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Abstract: Coupling of electrical circuits with 2D and 3D computational domains is very important
for practical applications. To this aim, the notions of “electrical current” and “voltage” must be
defined, and linked with local quantities (i.e. fields and potentials) in the computational domain.
The definition of voltage is more complex than it may appear at a first glance, and usually tainted
by unspoken hypothesis. The purpose of this work twofold: on one hand, to shed light on the5

definition and on the physical meaning of voltage in the case of time varying quasi-static fields,
and on the other hand to show that existing coupling formulas can be rewritten within a more
general framework, basing upon the power balance.
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1. Introduction10

Coupling of electrical circuits with Finite Element (FE) computational domains
is very important for practical applications, and it is investigated since a long time
[1–15]. Maxwell’s equations are solved in the computational domain by using various
formulations, the unknown of which are local quantities like potentials, or directly the
electric or magnetic fields. Currents and voltages are global quantities, which are applied15

to the computational domain through “ports”, that is interfaces between internal regions,
or surfaces on the external boundary of the domain.

To this aim, the notions of “current” and “voltage” must be precisely defined,
and linked with the electric field e and current density j in the computational domain.
The definition of the electrical current I which flows across a given surface Σ is easily
expressed, and it depends uniquely on the current density:

I = −
¨

Σ
n · j (1)

where n is the unit normal vector, with outward orientation with respect of the compu-
tational domain. Conversely, the understanding of the physical significance of voltage
is not as trivial as it may appears [16], and it is worth to be clarified. In the case of
static fields (electrostatics, continuous currents) the electric field is conservative, and the
voltage U between two equipotential surfaces Σa and Σb can be uniquely defined as:

U =

ˆ
γ

e · dl = va − vb (2)

where γ is any path which goes from Σa to Σb, and v is an electric scalar potential such
that e = − grad v. However, this definition of voltage cannot be truly satisfying in that
it doesn’t apply, and cannot be easily extended to the case of time varying fields. In fact20

in this case the electric field is no more conservative and thus the choice of the path γ
matters.
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In the case of time varying fields one may define the voltage as the circulation of
the “electrostatic component” (− grad v) of the electric field:

e = −∂ta− grad v (3)

However, in the case of bounded domains there is no such a thing like the electrostatic
component: at most, one may speak of an electrostatic component. In fact Helmholtz’s
theorem [17] ensures that such a decomposition (3) exists, but in the case of bounded25

domains it is not unique [18] unless appropriate additional boundary conditions are
imposed. Even assuming that such a definition is well posed from the mathematical
point of view – that is, if one assumes that the value of the voltage hereby defined
is independent on the gauge of (a, v), which is indeed the case – the question of the
physical significance arises.30

One observes that the definition (1) is not tainted by any of these issues: the current
I is defined basing on the current density only, and the definition is unambiguous in the
case of time varying fields, and whatever the surface Σ.

The question of the well-posedness of the definition of voltage in the case of time
varying fields is seldom addressed in undergraduate courses in physics and electrical35

engineering (because in practice “things work”) but also in most of the scientific literature.
In the author’s opinion, any effort to shed light on this topic is worth to be explored.

The case of stranded coils [1,2,19? ] is considerably simpler. In fact, isopotential
surfaces Σa and Σb reduce to points, so that in practice the integration path γ is unique,
and it is imposed by the geometry of the electrical wires. In this case the induced40

electromotive force can be expressed through the time derivative of the magnetic flux.
The case of solid conductors is more complex. In some cases [6] the voltage between

two “isopotential” surfaces is mathematically defined as the difference of an electric
scalar potential v, but the question of its physical significance is eluded. As already
observed, this scalar potential is not unique and it is not clear at all why the voltage45

has the same value whatever the gauge of (a, v). The very same notion of “isopotential”
surfaces is disturbing, because in the case of bounded domains it depends on a particular
choice of the gauge, whereas the voltage ought to depend uniquely on the electric field.

The same considerations apply to [5,12,15] where a 2D modelling is taken on. In
this case Coulomb’s gauge div a = 0 is arbitrarily fixed by imposing that the vector
potential a is perpendicular to the xy plane, thus a voltage between the front and the
rear part of the domain can be uniquely defined as:

U = `(−n · grad v) (4)

where ` is the depth of the domain, and n is the unit vector perpendicular to the plane.
In [7,20] the following relationship is derived for a two-ports conductor in the

electrokinetic case (aka continuous current):

U = −
ˆ

Ω
j0 · grad v (5)

where j0 is any current density corresponding to a net current of 1 A. This equation
is then generalized in various “flavours” [7,14,20] to the case of time varying fields by
rewriting grad v = −∂ta− e:

U =

ˆ
Ωc

j0 · e +
ˆ

Ωc

j0 · ∂ta (6)

=

ˆ
Ωc

j0 · e +
ˆ

Ωc

t0 · ∂tb (7)

= RI + ∂t

ˆ
Ωc

t0 · b (8)
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where j0 = curl t0 (see the aforementioned works for details). However, by doing so one50

forgets that the starting equation (5) holds under the hypothesis that fields don’t vary
with time. In spite of the fact that the derivation of (6)–(8) is somehow simplistic, all
these equations are found to be correct.

A completely different approach is to postulate that the current flows out of special
thin “generator regions” Ωem f ,i, where a source of electromotive force exists [8–11].
Inside the generator regions the electric field is conservative and hence (2) is well posed,
hence the voltage between the electrodes of a generator writes:

U =

ˆ
γi

ei · dl (9)

where γi is a path which joins the electrodes, and ei is the electric field inside the genera-
tor. In practice the integral in (9) is never computed explicitly. Generators are removed55

from the computational domain, so that their surfaces become new boundaries of the
domain, over which appropriate boundary conditions must be imposed. Depending on
the formulation, the voltage can be imposed either strongly (a formulation) or weakly (h
formulation) – see details in [8,11].

This approach removes the practical difficulty of numerically defining voltages and60

has a correct power balance (all the electrical power which exits from generators enters
in the domain), but it is not completely satisfying from the point of view of physics
significance: voltage ought to be defined independently on how it is applied – that is,
basing exclusively on the electric field e inside the computational domain.

Finally, one observes that numerical modelling of the coupling of electrical circuits65

with computational domains is addressed in specific ways for each formulation. This
gives rise to a large number of different formulas which express the link between global
(currents and voltages) and local quantities (fields and potentials). This is a source of
complication – including from the pedagogical point of view.

The purpose of this work is twofold. First, we aim at clarifying the notion of70

“voltage” in the case of time varying fields, and to expressing it by using exclusively
the electric field inside the domain, without resorting to any potential. An operator
Uij[e] which express the voltage between two ports i, j for a given electric field e will be
defined (section 2). As side product, a similar operator In[h] for the current is obtained
(section 3). On the other hand, to show that existing formulas to express currents and75

voltages can be derived as particular case of a unique general formula (section 4). Some
pedagogical considerations conclude the article (section 5).

2. Definition of voltage

In [21] Hiptmair and Sterz pointed out the difficulties to define rigorously what
voltage is, and suggested it could be defined through the notion of electric power. Basing80

on this idea, it will be shown that it is possible to give a precise meaning to the notion of
“voltage” in the case of time varying fields, and for an arbitrary number of ports. The
proposed definition of voltage respects the power balance, and it is coherent with all
previous works. Moreover, the proposed definition of voltage relies exclusively on the
electric field, and it is therefore independent of any formulation or numerical method.85

To go further, we need to demonstrate the following theorem:

Theorem 1 (fake power). Let e1 and h2 be an electric and a magnetic field, defined in a domain
Ωc and Ω, where Ωc ⊂ Ω is the conductive part of Ω. Let b1 and j2 the magnetic flux density
and he current density associated respectively with e1 and h2, and assume that displacement
currents are neglected:

curl e1 = −∂tb1 (10)

curl h2 = j2 (11)
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Assume that the boundary ∂Ω = Γh ∪ Γe can be parted in two surfaces Γe and Γh where the
following boundary conditions hold:

on Γe : n× e1 = 0 (⇒ n · ∂tb1 = 0) (12)

on Γh : n× h2 = 0 (⇒ n · j2 = 0) (13)

and that it exists a couple of potentials (a1, v1) such that:

e1 = −∂ta1 − grad v1 (14)

n× ∂ta1|Γe
= 0 (15)

Under these hypothesis we have:

1. the scalar potential v1 is equipotential on each of the N connected components Γe,n of
Γe ∩ ∂Ωc:

v1|Γe,n
= V1,n (16)

Moreover, for a given electric field e1 the set of potentials {V1,n} is unique up to an
arbitrary constant value.

2. The following equality holds:

P [e1, h2] =

ˆ
Ωc

j2 · e1 +

ˆ
Ω

h2 · ∂tb1 =

ˆ
Ωc

curl h2 · e1 −
ˆ

Ω
h2 · curl e1 (17)

= −
ˆ

Ωc

j2 · grad v1 (18)

3. Let I2,n be the total current which enters in Ωc through Γe,n:

I2,n = −
ˆ

Γe,n

n · j2 (19)

where n is the unitary vector normal to Γe,n oriented outwardly. Then, the following
equality holds:

P [e1, h2] = ∑
n

V1,n I2,n (20)

Before giving the demonstration, some remarks are mandatory:90

• We stress that the hypothesis of the theorem don’t require that constitutive laws are
enforced (they could eventually be, but this is not necessary):

j2 6= σe1 ; b1 6= µh2 (21)

In this case, the E-side and the H-side of Tonti’s diagram are unlinked, thus e1 and
h2 cannot be both the true electric field e and magnetic fields h:

E-side: v1
grad−→ e1, a1

curl−→ b1
div−→ 0

...
...

H-side: 0 div←− j2
curl←− h2

(22)

Hence the quantity P [e1, h2] defined by (17), which is homogeneous to a power,
has no physical significance. For this reason in the general case P [e1, h2] will be
hereafter called “fake” power. Conversely, when constitutive laws are enforced,
then e1 = e and h2 = h are the true electric and magnetic fields, and P [e, h] is the
true, physically significant, instantaneous power which is provided to the domain95

by the generators.
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• The boundary Γe writes:

Γe =

(⋃
n

Γe,n

)
︸ ︷︷ ︸
⊆∂Ωc

∪Γb (23)

The surfaces Γe,n are the ports which connect the computational domain with the
external electric circuit. As such, they are also part of the boundary of ∂Ωc, where
the scalar potential v1 is defined, hence. The surface Γb is the remaining part of Γe,
where the scalar potential are not defined (Figure 1). The boundary of Ωc writes:

∂Ωc =

(⋃
n

Γe,n

)
∪ Γj (24)

Γj is the interface between Ωc and the remaining (insulator) part of Ω, where
n · j = 0.

Figure 1. Computational domain Ω composed of a conductive part Ωc. The generators feed the
conductive part through the three ports Γe,1...3. The boundary of Ωc is composed of the ports
Γe,1...3 and of Γj.

Proof of Theorem 1. By writing grad v1 = −e1 − a1 and by using (15) on each port Γe,n
we have:

n× grad v1|Γe,n
= −n× ∂ta1|Γe,n

− n× e1|Γe,n
= 0 (25)

Hence v1 is constant on each port Γe,n. By using (14) the first integral of (17) writes:
ˆ

Ωc

j2 · e1 = −
ˆ

Ωc

j2 · ∂ta1 −
ˆ

Ωc

j2 · grad v1 (26)
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By integrating by parts, the second integral of (17) writes:
ˆ

Ω
h2 · ∂tb1 =

ˆ
Ω

h2 · ∂t curl a1 (27)

=

ˆ
Ω

j2 · ∂ta1 +

ˆ
∂Ω

h2 · n× ∂ta1 (28)

=

ˆ
Ω

j2 · ∂ta1 (29)

where the boundary integral vanishes due to the boundary conditions (12) and (13). By
using together (26) and (29) one obtains (18). Finally, by using integration by parts, (18)
writes:

−
ˆ

Ωc

j2 · grad v1 =

ˆ
Ωc

v1 div j2 −
ˆ

∂Ωc

v1n · j2 (30)

The first integral on the right hand side vanishes because div j2 = div curl h2 = 0. The
boundary of Ωc can be parted as:

∂Ωc =

(⋃
n

Γe,n

)
∪ Γj (31)

where Γj is the interface between the conductive and insulator part of the domain
Ωi = Ω\Ωc. The current cannot flow in or out from Γj, that is:

n · j2|Γj
= 0 (32)

hence the boundary integral in (30) writes:

P [e1, h2] = ∑
n
−
ˆ

Γe,n

v1n · j2 = ∑
n

Vn

(
−
ˆ

Γe,n

n · j2

)
= ∑

n
Vn In (33)

Finally, the uniqueness of the set {V1,n} can be demonstrated by observing that these
values depend uniquely on the electric field e1. Hence, a set of N − 1 independent
equations can be obtained from (33) by selecting an arbitrary port Γe,re f (namely Γe,re f =
Γe,N) and by considering N − 1 magnetic fields h2,n such that I2,re f = −I2,n = 1 A.

V1,1 −V1,re f = P [e1, h2,1]

V1,2 −V1,re f = P [e1, h2,2]
...
V1,N−1 −V1,re f = P [e1, h2,N−1]

(34)

In order to define the voltage Uij between two ports Γe,i and Γe,j, we define the set
Hij of “test” magnetic field:

Hij = {h′ ∈ H(curl, Ω) : n× h′ = 0 on Γh , I′i = −I′j = 1 A , I′n 6=i,j = 0} (35)

where I′n is the net current due to j′ = curl h′ which enters in Ω through the nth port Γe,n.100

The following theorem provides a well posed definition of the voltage Uij:

Theorem 2 (definition of voltage). Let e be the electric field in Ωc, and Γe,i and Γe,j two ports.
There is one and only one value Uij[e] such that:

Uij[e] =
P [e, h′]

1 A
(36)
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for any h′ ∈ Hij.

Proof of Theorem 2. The theorem 1 holds with e1 = e and h2 = h′, ∀h′ ∈ Hij, thus the
fake power writes:

P [e, h′] = Vi I′i + Vj I′j = (Vi −Vj)× 1 A (37)

In order to demonstrate that this value is unique we must show that it does not depend
on h′, neither on the gauge of (a, v). The left side hand term of (37) does not depend on
the gauge because of (17), and the right side hand of (37) does not depend on h′. Hence105

P [e, h′] is independent of both h′ and the gauge of (a, v). Therefore, P [e, h′] depends
exclusively on the electric field e, which proves its uniqueness. Hence Uij[e] = Vi −Vj is
the only value which satisfies (36) whatever h′ ∈ Hij.

This definition of voltage is well posed because Uij depends exclusively on the
electric field e, and it holds as well for static and time varying fields. One observes that
when Vn = v|Γe,n

are the voltages of generators which feed the device (Figure 1), and
e1 = e and h2 = h are the true electric and magnetic fields, the power balance is verified
in that (20) writes:

P [e, h] =
ˆ

Ωc

j · e +
ˆ

Ω
h · ∂tb = ∑

n
Vn In (38)

This result is important because it provides a precise physical significance to “voltages”,
that is the unique set of values Uij = Vi−Vj such that the power balance (38) is respected.110

In particular, in the case of a simple two-ports domain the voltage can be defined like the
ratio between the instantaneous power injected into the domain and the instantaneous
current. One observes that the electric vector potential t0 defined beforehand belongs to
Hij: this shows that indeed (5) and (7) are particular cases of (36).

3. Expression of the current115

Now that we have given a precise definition of voltage, one observes that the roles
of e1 and h2 can be exchanged, so as to provide a useful expression of the net current
which enters in the domain through electrodes. To this aim, let’s define the set En of
“test” electric fields:

En = {e′ ∈ H(curl, Ωc) : n× e′ = 0 on Γe , e′ = −∂ta′ − grad v′ (39)

with v′ ≡ 1 V on Γe,n , v′ ≡ 0 on Γe, 6=n}

The following theorem provides a useful formula to compute the electric current which
enters in the domain through a port:

Theorem 3 (computation of current). Let h be the magnetic field in Ω, and Γe,n a port. The
electric current In which enters in the domain through Γe,n is equal to:

In =
P [e′, h]

1 V
(40)

for any e′ ∈ En.

Proof of Theorem 3. The theorem 1 holds with e1 = e′ and h2 = h, ∀e′ ∈ En, thus the
fake power writes:

P [e′, h] = v′
∣∣
Γe,n
× In = 1 V× In (41)

In this case there is no need to prove the uniqueness of In because currents are120

correctly defined. Nevertheless an argument similar to the one which we used to prove
the Theorem 2 applies as well (that is: P [e′, h] doesn’t depend on the gauge, In doesn’t
depend on e′).
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One observes that even if (40) express the current basing on h, only its curl matters:

In = −
ˆ

Γe,n

n · j = −
ˆ

Γe,n

n · curl h =
P [e′, h]

1 V
(42)

4. Formulations

Hereafter several Finite Element formulations are reviewed, with the purpose to
show that for all of them the coupling equations with electrical circuits can be easily
derived by using (36) and (40). In order to somehow simplify the notation hereafter the
divisions by 1 A or 1 V will be dropped, and the expressions of the voltage and current
will write simply:

Uij[e] : e 7→ P [e, h′] ∀h′ ∈ Hij (43)

In[h] : h 7→ P [e′, h] ∀e′ ∈ En (44)

For each formulation, particular test fields h′ ∈ Hij or e′ ∈ En will be chosen in order125

to simplify the writing of formulations at the discrete level. The purpose of this section
is to show that known expressions to compute voltages and currents can be view as
particular case of (36) and (40) respectively.

4.1. Electrokinetics

The scalar potential electrokinetic formulation writes:

div(σ grad v) = 0 (45)

that is div j = 0, with e = − grad v, with σ = electrical conductivity. The weak form
writes: ˆ

Ωc

σ grad v · grad v′ +
ˆ

∂Ωc

(n · j) · v′ = 0 (46)

where v and v′ belong to appropriate function spaces.130

At the discrete level the domain Ω = Ωc is meshed, and the set of nodes N is parted
as:

N =

[⋃
n
Ni,n

]
∪Nv (47)

where Ni,n is the set of nodes on the nth port Γe,n, and Nv is the set of the remaining nodes.
Classical nodal shape functions sn(x) are associated with each nodes of Nv, whereas
special isopotential shape functions fn(x) are associated with each port Γe,n [8,9,11]:

fn(x) = ∑
k∈Ni,n

vk(x) (48)

The support of fn is bound to the layer of elements which touch Γe,n. One observes that
fn ≡ 1 on Γe,n and fn ≡ 0 on any other port, thus e′n = − grad fn ∈ En. By using (40) the
net current In which enters in Ωc through the nth writes:

In =

ˆ
Ωc

j · (− grad fn) =

ˆ
Ωc

σ grad v · grad fn = −
ˆ

∂Ωc

(n · j) · fn (49)

where the last equality comes from (46). One observes that the latter equation writes

In = In[h] = P [− grad fn, h] (50)

where h is the magnetic field (which is not computed by using this formulation) and
j = curl h.



Version January 5, 2022 submitted to Journal Not Specified 9 of 13

The discrete approximation of v writes:

v(x) = ∑
n∈Nv

vnsn(x) + ∑
k

Vk fk(x) (51)

With this formulation, the potential Vn on the port Γe,n can be imposed strongly, as it
belongs directly to the set of unknowns. When Galerkin’s method is used the same
shape functions are used both to expand the unknowns and as test functions, hence the
coupling equation which allows to impose the current In appears naturally for v′ = fn:

ˆ
Ωc

σ grad v · grad fn − In = 0 (52)

4.2. Eddy current formulations

A very large number of formulations have been developed to model eddy currents.
In general, either the current or the voltage can be imposed strongly, whereas the other135

quantity has to be imposed weakly. Hereafter some of the most used formulations are
reviewed, but similar considerations can be taken on for any other formulation.

4.2.1. t− t0 − φ formulation

With the t − t0 − φ formulation the equations on the E side of Tonti’s diagram
(curl e = −∂tb, div b = 0) are imposed weakly:

curl(ρj) = −∂t(νh) (53)

with ρ = 1/σ = electrical resistivity and ν = 1/µ = magnetic reluctivity. The magnetic
field h and the current density j write respectively [14,20]:

h =

{
t + ∑n Int0,n − grad φ in Ωc

∑n Int0,n − grad φ in Ω\Ωc
(54)

j = curl t + ∑
n

Int0,nin Ωc (55)

where φ is a magnetic scalar potential and t0,n are precomputed electric vector potentials
defined on Ω0 ⊃ Ωc. For each two-ports solid conductor, a potential t0,n is precomputed140

in such a way that the net current associated with j0,n = curl t0,n = 1 A, thus t0,n ∈ Hn
(in order to simplify the notation, where two-ports cases are concerned we write n
instead of i, j).

Currents in coils In belong to the set of unknowns, and are therefore imposed
strongly. By taking h′ = t0,n one finds with (36) the expression of the voltage Un
associated with each coil:

Un = P [e, t0,n] =

ˆ
Ωc

j0,n · e +
ˆ

Ω0

t0,n · ∂tb (56)

In the case of non simply connected conductors, additional potentials t0,k and associated
unknowns Ik must be added to cope with the so-called connexity problem (that is, to be
able to impose Ampère’s theorem). The corresponding voltages Uk are set to 0 by using
(56):

Uk =

ˆ
Ωc

j0,k · e +
ˆ

Ω0

t0,k · ∂tb = 0 (57)
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By the way, one observes that in the case of static fields (∂t ≡ 0) one obtains
seamlessly the dual electrokinetic formulation [22] with respect of the aforementioned v
formulation by imposing curl e = 0:

curl[ρ curl(t + ∑
n

t0,n In)] = 0 (58)

Voltages can be expressed by (36) as:

Un = P [e, t0,n] =

ˆ
Ωc

j0,n · e (59)

4.2.2. a− v formulation145

With the a− v formulation the equations on the H side of Tonti’s diagram (curl h = j,
div j = 0) are imposed weakly:

curl(νb) = σe (60)

The electric field e and the flux density b write respectively

e = −∂ta− grad v in Ωc (61)

b = curl a (62)

where a and v are respectively a magnetic vector potential and an electric scalar potential.
By using (36) together with (20) one observes that voltages is determined by imposing
the scalar potential v only. In fact for any h′ ∈ Hij we have:

Uij = P [e, h′] = Vi −Vj (63)

For instance in [9] this is accomplished by discretizing the scalar potential v as:

v = ∑
n

Viv0,n(x) (64)

where the function v0,n is any potential which corresponds to a voltage of 1 V for the
nth solid conductor, and hence − grad v0,n ∈ En (in [9] only two-ports conductors are
considered). It is found that the current In which flows through the nth conductor writes:

In =

ˆ
Ωc

−σ(∂ta + grad v) · (− grad v0,n) =

ˆ
Ωc

j · e′ (65)

where e′ = − grad vo,n. It seems that in order to retrieve (40) the term
´

Ω h · ∂tb is
missing. But in fact, notice that − grad vo,n is defined only on Ωc and it is curl-free. It is
possible to find a curl-free extension of − grad vo,n over all the domain:

e′ =

{
− grad vo,n in Ωc

− grad ṽ in Ω\Ωc
(66)

where ṽ is any scalar potential which enforce the continuity with v on ∂Ωc. The thereby
defined test electric field e′ is curl-free and it is defined over all the domain, thus:

∂tb′ = − curl e′ ≡ 0 (67)

Hence the integral
´

Ω h · ∂tb′ vanishes, and the expression (40) is found again. Notice
that the real electric field e is not curl-free, but test electric fields e′ are allowed to.

4.2.3. h− φ formulation

With the h− φ formulation the equations on the E side of Tonti’s diagram (curl e =
−∂tb, div b = 0) are imposed weakly. The computational domain is parted as Ω =
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Ωc ∪ ΩC
c , and a number of “cuts” have to be done to make ΩC

c (insulators) simply
connected. Assume that only two-ports solid conductors are present, some of which are
coils. The field is impressed by generators through thin sections in the coils. The weak
form of the formulation writes [10]:

ˆ
Ω

∂t(µh) · h′ +
ˆ

Ωc

ρ curl h · curl h′ +
ˆ

Γe

n× es · h′ = 0 (68)

The unknown of this formulation is directly the magnetic field h, which is discretized as:

h = ∑
k∈Ec

hkwk(x) + ∑
n∈NC

c

φnvn(x) + ∑
n∈C

Incn(x) (69)

where Ec is the set of edges internal to Ωc, NC
c is the set of nodes on ΩC

c and on its
boundary, and C is the set of cuts required to make ΩC

c simply connected (see [8,10,23]
for details). The key point is that jn = curl cn is a current density which corresponds to a
unit net current in the nth coil, hence cn ∈ Hn. The coefficients In represent the currents
which flow through the nth coil, which can therefore by imposed strongly. It is found
[10] that the corresponding voltage Un writes:

Un =

ˆ
Ω

∂t(µh) · cn +

ˆ
Ωc

ρ curl h · curl cn = P [e, h′] (70)

where the test magnetic field is h′ = cn.

5. Discussion150

In this work an original couple of operators Uij[e] and In[h] are introduced. These
operators provides a rigorous definition of voltages and currents in terms of the electric
and magnetic field only.

The notion of voltage is analysed, and a general physical interpretation is given
basing on the electrical power balance of the computational domain. In the static case,
the classical definition of voltage (2) is obtained as particular case of (36) by taking as
test magnetic field h′γ the Biôt-Savart field generated by a unit current which flows along
the path γ:

Uij =

ˆ
Ωc

curl h′γ · e +
ˆ

Ω
h′γ · ∂tb =

ˆ
Ωc

j′γ · e =

ˆ
γ

e · dl = Vi −Vj (71)

In the case of time varying fields, by taking the same test magnetic field h′γ the integral´
Ω h′γ · ∂tb remains, but the voltage can still be expressed as the difference of the scalar

potential on the two (isopotential) ports, provided that the hypothesis of theorem 1 are
respected:

Uij =

ˆ
Ωc

curl h′γ · e +
ˆ

Ω
h′γ · ∂tb = Vi −Vj (72)

Notice that (72) doesn’t contradict the fact that in the case of time varying fields the
circulation of e depends on the particular path γ.155

It has to be remarked that not all couples (a1, v1) satisfy the hypothesis of theorem
1. A notable example of gauge where the hypothesis are not satisfied is the so-called
temporal gauge [21] (also called Weyl gauge):

e1 = −∂ta∗1 ; v1 ≡ 0 (73)

This potential a∗1 is sometimes called modified vector potential [24]. Luckily this is
not a problem, because in order to demonstrate the well posedness of the definition of
voltage it is enough that a single couple of potentials which satisfies the hypothesis of the
theorem exists: then, the uniqueness of voltages is demonstrated. Moreover, potentials



Version January 5, 2022 submitted to Journal Not Specified 12 of 13

are only intermediate actors in the demonstration, and in practice it is not necessary160

to compute them: it is enough that at least a couple of potentials exists. Notice also
that in the case of unbounded domains Helmholtz decomposition ensures by itself the
uniqueness of the scalar potential [18], and thus of voltages.

Finally, notice that the theorem 1 requires that the electric field is normal to the
ports which connect the computational domain to electric circuits. This is a limitative165

hypothesis which is required to define voltages, but not for currents. Perhaps it is
possible to weak the hypothesis of the theorem so as to define voltages between arbitrary
ports (that is, where the electric field is not necessarily normal) basing on the power
balance. Also, it can be conjectured that in the case of physical electric fields it is always
possible to find at least a couple of potentials (a1, v1) which satisfies the hypothesis of170

theorem 1.

The findings on existing Finite Element formulations are resumed in Table 1 (the
notation may change with respect of the original works). It is found that coupling
formulas in [8–10,14,20] are particular cases of usage of the newly defined operators
Uij[e] and In[h].175

Table 1. Global quantities expressed by using (36) or (40) in various formulations

Formulation Reference Global quantity Test field

Electrokinetic [8] In e′ = − grad fn
Eddy current (t− t0 − φ) [14,20] Un h′ = t0,n
Eddy current (a− v) [9] In e′ = − grad v0,n
Eddy current (h− φ) [10] Un h′ = cn

It is important to observe that even if the analysis of existing formulations has
been taken on with the Finite Element method only, these new operators don’t rely
on any particular numerical method. Hence, in principle they can be used to devise
the implementation of coupling between external electrical circuits and computational
domains with any other numerical method.180
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