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An analytical formula to identify the parameters of the
energy-based hysteresis model

Riccardo Scorretti∗, Fabien Sixdenier

Univ Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA Lyon,
CNRS, Ampère, Villeurbanne, France

Abstract

Energy-based models (also called Vector Play models) are a class of phenomeno-

logical models of magnetic hysteresis. In this work an original identification

method is presented. The main advantage of this method is its speed and

its robustness. Conversely to optimization-based methods, which are prone to

convergence problems, the new method is based on analytical formulas. The

method is tested experimentally with three different materials (a ferrite and

two non oriented steels), and provide an accuracy comparable to classical iden-

tification methods, with a much lower computational cost.

Keywords: Hysteresis, Energy based model, Vector play model

1. Introduction

Accurate modeling of hysteresis is important in order to model[1, 2, 3] and

optimize engineering applications[4, 5, 6]. Many phenomenological models of

hysteresis have been proposed. The classical Preisach[7] models and its vector

extensions like Preisach-Mayergoyz model[8, 9, 10, 11] and the Vector Hysteron5

model[12, 13, 14, 15, 16] are known to be accurate, but have a very high com-

putational cost. On the other hand, Jiles-Atherton models [17, 18, 19, 20] are

much less computationally intensive, but also less accurate in particular with
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complex signals (harmonics, PWM) [21]. The energy-based (EB – also called

vector play) models are phenomenological models of static magnetic hysteresis10

[22] which have many desirable properties. Conversely to other models like the

classical Preisach [7] and Jiles-Atherton [17] models, EB models are intrinsically

vectorial and provides an accurate energy balance [23]. Both these features are

key assets for practical application, like transformer and motor design [24]. An-

other nice feature of this model is that the number of parameters is not fixed a15

priori, so that it can be adjusted so as to meet requirements on accuracy: this

is important because, in view of 3D numerical computations of realistic devices,

models should be kept as light as possible.

Like any other model, identification from experimental measurements is

a key point. Most of identification methods rely on numerical optimization20

[25, 23], and are thereby slow and prone to convergence problems, including

convergence to suboptimal local minima. A quite different approach is pro-

posed in [26, 27, 28], but here too the identification is taken on numerically

by evaluating many times a recursive expression, starting from many different

initial points. This procedure ultimately provides a high number of samples of25

the functional which has to be identified. This functional is then discretized so

as to be practically used in computational electromagnetism programs.

In this work we present an original identification method, which has the

unique feature to rely on a closed form analytical formula. It is demonstrated

that this new identification method is remarkably fast and robust.30

The materials and methods are described in the next section. The theory of

the method is introduced in the third section. The robustness of the method is

demonstrated by using three different materials: a ferrite and two non oriented

electrical steels. Moreover, the method is compared with respect of a different

identification method [25] in order to compare the computational time and the35

accuracy of the predictions.
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2. Materials and methods

The identification method has been tested with three different materials and

various different experimental conditions. This section gives details about these

materials and measurements.40

2.1. Ferrite 3C90

The first material is a 3C90 ferrite produced by Ferroxube. It is a MnZn

ferrite classically used in power electronics applications [28]. The experimental

set is composed of 13 centered minor loops that have been used for identifica-

tion in quasi-static conditions (50 Hz). A more complex signal composed of a45

fundamental sinusoidal waveform with a third harmonic of excitation field (not

part of the data set) has also been measured to test the robustness of the model.

2.2. TEAM32 laminations

Measurement of loops performed on Fe-Si 3.2% wt have been published in

[29]. The dataset is composed of several unidirectional symmetrical loops mea-50

sured by using the usual Epstein frame at 10 Hz, with different orientations

with respect of the rolling directions.

First, the model has been identified by using the loops measured along the

rolling direction; the loops measured at 90° with respect of the rolling direction

were used to assess the predictive capability of the model.55

Then the roles of the two measurement sets have been exchanged: the loops

measured at 90° have been used for the identification, and the loops measured

at 0° have been used to assess the predictive capability.

2.3. Non oriented grains electrical steel

Scalar and vector measurement performed on a non-oriented grain electrical60

steel have been published in [30] (courtesy of Dr. Antonio Faba) at frequencies

below 5 Hz [31]. The dataset is composed of several unidirectional symmetrical

loops along different orientations, and a genuine vector measurement performed

by exciting the material with a Rotational Single Sheet Tester. Only the uniaxial
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measurements along the rolling directions were used for identification. The other65

measurements were used to assess the predictive capability of the model.

2.4. Quantitative indicators

For all the tested materials we used some quantitative indicators used to

evaluate the performances of the identification method. These indicators are

defined hereafter:

RBMAX =
max ||bsim||

max ||bmeas||
(1)

RPOW =

¸
hsim · dbsim¸

hmeas · dbmeas
(2)

RERR =

√
1
T

´ T
0
||bmeas − bsim||2dt√

1
T

´ T
0
||bmeas||2dt

(3)

RHCOE =
h
(sim)
coer

h
(meas)
coer

(4)

RBREM =
b
(sim)
rem

b
(meas)
rem

(5)

Index RBMAX is the ratio between simulated and measured max ||b||. In the

case of scalar measurements, the index RHCOE and RBREM are the ratios

between coercive magnetic field and remanent flux density respectively. The70

index RERR is the relative root mean square (rms) error on the flux density

signals. The index RPOW is the ratio between the simulated and measured

loop areas (image of losses).

In the case of RBMAX, RPOW, RHCOE and RBREM values close to 1 are

synonym of good accuracy of the identified model. As for RERR, the smallest75

the value, the better accuracy. In the case of vector measurements only, the lag

angle θhb of h with respect of b is computed (the smaller, the better).

2.5. Identification methods

In order to assess the effectiveness of the proposed method, identifications

have been repeated with another algorithm (hereafter called “competitor”)80

based on fitting experimental data by using a numerical minimization algorithm
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[25]. More precisely, the competitor algorithm solves numerically a constrained

minimization problem so as to identify a given number of cells. Conversely to

the analytical method, the competitor algorithm must be fed by an adequate

set of experimental measurements (loops, or other signals). In our opinion, this85

algorithm is representative enough of the class of identification methods based

on numerical fitting.

3. Theory/Calculation

Hereafter a discrete formulation of the EB model is briefly introduced. Then,

a continuous formulation of the model is derived, where discrete parameters are90

replaced by continuous functions. The identification method, which is based on

the continuous formulation, is then presented.

3.1. Energy based model (discrete formulation)

The EB model decomposes the excitation field h into a reversible hr and an

irreversible part hi:

h = hi + hr (6)

The reversible part hr is discretized as the weighted sum of qk contributions of

a certain number of cells N :

hr =

N−1∑
k=0

ωkqk (7)

where the set of the weights {ωk} is a partition of the unit:

N−1∑
k=0

ωk = 1. (8)

The term qk is the internal state of the kth cell. At each step, the following

update rule is applied (Figure 1a):

qk =


q
(p)
k if ||h− q

(p)
k || < κk

h− κk · h−q(p)
k

||h−q(p)
k ||

otherwise
(9)
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where q
(p)
k is the value of qk at the previous step, and κk is the pinning field

of the cell. It can be assumed without loss of generality that cells are ordered

in such a way that {κk} is an increasing sequence. The magnetization m is

calculated from hr:

m = Man(||hr||) ·
hr

||hr||
(10)

where Man(||hr||) is a scalar anhysteretic function. Finally the flux density b

is obtained through:

b = µ0(m + h). (11)

In order to identify the model, the anhysteretic function Man and the set of

cells (ωk, κk) must be determined.95

3.2. Continuous formulation

In order to proceed, it is necessary to write the EB model into a continuous

form. To this aim, observe that when the number of cells N tends to infinity,

the summation (7) can be replaced by an integral:

hr = lim
N→∞

N−1∑
k=0

ωkqk =

ˆ 1

0

q(ω)dω (12)

where ωk → dω and the sequence qk is replaced by an integrable function1 q(ω).

In fact, assume without loss of generality that the weights {ωk}N−1k=0 are sorted

in ascending order, hence

0 ≤ ω1 ≤ ω1 + ω2 ≤ . . . ≤
N−2∑
k=0

ωk ≤
N−1∑
k=0

ωk = 1

is a partition of [0; 1]. The function q(ω) is built in such a way that q(ω) = qk

for any ω belonging to the kth sub-interval. The measure of the kth sub-interval

of this partition is ωk: hence (7) is a Riemann sum, the limit of which is by

1A similar approach is taken on in [26] (see equation 15 in particular) but with a different

dependence of the function q (aka h∗r) which in [26] is expressed as a function of the pinning

field κ.
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Figure 1: Cell update rule in the discrete case (a) and in the continuous case (b). In the

continuous case the variation dq is highlighted by using red color. It is demonstrated that

only the component of dh aligned with h−q matters. The particular cases of dh perpendicular

and perfectly aligned with h− q are illustrated in (c) and (d) respectively.
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definition the integral of q(ω) between 0 and 1. For the sake of simplicity,100

hereafter the dependence on ω will be dropped.

The update rule (9) must be transformed into a differential equation. For

any value of ω, until ||h − q|| < κ, a modification of the magnetic field has no

effect on q. The case ||h − q|| > κ is forbidden, in that the model will modify

its state so as to make this case impossible. Assume that ||h− q|| = κ. In this

case, an infinitesimal modification of the magnetic field h→ h+dh may induce

a variation q→ q+dq. The value of dq can be computed with (9) by replacing

q
(p)
k → q and qk → q + dq:

dq = (h− q) + dh− κ (h− q) + dh

||(h− q) + dh||
(13)

In order to find the continuous upgrade rule, it is enough to write the first-order

Taylor development of (13):

dq =
(h− q)[dh · (h− q)]

||h− q||2
(14)

In fact, the term
κ

||(h− q) + dh||
=

||h− q||
||(h− q) + dh||

can be linearized around dh = 0 as:

||h− q||
||(h− q) + dh||

' 1− dh · (h− q)

||h− q||2
= 1− dh · (h− q)

κ2

By replacing this expression in (13) one obtains:

dq ' (h− q) + dh−
(

1− dh · (h− q)

κ2

)
[(h− q) + dh]

Finally, (14) is obtained by neglecting the nonlinear terms in the latter expres-

sion. One observes that this expression is the component of dh aligned with

the vector h − q, nothing more, nothing less (Figure 1b). That is, if dh is

perpendicular to the vector h − q one obtains that dq = 0 (Figure 1c). Con-

versely, when dh and h − q are aligned (as it happens in the case of a scalar

excitation) and have the same orientation, the variation dq = dh is maximum

(Figure 1d). Finally, notice that in fact the state of the model will be modified
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only if dh · (h− q) > 0, hence the (13) must be modified as:

dq = (h− q)
max([dh · (h− q)], 0)

||h− q||2
(15)

To wrap up, the update rule in the continuous case writes:

dq =


(h− q)

max([dh · (h− q)], 0)

||h− q||2
if ||h− q|| = κ

0 otherwise

(16)

This expression can be rewritten equivalently as:

dq =


(h− q)

max([dh · (h− q)], 0)

κ2
if ||h− q|| = κ

0 otherwise

(17)

where κ = κ(ω) is the pinning field distribution, which has to be identified.

Similarly to the discrete case, it can be assumed without loss of generality that

κ(ω) is an increasing function.

It must be observed that the case of κ(ω) = 0 deserves a particular attention.

In the discrete case, the case κ0 = 0 represents a cell which has an anhysteretic

behaviour, that is qk = h at any time. In the continuous case too, when

κ(ω) = 0 we have an anhysteretic behaviour, that is:

dq =


(h− q)

max([dh · (h− q)], 0)

κ2
if ||h− q|| = κ, ∀κ > 0

dh if κ = 0

0 otherwise

(18)

3.3. Identification105

As anticipated beforehand, so as to identify the model the anhysteretic func-

tion Man and the set of cells (ωk, κk) must be determined. The anhysteretic

magnetization Man(hr) must be determined independently (for sake of com-

pleteness, a program is reported in Appendix A.2); hereafter we will focus on

the parameters {ωk} and {κk} only.110

The identification will be taken on in the scalar case, basing on the con-

tinuous formulation of the model. The starting point is the equation (20) of
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reference [23], reported hereafter for easyness of reading:

hcoer(hpeak) =

∑m(hpeak)
k=0 ωkκk∑m(hpeak)
k=0 ωk

(19)

where m(hpeak) is the highest index k for which κk < hpeak, that is:

k ≤ m(hpeak) ⇐⇒ κk < hpeak (20)

Actually, it is clear from (20) that m(hpeak) contains all the information required

to determine the sequence {κk}. Equation (19) holds for discrete models. In [23]

the identification is taken on by fitting numerically the parameters {ωk} and

{κk} of this equation basing on a discrete set of points of the curve hcoer(hpeak).

Our approach will be to rewrite (19) in a continuous form, and to determine115

an analytical expression of a distribution function W (hpeak) which is the contin-

uous counterpart of m(hpeak), from which the distribution κ(ω) can be obtained.

In the theoretical analysis, we assume that the continuous curve hcoer(hpeak)

is known. From the practical point of view, the continuous curve has to be

interpolated from a discrete set of points {(hcoer, hpeak)k}.120

Definition of the distribution W (h). The distribution κ : ω 7→ h takes values of

ω ∈ [0; 1] to the pinning field h, where it is assumed that κ(ω) is monotone, non

decreasing. At the continuous level, (dω, κ(ω)) represents an infinitesimal cell

of weight dω and pinning field κ(ω).

We define an auxiliary distribution W : h 7→ ω such that:

κ(ω) ≤ h ∀ω ≤W (h) (21)

So as to simplify the mathematical development, hereafter it will be assumed

that κ(ω) is a monotone, strictly increasing (hence bijective) ordinary function:

κ(ω) = h ⇐⇒ ω = W (h) ⇐⇒ κ(W (h)) = h (22)

Thus W (h) becomes simply the inverse function of κ:

W (h) = κ−1(h) (23)

10



Notice that this is not a fundamental limitation: in the general case, where κ(ω)

is a piece-wise continuous function, the same theoretical developments could be

taken on by using the formalism of distributions. To this aim, (22) can be

equivalently rewritten by using the notion of inverse image:

W (h) = sup{κ−1([0;h])} = sup{ω : κ(ω) ≤ h} (24)

One observes that the distribution W (h) is the continuous counterpart of the125

quantity m(h) defined beforehand (20). It is also clear that the knowledge of

W (h) is enough to determine κ(ω).

The typical graphic of W (h) is sketched in Figure 2. It can be foreseen that

the graphic of W (h) has a plateau for any h ≥ κ(1), which corresponds to the

maximum pinning field of cells, that is to maxω∈[0;1] κ(ω).130

The value of dhcoer

dhpeak

∣∣∣
hpeak=0

has an influence on the value of W (0). In fact,

if dhcoer

dhpeak
> 0 for hpeak = 0, an infinitesimal modification of the magnetic field

produces immediately an increment of the magnetization; hence a cell with

anhysteretic behaviour exists (κ0 = 0). In the continuous case we would have

κ(0) = 0, thus W (0) = 0. Otherwise, if dhcoer

dhpeak
= 0 for hpeak = 0 the value of135

W (h) will be somewhere in the range (0; 1].

Finally, the derivative of W (h) is linked to the weights of cells, in that one

has (Figure 2):

dω =

(
dW

dh

)
dh (25)

That is, the weight dω of the infinitesimal cell of pinning field κ(ω) = h, is given

by
(
dW
dh

)
dh. From the standpoint of probabilities, the function W (h) is the

cumulative distribution function of κ, thus its derivative is the probability of

finding a cell with pinning field κ ∈ [h, h+ dh]. The inflexion points of h, where140

the second derivative d2W
dh2 = 0, correspond to the peaks (or local minima) of

the weight distribution of cells.

Hypothesis. In order to proceed, we pose the following hypothesis:

a) the curve hcoer(hpeak) takes non negative values, it is derivable and mono-

tone, strictly increasing for any hpeak < hsatpeak. For any value hpeak ≥ hsatpeak

11



Figure 2: Sketch of the graphic of the function W (h) which, in the particular case of κ(ω)

bijective, is the inverse function of κ(ω). Notice the plateau for h ≥ κ(1). The derivative

of W (h) is linked with the weights of cells dω. In this graphic it has been supposed that

dhcoer
dhpeak

> 0 for hpeak = 0, and hence W (0) = 0, which practically means that the first cell has

an anhysteretic behaviour (κ0 = 0). The first derivative dW
dh

is representative of the weights

distribution of cells, the peaks of which correspond to inflection points of the graphic of W .
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the curve is saturated:

hpeak ≥ hsatpeak =⇒ hcoer ≡ hsatcoer (26)

Moreover, it is assumed that the values hsatpeak and hsatcoer are known.

b) The distribution function W (h) is derivable at any point, and dW
dh > 0 for145

any h < κ(1), that is for ω ∈ [0; 1).

If follows from a) that the derivative hcoer

hpeak
is strictly positive, including for

hpeak = 0. Thus an anhysteretic cell is necessary present, and the function

W (h) satisfies the following properties:

W (0) = 0 ; W (hsatpeak) = 1 (27)

Figure 3: Sketch of a possible measurement of the curve hcoer(hpeak). When hpeak > hsatpeak

all cells are activated (a). Similarly, for h = −hsatcoer all cells are activated “in the opposite

direction” (b). It can be observed that, apart from the portion of the curve close to the

reversal point, the width of the major cycle is constant and it is equal to 2hsatcoer; this is a

structural property of the model.
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Analytical expression of W (h). To begin with, assume that the material is not

fully saturated, that is 0 ≤ hpeak < hsatpeak. The continuous form of (19) writes:

hcoer(hpeak) =

´W (hpeak)

0
κ(ω)dω´W (hpeak)

0
dω

(28)

The integral at the denominator can be replaced by W (hpeak). According to

(27) the integral at the numerator can be modified replacing 0 = W (0):

W (hpeak)hcoer(hpeak) =

ˆ W (hpeak)

W (0)

κ(ω)dω =

ˆ hpeak

0

h
dW

dh
dh (29)

where we used the fact that κ(W (h)) = h. If is worth observing that this is

possible because dW
dh 6= 0 (otherwise the theorem of change of variable would not

hold). Also, observe that close to the saturation the distribution W (hpeak) is

very flat, thus dW
dh ' 0. In practice, this is coherent with the physical evidence150

that measurement points close to the saturation take a few information for the

identification of the model.

Equation (29) calls for integration by part. After a few algebraic manipula-

tions one obtains:

W (hpeak)[hpeak − hcoer(hpeak)] =

ˆ hpeak

0

W (h)dh (30)

One observes that this equation is consistent with the fact that hpeak > hcoer

because the right hand term is a positive quantity.

Now, let’s derive (30) with respect of hpeak so as to obtain the following

differential equation, which has to be completed with an appropriate initial

condition to be solved:

dW

dhpeak
=

W (hpeak) dhcoer

dhpeak

hpeak − hcoer(hpeak)
(31)

We know from (27) that W (0) = 0, but unfortunately the Cauchy’s problem

composed of (31) with this initial condition admits an infinity of solutions2.

2Among others, the trivial solution W (hpeak) ≡ 0. This is due to the fact that for small

values of hpeak the denominator hpeak − hcoer(hpeak)→ 0, and hence the right hand term is

not a Lipschitz continuous function. Thus the theorem of existence and uniqueness of solutions

of Cauchy’s problem doesn’t hold (see for instance [32], chap 8.2).

14



Instead, let’s adopt the initial condition W (hsatpeak) = 1 to backwardly integrate

(31) in the range [hpeak;hsatpeak]:

logW (hsatpeak)− logW (hpeak) =

ˆ hsat
peak

hpeak

(
dhcoer(h)

dh

)
h− hcoer(h)

dh (32)

and hence, by taking into account that logW (hsatpeak) = log 1 = 0:

W (hpeak) = exp

−ˆ hsat
peak

hpeak

(
dhcoer(h)

dh

)
h− hcoer(h)

dh

 (33)

Up to now we limited the discussion to the range 0 ≤ hpeak < hsatpeak. In fact,

this limitation can be removed easily by observing that for hpeak ≥ hsatpeak the

coercive field is constant, hence dhcoer(h)
dh ≡ 0. Thus the value hsatpeak can be

removed from (33):

W (hpeak) = exp

− ˆ +∞

hpeak

(
dhcoer(h)

dh

)
h− hcoer(h)

dh

 (34)

The integrand function contains the derivative of hcoer, which has to be

evaluated numerically. Numerical derivation, for instance by using finite differ-

ences, is always a source of numerical noise, but in practice this is not a problem

because the curve hcoer(hpeak) has to be interpolated from a few points, and

the interpolated function can be derived analytically. However, it is possible to

make the derivative disappear by using h′ = hcoer as integration variable:

W (hpeak) = exp

[
−
ˆ hsat

coer

hcoer(hpeak)

1

hpeak(h′)− h′
dh′

]
(35)

where hpeak(h′) ≥ h′ is the inverse function of hcoer(h); that is, it is peak field155

corresponding to the coercive field hcoer = h′. This definition makes sense

because until the material is not saturated the curve hcoer(hpeak) is bijective.

Equations (34) and (35) are perfectly equivalent, even from the numerical

point of view (in the sense that they allow to compute W (hpeak) with a compa-

rable accuracy). Once W (hpeak) is computed numerically for a large number of160

points, it is trivial to generate a table of κ(ω) by using (22), and hence to have

the model identified.
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3.4. Remarks

It can be observed that the expressions (34) and (35) verify (27), that is:

0 ≤ W (h) ≤ 1, and in particular W (0) = 0 and W (hsatpeak) = 1. In fact, in (34)

the integrand function is positive for any hpeak < hsatpeak, and it vanishes when

the material is saturated. Hence the exponent is non positive for any value of

hpeak, thus W (hpeak) ≤ 1 and in particular:

W (hsatpeak) = exp

−ˆ hsat
peak

hsat
peak

(
dhcoer(h)

dh

)
h− hcoer(h)

dh

 = exp(0) = 1 (36)

On the other hand, one observes that in a neighborhood of hpeak = 0 the integral

in (34) diverges 3 because hcoer(0) = 0 and hence W (0) = 0:

lim
hpeak→0

−
ˆ ∞
hpeak

(
dhcoer(h)

dh

)
h− hcoer(h)

dh = −∞ =⇒ W (0) = 0 (37)

Before analyzing the results obtained with experimental measurements, two

other considerations must be anticipated. First, the result provided by the165

identification method are approximated, and the origin of the approximation

lies in the starting equations (19) and its continuous counterpart (28). In order

to understand this point, consider the behaviour of the model for low values

of hpeak, which is sketched in figure 4. Equation (19) and (28) describe the

becoming of the state of the model excited by the signal sketched in Figure 4.170

3The demonstration is a little bit more complicated. Remember that it is assumed that

dhcoer
dhpeak

> 0 for hpeak < κ(0) ≤ hsatpeak. Hence in a neighborhood of hpeak = 0 the numerator

dhcoer
dhpeak

is bounded from below by a positive, finite value a:

0 < a ≤
dhcoer

dhpeak

For the same reason, Taylor’s expansion of the function hcoer(h) has a first-order term:

hcoer(h) = hcoer(0) +
dhcoer

dhpeak

∣∣∣∣
hpeak=0

· h+ ◦(h) = bh+ ◦(h)

where b =

(
dhcoer
dhpeak

∣∣∣
hpeak=0

)
> 0. Hence the indefinite integral is locally of the form:

´∞
0

a
bh
dh→ +∞.
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Figure 4: Sketch of a possible measurement of the curve hcoer(hpeak) for a low value of hpeak

in the case of a material modeled by three cells. It can be observed that all the cells for which

κ ≤ hpeak are activated during the ascending branch (a). Conversely, during the descending

branch only cells for which κ ≤ hcoer are activated (highlighted in this figure), whereas the

cells with hcoer < κ < hpeak are not (b).

In the ascending branch, all the cells with κ ≤ hpeak are activated, and for

h = hpeak one has:

q =

hpeak − κ(ω) if κ ≤ hpeak

0 otherwise

(38)

where in order to simplify the notation we given up the vector notation.

During the descending branch, when h = −hcoer one has three different

cases, so that finally the state of the material is given by:

q =


−hcoer + κ(ω) if κ ≤ hcoer

hpeak − κ(ω) if hcoer ≤ κ ≤ hpeak

0 otherwise

(39)

When (39) is used in (12), by imposing that for h = hcoer the reversible magnetic

field must vanish (hr = 0) one obtains:

0 = hr =

ˆ W (hcoer)

0

(κ(ω)− hcoer)dω +

ˆ W (hpeak)

W (hcoer)

(hpeak − κ(ω))dω (40)
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It can be observed that (28) can be obtained from (40) by neglecting the second

integral, that is: ˆ W (hcoer)

0

(κ(ω)− hcoer)dω = 0 (41)

Hence, (34) and (35) are approximated solution of (40). Unfortunately so far

no analytical solution could be found for (40). It can be observed that the

discrepancy between (41) and (40) is significant only for weak values of hpeak

(compare figure 3 and 4), hence we expect to obtain mixed results when mate-175

rials are excited with low magnetic fields. However, it has been reported that

for low magnetic fields the EB model provides mixed results also with other

identification methods [28].

Second, consider again the behaviour of the material when it is fully sat-

urated. When hpeak ≥ hsatpeak, it can be deduced from (41) and(27) that the

coercive field hcoer = hsatcoer writes:

hsatcoer =

ˆ 1

0

κ(ω)dω (42)

The same consideration holds for the symmetric part of the major loop, hence

the width of the major loop ∆h is:

∆h = 2hsatcoer = 2

ˆ 1

0

κ(ω)dω (43)

The point is that in the major loop all of the cells are active, and hence the width

of the major loop is bound to be constant at any point (figure 3b), apart from a180

neighborhood of reversal points where cells are not all active. The constantness

of the width of the major loop is a structural property of the EB model; that

is, it does not depend on the identification method.

3.5. Implementation

The numerical evaluation of (34) and (35) has been implemented in a MAT-185

LAB/Octave function (see Appendix A.1). The program accepts as input two

vectors Hc and Hp which store respectively the measured values of hpeak and
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hcoer, and returns two vectors omega and kappa which store respectively the es-

timated values of {ωk} and {κk}. When using real measurements, precautions

must be taken in order to avoid some pitfalls:190

1) in theory the curve hcoer(hpeak) is monotone, but in practice this is not

necessarily the case, due to measurement errors and/or electrical noise. Un-

fortunately this property must absolutely be verified, so that it is necessary

to enforce it by sorting the vectors Hc and Hp. This is of course a “quick and

dirty patch”, but up to our experience it is enough to solve this issue.195

Eventually, the vector Hc can be perturbed by adding a negligible quantity

(order of magnitude: 100ε, with ε ' 10−16 = machine precision in double

precision floating point arithmetic), so as to strictly enforce the monotonicity.

2) The couple of values hpeak = 0 and hcoer = 0 are added to the data set, and

eventual duplicate measurement points are removed.200

3) In practice, the value of hsatcoer is estimated as the maximum of Hc.

4) The curve hcoer(hpeak) must be interpolated. It has been observed that close

to the saturation the curve becomes very flat. This kind of situation may be

problematic for the interpolation algorithms. In particular, with some kinds

of interpolation methods nonphysical spurious maxima are observed close to205

the saturation, where the curve becomes very flat.

In order to avoid these artifacts, it may be advisable to use the simple piece-

wise linear interpolation, which has the defect of ensuring the continuity C0

only (that is: the interpolated curve is continuous, but not its first deriva-

tive). Another solution is to use more complex interpolation methods (piece-210

wise cubic, spline interpolation) which ensures at least C1 continuity, with

the precaution of removing the measurement points where the material is

fully saturated and the curve hcoer(hpeak) becomes very flat. Remember

that there points close to the saturation take little or no additional informa-

tion to the model, thus in practice they can be safely removed.215
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We stress that, up to our experience, this pre-processing phase is crucial to

obtain good results.

When (34) is used to compute W (h), the derivative dhcoer(h)
dh can be com-

puted numerically by using Finite Differences. The distribution function

W (hpeak) is sampled on a large number of points N (order of magnitude:220

N = 1000) which span the range [0,max(hpeak)]. Integrals in (34) or (35) are

computed numerically by using standard adaptive quadrature formulas avail-

able in practically all softwares. The first sample W (0) = 0 is enforced in the

code, because in this case the integral in (34) and (35) diverges. The final step

is to compute omega and kappa basing on the computed samples of W (hpeaks).225

The weights of all cells are fixed to the constant value ωk = 1
N .

Finally, it has to be pointed out that the proposed identification method

returns a model composed of a number of cells which is prohibitive for practical

applications. However, simplified models can be easily be generated. A simple

and effective clustering algorithm is proposed in Appendix A.3.230

4. Results

4.1. Ferrite 3C90

The model has been identified with the proposed method by using the values

of hcoer and hpeak measured with 13 centered minor loops (Table 1). The

Table 1: Measurement points for the ferrite 3C90 (unit: A/m)

hpeak 9.96 19.9 29.8 40.5 50.0 59.9 69.9 79.8 90.3 100 150 199 231

hcoer 0.912 2.72 4.26 6.81 8.19 9.75 10.8 11.0 11.7 11.8 11.8 12.4 12.6

measurement points, together with the curve hcoer(hpeak) interpolated by using235

the piece-wise linear interpolation and the coercive field hcoer approximated by

using (19) are plotted in Figure 5a. The distribution function W (h) is plotted
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in Figure 5b. It can be observed that starting from h = 100 A/m the material

is saturated, hence W (h) is close to 1.

Figure 5: a) Measurement points hcoer(hpeak) (+) and piece-wise linearly interpolated curve

(dashed line). The staircase curve represent the approximate computation of hcoer by using

(19) with the identified model. b) Distribution function W (hpeak), from which the pinning

field κ(ω) is computed.

The model has been first identified with N = 512 cells, which have then240

been clustered into 10 cells by using the algorithm described in Appendix A.3.

The measured loops have been simulated by using both models (with 512 and

10 cells and are plotted Figure 6. The table 2, gives the different indicators for

each loop minor centered loop. The same loops have been used to identify the

material with the competitor algorithm.245

In Figure 7 is depicted a signal composed of the fundamental harmonic and

the third harmonic, which gives rise to minor loops. This measurement is not

part of the dataset used to identify the model.

4.2. TEAM32 laminations

For the TEAM32 laminations, the model has been identified by using the250

values of hcoer and hpeak obtained from centered minor loops measured along the

rolling direction (Table 3). One observes that the last point (hpeak = 5442 A/m,

hcoer = 84.9 A/m) is clearly an outlier. Nevertheless the identification method
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Table 2: Indicators for the 3C90 ferrite

max |h| (A/m) RBMAX RPOW RERR RHCOE RBREM

10 1.21 1.81 28% 1.10 1.41

30 1.11 0.73 10% 0.76 0.80

50 1.04 0.64 7% 0.74 0.67

90 0.99 0.75 4% 0.89 0.82

150 0.99 0.87 2% 0.96 0.94

230 0.99 0.94 1% 1.02 0.99

Figure 6: Ferrite 3C90: measured loops of increasing amplitude (black points). The same

loops have been simulated with the estimated model with 512 cells (red) and 10 cells (green).
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Figure 7: Signal with third harmonic measured (black) and simulated with the models

identified by using the analytical algorithm (red, green) and the competitor algorithm (blue,

cyan, magenta). The simulated signals are nearly superposed; they can hardly be distinguished

in the inset which represents a zoom around t = 300.

provided a workable model. The same loops have been used to identify the

material by using the competitor algorithm.255

Table 3: Measurement points for the TEAM32 laminations (angle = 0°, unit: A/m)

hpeak 42.9 51.5 74.0 109.0 202.7 251.8 348.4 492.6 727.5 906.3 1233 5442

hcoer 21.3 30.6 42.7 50.3 55.1 56.9 59.8 61.1 61.3 61.6 61.9 84.9

We present some of the measured and simulated loops for increasing ampli-

tudes in the rolling direction. The quantitative indexes for the proposed method

are reported in the table 4 for these loops. In order to assess its predictive capa-

bility, the identified model has been used to simulate the loops measured in the

transverse direction (Figure 9). The corresponding quantitative indicators for260

the proposed method for fields transverse to the rolling direction for different

amplitudes are reported in Table 5.

Next, the loops measured at 90° with respect of the rolling direction have

been used for the identification, and the other loops have been used to assess
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Table 4: Indicators for the TEAM32 steel (angle = 0°)

max |h| (A/m) RBMAX RPOW RERR RHCOE RBREM

51 0.78 0.75 25% 0.78 0.79

109 0.95 0.99 24% 1.00 0.93

252 0.98 0.96 16% 1.05 0.88

493 0.99 0.87 15% 1.06 0.84

906 0.98 0.81 12% 1.08 0.81

5442 1.00 0.60 11% 0.95 1.24

Table 5: Indicators for the TEAM32 steel (angle = 90°)

max |h| (A/m) RBMAX RPOW RERR RHCOE RBREM

62 1.84 2.48 97% 1.13 2.44

76 1.71 2.06 81% 1.03 2.04

182 1.17 1.11 33% 0.90 1.23

476 1.06 0.86 26% 0.85 1.01

1284 1.04 0.74 21% 0.86 0.97

5549 1.02 0.80 10% 1.09 2.25
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Figure 8: TEAM 32 laminations, angle = 0°: measured loops of increasing amplitude (black

points) and simulated with the model identified with the proposed method (red) and with

the competitor (blue). The model has been identified by using the measured loops at 0° with

respect of the rolling direction.

the predictive capability. In fact it is observed that the measured loops for high265

values of hpeak intersect, thus the curve hcoer(hpeak) is not monotone (Table

6). Nevertheless the identification algorithm provides a workable model of the

material. The indicators computed with all the available measurements are close

to those already presented (data not shown).

4.3. Non-oriented grain electrical steel270

In all the measurements the flux density is imposed. The model has been

identified with the proposed algorithm and with the competitor algorithm by

using the uni-axial loops measured along the rolling direction. The loops and

the curve hcoer(hpeak) are not shown here but the corresponding quantitative
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Figure 9: TEAM 32 laminations, angle = 90°: measured loops of increasing amplitude (black

points) and simulated with the model identified with the proposed method (red) and with

the competitor (blue). The model has been identified by using the loops measured along the

rolling direction.
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Table 6: Measurement points for the TEAM32 laminations (angle = 90°, unit: A/m)

hpeak 61.7 76.4 118.5 182.2 359.5 476.1 722.4 1284.4 2609.7 5549

hcoer 28.1 39.6 54.6 64.1 73.8 76.0 80.8 77.8 79.8 75.0

indicators are reported in Table 7

Table 7: Indicators for the non-oriented grains electrical steel [30] (angle = 0°)

max |h| (A/m) RBMAX RPOW RERR RHCOE RBREM

33 1.00 1.14 13% 1.05 1.29

47 0.88 0.78 14% 0.87 0.82

68 0.92 0.86 10% 1.00 0.92

101 0.99 0.96 6% 1.03 0.96

162 1.01 0.99 5% 1.05 0.97

295 1.01 1.00 4% 1.07 1.00

872 1.00 0.86 3% 1.09 1.12

3782 1.00 0.73 2% 1.07 1.37

275

Also the identified model has been used to predict the outcome of other

measurements. First, in Figure 10 is depicted the flux density (left) and the

magnetic field (right) in the case of an uni-axial excitement with an angle of 30°

with respect of the rolling direction. The corresponding quantitative indicators

are reported in Table 8.280

Also the case of a circular flux density is considered. A circular flux density

has been imposed experimentally. The measured and simulated loops, together

with the corresponding lag-angle θhb are plotted Figure 11. The corresponding

quantitative units are reported in Table 9.
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Table 8: Quantitative for the non-oriented grains electrical steel [30] (angle = 30°)

max ||h|| (A/m) RBMAX RPOW RERR

31 0.92 1.02 13%

45 0.82 0.72 21%

62 0.83 0.78 19%

95 0.93 0.95 12%

150 0.97 1.01 9%

264 0.98 1.01 6%

506 0.97 0.92 6%

1812 0.96 0.71 6%

Table 9: Quantitative for the non-oriented grains electrical steel [30] (circular flux density)

max ||h|| (A/m) RBMAX RPOW RERR

36 1.40 1.03 31%

50 1.12 0.74 24%

73 1.15 0.88 21%

121 1.18 1.02 18%

201 1.13 1.04 13%

270 1.09 1.01 11%

373 1.06 0.95 8%

581 1.03 0.86 7%

1212 1.01 0.74 5%

1834 1.01 0.73 4%

295 1.01 0.77 3%
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Figure 10: Flux density (left) and magnetic field (right) for an uniaxial excitation with n angle

of 30° with respect of the rolling direction: measurement (black), simulation with the model

identified by using the proposed method (red) and by using the competitor algorithm (green).

No significant difference can be observed between the two identification models. The inset in

the bottom left graphic magnifies a tiny loop close to the origin (||h|| ' 0).
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Figure 11: Flux density loops (left) and lag-angle θhb (right) for a vector excitation: measure-

ment (black), simulation (red).
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5. Discussion285

5.1. Ferrite 3C90

From Figure 5a and 5b, it can can be observed that (19) provides a fairly

good approximation of the coercive field.

From Figure 6, it can be observed that the original model and the model

composed of only 10 cells provide practically the same result. As previously290

anticipated, high amplitude loops are better represented by the model than low

amplitude one (Table 2). However, the difficulty of modeling low amplitude

signals with this same material has already been pointed out in [28], and cannot

be imputed to the identification method.

It can be observed from Figure 7 that the identified model can reproduce295

with good accuracy the signal, even if a higher discrepancy is observed close to

the tip of the minor loop. For this signal some of the quantitative indicators

are: RBMAX = 0.98, RPOW = 0.98, RERR = 4% (in this case RHCOE and

RBREM cannot be evaluated).

5.2. TEAM32 laminations300

The same trend observed with the 3C90 ferrite is found. When the model

is identified with the proposed method by using the measurements at 0° with

respect of the rolling direction, low amplitude loops are reproduced less accu-

rately with respect to high amplitude ones (see Table 4). It is observed that the

model is able to predict the measurements at 90° with an acceptable accuracy,305

apart from the low amplitude cycles (Table 5).

However, a more careful analysis puts in evidence a difference with respect

of the 3C90 ferrite: when the amplitude of loops is increased the rms error

(RERR) and the ratio between simulated and measured loops areas (RPOW)

don’t converge to their optimal values. This fact can be explained at least310

partially by observing that the width of the major loop ∆h is not constant

(Figure 3b). In fact, for b = 0 we have ∆h = 2h
(sat)
coer = 162 A/m, whereas

for b = 1.2 T the measured width ∆h = 307 A/m is nearly the double (Figure
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12, right). As discussed in 3.4, the constantness of the width of the major

loop far from the reversal points is a structural property of the energy-based315

model, which is not fulfilled by this material. Hence it is natural that some

discrepancies between measurements and simulations appear. This fact is also

responsible for the values of RBREM, which are not as good as in the case of

the 3C90 ferrite (compare Tables 2 and 4).

Figure 12: TEAM 32 laminations. Left: points hcoer(hpeak) measured at 0° with respect

of the rolling direction (+) and piece-wise linearly interpolated curve (dashed line). It can

be observed that a plateau of hcoer is achieved at about hpeak = 500A/m, suggesting that

the material is already saturated. The last measurement point hpeak = 5442A/m is most

likely an outlier. Right: measured loops of amplitude hpeak = 5442A/m (black points) and

simulated with the estimated model (512 cells, red). The two insets magnifies the graphics

around b = 0 and b = 1.2 T.

Another fact which deserves to be pointed out is that the point of the curve320

hcoer(hpeak) corresponding to the major loop (hpeak = 5442A/m) is likely to

be an outlier with respect of the other points (Figure 12, left). In spite of the

presence of this outlier, the identified model has a good predictive capability.

The results obtained when the model is identified by using the measurements

at 90° are similar (data not shown). In this case, one observes that the experi-325

mental curve hcoer(hpeak) is not monotonous, which can be easily explained by

measurement noise. Nevertheless, the identified model is workable and has a
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good predictive capability.

5.3. Non-oriented grain electrical steel

As for the case of TEAM32 steel, the width of the major loop ∆h ∈330

[78 ; 202] A/m is not constant, and this explains the discrepancy on the losses

(RPOW) between simulations and measurements in the Table 7.

Also from Figure 10, it can be seen that the material is not perfectly isotropic,

as it can be noticed by the small loops for weak magnetic fields. These loops

become evident in the simulated flux density (right), because the EB model is335

perfectly isotropic.

No practical difference is observed by repeating the simulations with the

model identified with the competitor algorithm. This suggests that the origin

of the observed discrepancy is the isotropic nature of the model itself. Similar

considerations can be done by exploiting the other available uni-axial measure-340

ments.

Finally for the case of a circular flux density (Figure 11 and Table 9). First,

it can be seen from Figure 11, that the lag angle decreases when the amplitude

of loops increases, as it was pointed out in [30]. It can be observed also that the

model, in this present form is unable to reproduce the becoming of θhb. Never-345

theless, apart from the lag-angle, the same behaviour of the previous materials

is observed (Table 9).

5.4. Comparison with another identification algorithm

In order to assess the effectiveness of the proposed method, we repeated the

identification with another algorithm (competitor) based on fitting experimen-350

tal data by using a numerical minimization algorithm [25]. More precisely, the

competitor algorithm solves numerically a constrained minimization problem so

as to identify a given number of cells. Conversely to the analytical method, the

competitor algorithm must be fed by an adequate set of experimental measure-

ments (loops, or other signals). In our opinion, this algorithm is representative355
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enough of the class of identification methods based on numerical minimization

of a cost function.

The ferrite 3C90 has been has been identified by using both the analytical

method (N = 512 cells, then clustered to 10 cells only) and the competitor

algorithm (N = 10, N = 20, N = 40 and N = 80 cells) by using the centered360

minor loops. The signal with the third harmonic has been used to compare the

accuracy of the two algorithms.

The computational time to identify the materials with the analytical method

is of about Ta = 0.60 sec. On the same computer (PC Linux Fedora 34, Intel

Core i7-8850H, 128 Gb of RAM) and with the same programming language365

(Matlab version 2020b), the competitor algorithm takes Tc,10 = 114 sec with

only N = 10 cells, Tc,20 = 9 min with N = 20 cells and Tc,40 = 19.6 min with

N = 40 cells. For N = 80 cells the competitor algorithm failed to converge to

the required accuracy after 42 min ; this problem could eventually be solved at

the price of a much higher computational time by using appropriate strategies370

(multiple starting point search, increasing the maximum number of iterations,

etc.).

The simulations taken on with the signal with third harmonic are depicted

in Figure 7 together with the measurement. It can be easily observed that the

accuracy is practically identical for the models identified with the analytical and375

with the competitor algorithm.

In the case of TEAM32 laminations, the material has been identified by

using the competitor algorithm (N = 20 cells). The algorithm executed in

Tc,20 = 20 min and failed to converge up to the required accuracy, whereas

the proposed algorithm required less than 1 sec. The slowness and the non380

convergence of the competitor algorithm can be explained by the fact that, as

already mentioned, for the TEAM32 steel the width of the major loop is not

constant, which is a structural property of the model, and hence cannot be

reproduced by the EB model.

The identified model with the competitor has a predictive capability quite385
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different from the one identified by using the proposed algorithm (Figure 9). It

can be observed that the competitor predicts better the loops of low; conversely

the loop corresponding to high fields is completely wrong. This may be related

to the presence of the outlier in the curve hcoer(hpeak), which in turns has only

a moderate effect on the proposed algorithm.390

In the case of non-oriented grains electrical steel, a model composed of 20

cells has been successfully identified, starting from the same dataset. The simu-

lations executed with this second model is also plotted in Figure 10: like in the

case of the ferrite 3C90, no significant difference is observed in the predictive

capability for the two models. Conversely, the competitor algorithm requires a395

much larger computational time with respect of the proposed method.

6. Conclusion

The purpose of this work is to present a new identification method for the

EB model of magnetic hysteresis. Conversely to other identification methods,

the proposed method is based on analytical formulas which allows to compute a400

distribution function W (h) from the curve hcoer(hpeak), from which the pinning

field of cells κk is easily computed. A simple clustering algorithm allows to

simplify the model by reducing the number of cells. The computational routines

in MATLAB/Octave are very short, and are listed in the appendix.

The proposed method has several advantages. The identification is taken405

on with no free fitting parameters: that is, no minimization step is required.

This completely removes convergence issues which are often observed with min-

imization algorithms. Moreover, the proposed algorithm requires no critical

tuning, conversely to minimization algorithms where some parameters need to

be carefully set (i.e. max. number of iterations, starting point, target tolerance410

etc.).

From the standpoint of the computational time, the proposed algorithm

outperforms by several order of magnitude other algorithms based on numerical

minimization, while providing a comparable accuracy. On the other hand, it has
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to be said that the proposed method requires as input the curve hcoer(hpeak),415

whereas other algorithms can be fed with many other kinds of signals, and hence

are more flexible.

From the standpoint of the prediction capability, no major differences are

observed between the proposed algorithm and other algorithms, provided that

the minimization algorithm converges.420

Most importantly, it is demonstrated that the identification method is quite

robust, even in the presence of measurement noise or outliers in the measured

points {(hcoer, hpeak)k}.

The identification method has been tested with three different materials, and

in all cases it has demonstrated a good predictive power. Some limitations on425

the accuracy of the results have been put in evidence. In particular, simulations

provided mixed results for low amplitude fields, and were unable to reproduce

the becoming of the lag angle between h and b in vector measurements. How-

ever, similar limitations are imputable to the EB model itself rather than to

this or indeed any other identification methods.430

The problem of the accurate prediction of the lag angle remains an open

problem with any model of vector hysteresis, not only the EB model. In partic-

ular, as much as the EB model is concerned, the modeling of anisotropic materi-

als is still in its infancy and deserves further investigations. For sure, one aspect

of this problem is the identification of models by using vector measurements.435

It can been foreseen that using vector measurements for the identification will

improve the predictive capability. In our opinion, the prediction of the lag angle

should be studied first (model extension/modification) before questioning the

identification method.
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Appendix A. Programs440

The MATLAB/Octave functions reported hereafter implements the identi-

fication algorithm, the estimation of the anhysteretic curve, and a simple clus-

tering algorithm to reduce the number of cells of the model. The functions has

been tested with both MATLAB (version 2020b) and Octave (version 5.2).

Appendix A.1. Identification445

The function identify listed hereafter implements the identification algo-

rithm. The function requires as input arguments the measured values of the

coercive field (Hc) and peak field (Hp) and the number of cells (N), and returns

the weights (omega) and the pinning fields (kappa) of cells. The hard-coded vari-

able FRM allows to select which formula between (34) (FRM=1) and (35) (FRM=2)450

is used to compute the distribution function W (h).

function [omega , kappa] = identify (Hc, Hp, N)

FRM = 1 ; Hp = [0 ; Hp(:)] ; Hc = [0 ; Hc (:)];

Hp = unique(Hp) ; Hc = sort(Hc); max_Hp = max(Hp) ; max_Hc = max(Hc);

Hc = Hc + 100* eps *(0: numel(Hc)-1)’;455

fun_Hc = @(h) interp1(Hp, Hc, h, ’linear ’, max(Hc));

fun_dHc = derive(fun_Hc );

fun_Hp = @(h) interp1(Hc, Hp, h, ’linear ’, ’extrap ’);

Hp_ = linspace(0, max_Hp , N);

W = zeros(N, 1);460

for k = 2 : N

if FRM == 1

W(k) = exp(-integral(@(h) fun_dHc(h) ./ (h - fun_Hc(h)), Hp_(k), max_Hp ));

else

W(k) = exp(-integral(@(h) 1./( fun_Hp(h) - h), fun_Hc(Hp_(k)), fun_Hc(max_Hp )));465

end

end

kappa = w2kappa(Hp_ , W);

omega = ones(N, 1) / N;

end470

function dF = derive(F)

dx = 1E-4 ; dF = @(x) (F(x+dx) - F(x)) / dx;
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end

475

function kappa = w2kappa(Hp, W)

N = numel(W) ; Omega = linspace(0, 1, N) ; Omega = Omega (:);

kappa = zeros(N, 1) ; t = 1;

for k = 1 : N

while(t <= N && Omega(t) <= W(k))480

kappa(t) = Hp(k) ; t = t + 1;

end

end

end

Appendix A.2. Estimation of the anhysteretic curve485

The function anhysteretic estimates the anhysteretic curve from a set of

scalar measurements of the magnetic field ({hk}, input argument H) and flux

density ({bk}, input argument B), from which the magnetization {mk} is com-

puted. The measurement points can be provided in any order, and can represent

any kind of signal, provided that the major loop is explored. The program recon-

structs the major loop by generating the envelope of the points. More precisely,

the set of points on the ascending branch of the major loop are selected basing

on the following criterion (Figure A.13):

find k such that: mk ≥ mj and hk ≤ hj ∀j 6= k (A.1)

A similar criterion is used to identify the descending branch:

find k such that: mk ≤ mj and hk ≥ hj ∀j 6= k (A.2)

All the other measurement points are discarded. After that the points on the

ascending and descending branches have been identified, the two branches are

interpolated by using a fixed number of point (hard-coded variable nb = 64),

and the anhysteretic curve is estimated as the median line between the ascending

and the descending curve. The function returns the samples of the anhysteretic490

curve (Ha, Ma) and the handle to a function (fn) which evaluates the anhysteretic

magnetization as a function the magnetic field.
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Figure A.13: Sketch of the algorithm to estimate the anhysteretic curve. The ascending

and descending branches are depicted in red and blue color respectively. The estimated

anhysteretic curve is plotted in magenta.

function [Ha , Ma , fn] = anhysteretic(H, B)

nb = 64 ; H = H(:) ; B = B(:) ; mu0 = pi*4.0e-7 ; M = B/mu0 - H;

minH = min(H) ; maxH = max(H) ; ind_a = [] ; ind_d = [];495

for n = 1 : numel(H)

if isempty(find(H > H(n) & M < M(n)))

ind_a(end+1) = n;

elseif isempty(find(H < H(n) & M > M(n)))

ind_d(end+1) = n;500

end

end

[ha , ma] = preprocessing(H(ind_a), M(ind_a ));

[hd , md] = preprocessing(H(ind_d), M(ind_d ));

Ma = linspace(max(min(ma), min(md)), min(max(ma), max(md)), nb);505

Hai = interp1(ma, ha , Ma) ; Hdi = interp1(md, hd, Ma);

Ha = (Hai + Hdi) / 2.0 ;

Ha = [ min(H) Ha max(H) ] ; Ma = [ min(M) Ma max(M) ];

[Ha , Ma] = preprocessing(Ha , Ma);
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fn = @(h) interp1(Ha, Ma , h, ’pchip’);510

end

function [h, m] = preprocessing(H, M)

ha = sort(H) ; ma = sort(M) ; [m, t_] = unique(ma) ; h = ha(t_);

end515

Appendix A.3. Clustering

The proposed identification method returns a model with a very high number

of cells. In order to use the model, notably in computational electromagnetics

softwares [28], it is mandatory to reduce the number of cells. The function

clusterCells listed hereafter implements a simple clustering algorithm based520

on the k-means algorithm [33]. The algorithm requires as input arguments the

original cells (omega, kappa) and the target number of clustered cells (nb) and

returns the simplified model (omega c, kappa c). It must be noticed that the

result of this function is not deterministic, due to the intrinsic randomness of

the k-means algorithm.525

function [omega_c , kappa_c] = clusterCells (omega , kappa , nb)

[ind , kappa_c] = kmeans(kappa , nb);

omega_c = zeros(size(kappa_c ));

for n = 1 : nb

omega_c(n) = sum(omega(ind==n));530

end

[kappa_c , ind] = sort(kappa_c) ; omega_c = omega_c(ind);

end
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