2
9 .

Then DP1(w) = 1
3 + 2

9 = 5
9 and DP2(w) =DP3(w) = 2

9

In a simple game context, Lorenzo-Freire et al. [2007] characterized the Deegan-

Packel index by introducing a minimal monotonicity property. This property can be

extended to multi-dimensional rules as follows:

On the DP-minimal monotonicity property

Axiom 11. (DP-minimal monotonicity)
Let w, w̄ ∈ Wm

n , φ satisfies DP-minimal monotonicity for multi-dimensional rules if
for any rules w and w̄, it holds that for all representatives ia ∈ N ∗ such thatMia(w̄) ⊆
Mia(w),

φia(w) |M(w)| ≥ φia(w̄) |M(w̄)|

According to Axiom 11, if the set of minimal winning configurations including a

representative ia in rule w̄ is a subset of the set of minimal winning configurations

including the same representative ia in another multi-dimensional rule w then, the

power of ia in w is no lesser than the power of ia in w̄ ( this power must be normalized

by the number of minimal winning configuration in w and w̄).

Theorem 8. Let φ be an index for multi-dimensional rules. Then, φ satisfies Axiom 1,
Axiom 2, Axiom 3 and Axiom 11, if and only if φ =DP .

The interpretation of Axiom 11 is similar to the two previous monotonicity axioms.

Proof. The proof is similar to the one used in the proof of Theorem 5.
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5 Concluding discussion

To conclude, let us summarize all the characterizations in the following tables.

SH BZ DP

Transfer Transfer DP monotonicity
Anonymity Anonymity Anonymity

Efficiency Efficiency* or Two-Efficiency Efficiency

Null player Null player Null player

NIF SF PG

NIF monotonicity SF monotonicity PG monotonicity or Merger
Anonymity Anonymity Anonymity

Efficiency Efficiency Efficiency

Null player Null player Null player

The null player and the anonymity properties appear in all the characteriza-

tions presented above. The efficiency property characterizes all the indices but not

Banzhaf where a modified efficiency property appears. In addition to these prop-

erties, which use only one rule in their definitions, another property is necessary

to characterize each of the indices presented in this paper. This last property must

be one of the groups of properties that establish an inequality between two rules

(monotonicity properties) or an equality between the union rule and the component

rules (mergeability and transfer properties). Depending on the property used, each

one of the six indices is characterized.

A large literature in cooperative game theory is concerned with the study of mul-

tiple alternatives of support (see Felsenthal and Machover [1997], Laruelle and Va-

lenciano [2012], Freixas [2005], Courtin et al. [2016, 2017], among others). One way

in which this work could be explored in further research, is to study the extension

of multi-dimensional rules and the evaluation of power to such games, in which the

choice would no longer be binary.
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Appendix: Independence of the axiomatic system of The-

orem 1 and Theorem 4

The question of the independence axioms is adressed in the following table. The

examples show the independence of any of the axioms we have used with respect to

the others in Theorem 1 and Theorem 4.

Let first introduce the following function. If N ∗ = {ia, ja}, and M =

 1

1

, then

φ̂ia(w) = 1
2 + ε, φ̂ja(w) = 1

2 − ε and φ̂ia(w) = SHia(w) otherwise.
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Theorem 1
Examples Efficiency Null player Anonymity Transfer

φi(w) = BZ No Yes Yes Yes

φi(w) = 1
n Yes No Yes Yes

φi(w) =
∑
a∈M

φ̂ia Yes Yes No Yes

φi(w) = PG Yes Yes Yes No

We introduce the following notation before to present the independance of Theorem

4. Let (m11 ,m21 , ...,mnm) a system of positive weights such that
∑

ia∈N ∗
mia = 1 and mia ,

mjb if ia , jb.

Theorem 4
Examples Efficiency Null player Anonymity Merger

φi(w) = αPG (α > 1) No Yes Yes Yes

φi(w) = 1
n Yes No Yes Yes

φi(w) =
∑
a∈M

φia with φia(w) = mia .|Mia (w)|∑
ia∈N ∗mia .|Mia (w)| Yes Yes No Yes

φi(w) = SH Yes Yes Yes No
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