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§Laboratoire de Geńie Chimique, Universite ́ de Toulouse, CNRS, INP, UPS, 31432 Toulouse, France

ABSTRACT: The efficiency of four modeling approaches, namely, group contributions,
corresponding-states principle, σ-moment-based neural networks, and graph machines, are
compared for the estimation of the surface tension (ST) of 269 pure liquid compounds at 25
°C from their molecular structure. This study focuses on liquids containing only carbon,
oxygen, hydrogen, or silicon atoms since our purpose is to predict the surface tension of
cosmetic oils. Neural network estimations are performed from σ-moment descriptors as
defined in the COSMO-RS model, while methods based on group contributions,
corresponding-states principle, and graph machines use 2D molecular information (SMILES
codes). The graph machine approach provides the best results, estimating the surface
tensions of 23 cosmetic oils, such as hemisqualane, isopropyl myristate, or decamethylcy-
clopentasiloxane (D5), with accuracy better than 1 mN·m−1. A demonstration of the graph
machine model using the recent Docker technology is available for download in the
Supporting Information.

1. INTRODUCTION

Surface tension (ST) is the force existing at a liquid/gas interface,
which tends to minimize the surface area; it is caused by
asymmetries in the intermolecular forces between molecules
located at the interface. It plays an important role in a number of
processes where a liquid/gas interface is present; for instance, it
drives the shape of small liquid drops and bubbles or the wetting
of a solid surface by a liquid.1 In cosmetics, the spreadability of
oils on the human skin reflects both the sensory qualities and the
efficacy of the product;2,3 Parente et al. reported that the
spreadability of oils and the film forming properties could be
partly correlated to the surface tension of the cosmetic oil:2 the
lower the surface tension, the more spreadable the oil.
Surface tensions can be measured by numerous methods (e.g.,

Wilhelmy plate, Du Noüy ring, maximum bubble pressure, drop-
weight, or hanging-drop) accounting for the large amount of
experimental data available in the literature.4 However, for a
given compound, significantly different surface tension values
can be found, depending on the method used and/or the purity
of the liquid. Furthermore, when virtual liquids are generated in
silico,5 the experimental determination of surface tension is not
possible. In this case, it is crucial to predict reliably the surface
tension values of candidate compounds in order to select the
most promising ones, which should be synthesized first.
Unfortunately, predicting this property is not straightforward
because of the complexity of the phenomenon, i.e., the necessity
to break bonds in order to bring a molecule from the bulk phase

to the surface.6 Various prediction methods for surface tension
values were described previously by several authors.1,6−11

In this paper, four modeling approaches, namely, group
contributions, corresponding-states principle, σ-moment-based
neural networks, and graph machines, are applied to the
prediction of the surface tension of liquid compounds. These
methods are described below.
Molecular dynamic simulations were first used in 1976, when

Rao et al. highlighted the possibility of computing the surface
tension of a liquid film from statistical thermodynamic
relations.12 In 2016, Ghoufi et al. calculated the surface tension
by modeling the liquid/gas interface.13 Density functional theory
has also been used successfully for the surface tension prediction
of 18 pure nonpolar fluids.14 Nevertheless, models based on
molecular dynamics are computer demanding and not suitable
for structures with more than a few tens of atoms such as some
we are interested in.
Introduced by Brock and Bird in 1955,15 the corresponding-

states principle allows surface tension estimations from the
critical constants Pc , Vc , and Tc . Curl and Pitzer improved this
model, which is restricted to short and weakly polar molecules by
introducing an acentric shape parameter.16 Escobedo et al. used
this model for the surface tension prediction of 94 compounds,17
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and Li et al. presented a new method based on a combination of
corresponding-states and group contribution models.18

Group contribution-based (GC) methods are popular
approaches to predict a wide range of physicochemical
properties.19,20 In such methods, the molecular structure of
any organic compound is viewed as an assembly of functional
groups with specific property attributes. The properties of the
studied molecule are computed as a function of the contributions
of the different groups, with respect to their occurrence (first-
order contribution), with respect to adjacent groups (second
order), and with respect to other molecular attributes (third
order). Regarding the prediction of surface tension, a model was
introduced by Egemen et al. in 2000 to predict the surface
tension of 44 organic compounds,21 and an extended model was
proposed by Conte et al.7

Models based on quantum chemistry are also effective to
predict a wide range of physicochemical properties of organic
compounds. In particular, the COSMO-RSmethod (Conductor-
like Screening MOdel for Real Solvents), introduced by Klamt in
1995, is based on unimolecular quantum chemical calculations
combined with exact statistical thermodynamics.22−24 It provides
the necessary information for predicting chemical potentials in
liquids, from which one can compute many other thermody-
namic equilibrium properties such as activity coefficients,
solubility, partition coefficients, vapor pressure, and free energy
of solvation,25 without requiring any experimental input. For
instance, the interfacial tension between two liquids, i.e., the free
energy per unit surface area that is required for maintaining an
interface between two condensed phases, can be calculated using
COSMO-RS.26 However, the prediction of surface tensions
remains a challenge, yet unsolved by COSMO-RS (Klamt
personal communication). Interestingly, Kondor et al. proposed
to predict surface tensions at different temperatures by a
regression method, using the so-called Klamt set of COSMO-RS
σ-moments. This set of five descriptors is well known to encode
as much chemical information as the complete set of 15
COSMO-RS σ-moments. The five σ-moments calculated from
the σ-profiles of the molecules under study22,25,27 and the
temperature were selected as inputs of a nonlinear Quantitative
Structure−Property Relationship (QSPR) model,6 based on
neural networks.
QSPR models are regression or classification models that

predict a property of a molecule from selected descriptors
thereof; they were used successfully for the prediction of surface
tensions of a wide range of organic compounds.1 Kondor et al.
used a data set of 1275 surface tension values, collected at
different temperatures for 188 molecules, for building and
validating the model. When the model was applied to a test set of
225 data points, the squared correlation coefficient R2 between
the estimated surface tensions and the experimental values was
equal to 0.96. Stanton et al. described a 10-descriptor model for
the prediction of surface tensions of 146 compounds.8

Kauffmann et al. developed a model based on eight descriptors
for a data set of 159 molecules.9 Freitas et al. decreased the
number of descriptors of the model to six to successfully predict
the surface tensions of 299 compounds.10 Delgado et al. designed
a model with six descriptors corresponding to the different
intermolecular interactions in the bulk phase and calculated from
the molecular structures1 for the prediction of the surface
tensions of 320 compounds.
Goulon et al. developed graph machines as an alternative

QSAR/QSPR method.28 Graph machines are regression or
classification models that estimate properties of molecules

directly from the topological information supplied by their
SMILES (Simplified Molecular Input Line Entry Specification)
codes. Therefore, they do not require any descriptor. In these
models, molecules are described as graphs derived from their 2D-
structure, and the parametrized functions that compute the
estimation of the property or activity of interest reflect the
compound molecular structures. As usual in regression or
classification models, the parameters of the graph machines are
computed during training from examples present in a database of
experimental values of the property or activity of interest. The
main benefit of the method is the absence of descriptors, with the
SMILES codes being the only required information.
In the present work, surface tension estimations are performed

by four different methods, falling into two families: (i) group
contribution models and corresponding-states principle models
(Section 2.1) and (ii) neural network regression and graph
machine regression (Section 2.2). Neural network regression is
performed fromCOSMO-RS σ-moments, whose computation is
described in Section 2.3. For the first family, methods are taken
from the literature. For the two methods of the second family,
predictive models are designed and trained from a database of
surface tensions, at 25 °C, of 269 molecules belonging to several
chemical families and containing only carbon, hydrogen, oxygen,
and silicon atoms, namely, alkanes, ethers, esters, ketones,
carbonates, acids, alcohols, silanes, and siloxanes, with straight,
branched, or cyclic chains. For all four methods, the predictive
ability of the resulting models are assessed by the estimation of
the surface tensions of 23 cosmetic oils that are not present in the
training data set.

2. EXPERIMENTAL AND THEORETICAL METHODS

2.1. Group Contribution and Corresponding-States
Based Models. Surface tension estimations using methods
based both on group contribution (GC) or on the correspond-
ing-states principle (CSP) were carried out using the
InBioSynSolv (IBSS) property library developed by Heintz et
al.29 IBSS software is intended to design newmolecules satisfying
targeted properties and to predict many physicochemical
properties by means of methods encoded in a property model
library.7,29 Among the methods available in IBSS for the
prediction of surface tensions, the Conte et al. GC method7

was developed by splitting 402 molecules into chemical groups
and estimating the parameters of the following relation:

∑ ∑ ∑= + +ST NC M D O E
i

i i
j

j j
k

k k
(1)

where ST is the surface tension, Ci, Dj, and Ek are the first-,
second-, and third-order contributions estimated by successive
linear regressions, and Ni, Mj, and Ok are the occurrences of the
molecular groups. The reported standard deviation of the
estimation error (i.e., of the difference between the estimated and
measured values of the surface tension) is 1.47 mN·m−1, and the
mean absolute estimation error is 1.05 mN·m−1 over the 402 data
points of the database used for estimating the parameters Ci, Dj,
and Ek, in a range between 15 and 52 mN·m−1.7,30 Once the
contribution values are estimated, the GC method is intended to
predict the property value of any molecular structure. Difficulties
can appear when using such methods, e.g., a nonunique
decomposition of some structures or compounds with fragments
for which no group contributions have been defined yet. This is
the case for siloxane derivatives, which are at the core of the
present study.
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Other estimation methods have been developed, based on the
principle of corresponding states.31 This principle states that
some dimensionless properties will follow the same relation over
dimensionless variables of state and other dimensionless
quantities for all compounds, typically, the reduced temperature
(Tr = T/Tc) and reduced pressure (Pr = P/Pc), where Tc and Pc
are the critical temperature and pressure. The related CSP
models are the so-called two-parameter corresponding-states
principle relation. For surface tension, an additional parameter,
Pitzer’s dimensionless acentric factorω, was introduced to better
match the CSP relation and the experimental data, leading to the
following relation:16,32

ω ω
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Zuo and Stenby used an 86-component database containing
almost exclusively hydrocarbons (linear and branched alkanes
and alkenes, aromatics) to develop the model for the surface
tension based on a CSP approach. It includes two reference
fluids, methane and n-octane:33
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In relations 2 and 3, with the critical pressure and temperature
expressed in bar and Kelvin, respectively, ST is obtained in mN·
m−1. The authors claimed a five percent accuracy for nonpolar
fluids and reported larger deviations for more polar substances.
2.2. Neural Network and Graph Machine Modeling.

2.2.1. Database Construction. The data set required for the
training of neural networks and graph machines was carefully
built with the following requirements in mind: (i) to obtain a
representative sample of the surface tension variation with the
chain length for compounds belonging to homologous families,
(ii) to select molecules that contain the constitutional atoms
usually found in the cosmetic oils, i.e., carbon, hydrogen, oxygen,
and silicon, (iii) to select, for each molecule, at least two
consistent measured values for the surface tension provided by
different literature references, and (iv) to include only molecules
that are in the liquid state at 25 °C under atmospheric pressure. A
data set of 269 molecules (hereinafter termed “complete set”)
with a measured surface tension ranging from 12 to 48 mN·m−1

was built from data extracted from reliable sources34−38 and
retrieved from technical datasheets.39,40 When measured data
were not available at 25 °C, but for several other temperatures
nearby, a simple linear equation was used to interpolate the
surface tension at 25 °C.
2.2.2. Model Selection.Model selection is a crucial step in the

design of machine-learning based models. Its purpose is to find,
given the available data, the appropriate model complexity that

provides the best generalization, i.e., that provides the most
accurate estimations on data that are not present in the training
set. The available data set of 269 molecules was partitioned into a
training/validation set of 244 molecules and a test set of 25
molecules for performance assessment. The molecules of the test
set were chosen so that (i) the distributions of molecules among
the chemical families considered were very similar in the
complete and test sets and that (ii) the distribution of the surface
tension values was as uniform as possible on the range of
measured values. The distribution of the molecules among
chemical families is displayed in Figure 1.

Model selection was performed by computing the virtual
leave-one-out score (defined in Section 3.2) of each model, at the
end of the training process performed with the training/
validation set. Further details are provided in Sections 2.2.3 and
2.2.4.
After model selection, the performance of the selected neural

network model and the performance of the selected graph
machine model were assessed on the 25-molecule test set. As a
final step, the surface tensions of 23 cosmetic oils were measured
as described in Section 2.4 and predicted by the neural network
and the graph machine models as described in Section 3.3.

2.2.3. Neural Networks. A neural network is a nonlinear
parametrized function.41 In the framework of nonlinear
regression for estimating a quantity of interest from a training
set of NT elements, the neural network parameters are estimated
from available data during a training phase, which consists of
minimizing the sum of squared training errors J(θ) with respect
to the parameters

∑θ θ= −
=

J y g( ) ( ( ))
i

N

i i
1

2
T

(7)

where yi is the measured value of the quantity of interest for the
ith element of the training set, and gi(θ) is the value of the
quantity of interest estimated by the neural network. In the
present case, the quantity of interest is the surface tension of
liquids, hence yi is the measured value of the surface tension of
molecule i of the database, gi(θ) is the estimated value of the
surface tension of molecule i, and NT = 244 as explained in the
previous section. In the present study, the minimization of J(θ)
was performed by the Levenberg−Marquardt algorithm.
For nonlinear regression by neural networks, the usual form of

gi(θ) is a linear combination of nonlinear functions called

Figure 1. Family distribution (as percentages) for the molecules of the
complete (left) and test (right) data sets.
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“hidden neurons”. Each hidden neuron is a continuous,
nonlinear function (typically a tanh function) of a linear
combination of the variables. Such a neural network is called a
multilayer Perceptron (MLP). It is particularly suitable for
nonlinear regression because it is a universal approximator: any
continuous nonlinear function can be approximated with
arbitrary accuracy by an MLP having a finite number of hidden
neurons. An MLP with zero hidden neurons is a linear model,
hence is trained by traditional least-squares fitting.
As usual in nonlinear regression, the generalization ability of an

MLP model depends on its complexity, which depends basically
on the number of hidden neurons. A neural network with too
many neurons approximates the training data very accurately but
is unable to generalize, i.e., to predict accurately data that are not
present in the training set; a neural network with too small a
number of neurons is unable to learn the training data, hence to
generalize (this phenomenon is known as the “bias-variance
dilemma”). Therefore, the design of an MLP requires a model
selection phase.39 In the present study, MLP selection was
performed by virtual leave-one-out, as described in Section 3.2.
2.2.4. Graph Machines. As mentioned previously, a graph

machine is intended to perform classification or regression on
graphs; in QSAR/QSPR applications, the graphs under
consideration are the 2D structures of the molecules. In the
present case, a graph machine provides an estimate of the surface
tension; the latter quantity being continuous, the task considered
here is a regression task.
The design of a graph-machine based model includes the

following steps:

• Construction of the 2D-graph of the molecule from its
SMILES representation: Each node of the graph is a non-
H atom, and each edge is a chemical bond of the graph.
Each node has at least two labels: its nature and its degree
(the number of chemical bonds that bind it to its adjacent
non-H atoms). For molecules that contain cycles, hence
are represented by a cyclic graph, edges are deleted in
order to form an acyclic graph in which every path of the
graph has its end at a specific node called “output node”.

• Construction of the computational structure: For each
acyclic graph, a function is generated by implementing, at
each node of the graph, a parametrized nonlinear function,
called node function (typically anMLP). All node functions
are identical and have the same parameters within each
graph and for all graphs; therefore, the number of
parameters of the resulting model is equal to the number
of parameters of the chosen node function. As a result of
this construction, the value computed by the output node
of each model, which is intended to be an estimate of the
property of interest, depends solely on the 2D structure of
the molecule and on the values of the parameters of the
node function.

• Estimation of the parameters of the node function by
training from the database: This is done by minimizing the
sum of squared errors J(θ) defined in Section 2.2.3.

Details of the above steps are provided in a previous paper42

and references therein. The bias-variance dilemma applies to
graph machines as well as to any machine learning method, so an
appropriate model selection procedure must be performed. The
selectionmethod for graph-machine basedmodels is described in
Section 3.2.
2.3. COSMO-RS Computing Procedure.COSMO-RS uses

a combination of quantum chemistry and statistical thermody-

namics in order to compute the chemical potential μ of a solute in
a liquid phase, which can then be converted into physicochemical
properties.22 As mentioned in the Introduction, no model for the
estimation of surface tension is available from COSMO-RS yet.
An alternative approach consists in using descriptors provided by
COSMOtherm: the so-called COSMO-RS σ-moments.
Because of polar covalent bonds, molecules bear a charge

density σ on the so-called σ-surface, which is a slightly inflated
van der Waals surface of the compound. The full 3D information
about the charge density repartition on the σ-surface can be
reduced to a curve pX(σ), the σ-profile of the moleculeX, which is
a smoothed histogram expressing how much of the σ-surface lies
in the polarity interval [σ − dσ/2, σ + dσ/2].25 Figure 2 gives an

example of the σ-profiles of three cosmetic oils: propylheptyl
caprylate, dioctyl ether, and n-tetradecane. None of these
compounds has Lewis acidity (hydrogen-bond (HB) donor
region), but Lewis basicity (HB acceptor region) is present. The
σ-profiles show the difference in the Lewis basicity, propylheptyl
caprylate having the strongest one since the curve exhibits the
most significant peak above 0.01 e.Å−2.
Klamt suggested an expression of the partition coefficient K of

a solute X between two phases as a development on the σ-
moments (eq 8).22 Usually, a development to m = 6 is sufficient
to estimate satisfactorily the partition coefficient K.

∑= + +
=

RT K c M c M c Mln acc acc
X

don don
X

i

m

i i
X

0 (8)

The σ-momentsMi
X are calculated from the σ-profiles pX(σ) of

the studied compound X, according to eqs 9−11:

∫ σ σ σ σ= −
σ+

+∞
M p d( )( )acc

X X
HB

HB (9)

∫ σ σ σ σ= − −
σ
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Among the 15 σ-moments, the first ones have a simple physical
meaning. The zero-order σ-momentM0

X is the whole surface area
of the molecule, expressed in Å2. The first-order one M1

X is the
polarization charge of this surface, expressed in e. For uncharged
molecules, this moment is equal to zero. The second-order σ-

Figure 2. Plots of σ-surfaces and σ-profiles of three cosmetic oils:
propylheptyl caprylate (blue), dioctyl ether (red), and tetradecane
(green) using the COSMO-RS model.
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moment M2
X, expressed in e2·Å−2, is the polarity of the studied

molecule.27 The third-orderM3
X represents the asymmetry of the

σ-profile pX(σ). The other σ-moments M4
X, M5

X, and M6
X have no

known physical meaning. Finally, Macc
X and Mdon

X , expressed in e,
are the “hydrogen-bonding” σ-moments. They represent the
ability of the molecule to interact with hydrogen-bond acceptors
and donors, respectively. They have a nonzero value when the σ-
profile of a molecule outstrips the range [−σHB, +σHB], where σHB
is the hydrogen-bond cutoff equal to 0.01 e·Å−2.
The 14not 15 since M1

X is always equal to zero for the
uncharged molecules of our studycalculated σ-moments
values for the complete and test sets of molecules are given in
Tables S3 and S4 of the Supporting Information.
2.4. Surface Tension Measurements for Cosmetic Oils.

To assess the accuracy of the estimations of the developedmodel,
a test data set of 23 cosmetic oils that are not present in the
complete set was built. The surface tensions of these cosmetic
oils were determined experimentally, using two different
methods: measurements were both performed (i) with the
Krüss K100 tensiometer which measures the force occurring
when a probe (ring, plate or rod) is completely wetted with a
liquid and (ii) by the pendant drop method associated with the
Krüss DSA10 tensiometer. It has thus been verified on a few
molecules that values obtained for surface tensions are consistent
from one method to the other. The values measured with the
K100 tensiometer at 23.5 °C are presented in Table 3. The rod is
immersed in each liquid studied, with an immersion rate of 10
mm·min−1 and an immersion depth of 2 mm. The force acting on
the rod is recorded and allows the calculation of the surface
tension of the liquid. Before each series of measurements,
calibration with pure water is carried out. Additionally, surface
tensions of four liquids belonging to the training/validation set,
whose values (reported in the literature) can be found in Table
S1 of the Supporting Information, were measured for the
following results (all values with a standard deviation of 0.2 mN·
m−1): n-undecane ST = 23.1 mN·m−1, n-pentadecane ST = 26.9
mN·m−1, triacetine ST = 35.1 mN·m−1, and decamethylcyclo-
pentasiloxane ST = 18.0 mN·m−1. These values are consistent
with those of the literature. During a liquid measurement, the
surface tension values were sampled every 3 s until the standard
deviation was below 0.1 mN·m−1. Three measurements were
taken in a row for each sample. The means and standard
deviations of the measurements performed on the 23
compounds are reported in Table S2 of the Supporting
Information. No temperature correction was made to the
previous measured values since the observed deviations
between 0.1 and 0.7 mN·m−1were larger than the temperature
corrections, expected to be below 0.2 mN·m−1.

3. RESULTS AND DISCUSSION
3.1. Dependence of Surface Tension on Chemical

Function and Chain Length. The variation of the surface
tensions of several chemical families (alkanes, ethers, esters,
ketones, carbonates, acids, alcohols, silanes, and siloxanes) with
the number of carbon atoms is plotted in Figure 3, gathering
experimental values from at least two independent sources. For
silicon-containing compounds, the variation of the surface
tension is plotted against the sum of the number of carbon and
silicon atoms. For instance, decamethylcyclopentasiloxane
(C10H30O5Si5) is plotted at abscissa 15 on the X-axis of Figure 3.
For all chemical families, the surface tension increases with the

number of carbon or (carbon+silicon) atoms. Surface tension is
closely related to the intermolecular forces: the stronger these

forces, the more tightly bound the molecules, hence the higher
the surface tension. Because long chains are more likely to form
more intermolecular bonds than small ones do, the surface
tension increases with chain length. Silicones exhibit drastically
low surface tension. This is due to their inorganic polar backbone
on which apolar organic groups are grafted, able to rotate freely
around the Si−O bonds. These apolar groups shield the Si−O
backbone, preventing the dipolar interactions thereby decreasing
the surface tension. Apart from silicones, alkanes and ethers have
the lowest surface tensions because only London interactions
take place between CH2/CH3 groups. Compounds containing
polar ester groups have higher surface tensions because of the
Keesom and Debye interactions. Finally, alcohols have higher
surface tension values because these molecules carry a free
hydroxyl group that is involved in strong intermolecular
hydrogen bonds. As explained in the Introduction, a low surface
tension results in high spreadability. That is why silicones are
used in cosmetic formulations. Figure 3 gives an indication on
how chemical functions affect the surface tension of linear
molecules, showing that alkanes and ethers are the carbon
compounds whose surface tensions are closest to those of
silicones. It also focuses on the effect of chain length on the
surface tension for series of linear molecules (except cyclic
silicones), highlighting the increase in intermolecular forces with
the chain length, responsible for an increase in surface tension.
Obviously, this property does not depend only on those two
factors, but also on topological modifications such as cyclization
or branching of compounds. Thus, results presented in the
following sections of this study also deal with branched and cyclic
compounds.

3.2. Modeling Surface Tensions of the Liquids of the
Complete Set. 3.2.1. Surface Tension Estimation from σ-
Moments by Neural Networks (Multilayer Perceptrons). In the
present section, we discuss the design and test of a multilayer
Perceptron for the estimation of the surface tension of the
molecules of the complete data set described in Section 2.2.1,
comprising 269 compounds that carry diverse functional groups
(ethers, ketones, acids, carbonates, esters, silanes, siloxanes,
alkanes, and alcohols) and that possess straight or branched
chains, cycles, etc. The compounds contain only carbon,
hydrogen, oxygen, and silicon atoms because those are the

Figure 3. Variation of the surface tensions (ST) for various families of
linear molecules: alkanes (blue circles), ethers (empty purple circles),
acetates (red triangles), alcohols (empty orange triangles), and
carboxylic acids (yellow crosses) with the number of carbon atoms
and with the sum of carbon and silicon atoms for Si-containing
compounds (green squares for linear silicones and empty brown squares
for cyclic silicones).
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only atoms present in the backbone of cosmetic oils. The
database was partitioned into a training/validation set of 244
compounds and a test set of 25 compounds as described in
Section 2.2.3. In the spirit of Kondor et al.,6 the estimation was
performed by a multilayer Perceptron from five COSMO-RS σ-
moments: M0, M2, M3, Macc, and Mdon. [Neural network
computations were performed with a homemade software
package based on the NeuroOne kernel, a former product of
Netral S.A.] Feature selection by the random probe method41

confirmed the fact that for our dataM0,M2, andM3 are the most
relevant for ST estimation.
Model selection was performed by training models of

increasing complexity (number of hidden neurons).39 For each
model complexity, 100 models were trained with different
random initial parameter values. The Root Mean Square
Training Error (RMSTE) and the Virtual Leave-One-Out
(VLOO) score were computed:

θ
=RMSTE

J
N
( )m

T (12)

where J(θ) is the sum of square errors (eq 7), θm is the vector of
parameters of the model after completion of training, and NT =
244 is the number of molecules in the training/validation set:
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where yi is the surface tension value measured for molecule i, and
gi(θm

−i) is the surface tension value for molecule i that would have
been estimated by the model if molecule i had been left out the
training set (i.e., if the model had been trained on all molecules of
the training/validation set except molecule i). The virtual leave-
one-out score provides an unbiased estimation of the general-
ization ability of the model.43 The 10 models (out of 100) having
the smallest VLOO scores were stored.
The third row of Table 1 shows the values of the RMSTE on

the 244 molecules of the training/validation set for the best
trained models (models with minimum RMSTE) of increasing
complexity. As expected, RMSTE decreases monotonously with
increasing complexity; by contrast, the mean value of the VLOO
scores of the 10 stored models (fourth row) first decreases,
reaches a minimum for the model with 78 parameters (multilayer
Perceptron with 11 hidden neurons), and subsequently
increases. This illustrates the bias-variance dilemma explained
in Section 2.2.3. The VLOO score difference between the 71- and
78-parameter models is very small, and the recommended
practice in such a situation is to select the most parsimonious
(least complex) model. Therefore, the multilayer Perceptron
with 10 hidden neurons was selected for testing. The results of
the models with less than four hidden neurons are not displayed,
as they have much higher values.

For the selected modelwith 10 hidden neuronsthe
VLOO ST estimates for molecules of the training/validation
set and the ST estimates for the molecules of the test set are
plotted against their measured values in Figure 4. The RMSE

computed for the training/validation and test sets are equal to
1.91 and 3.60 mN·m−1, respectively, and the determination
coefficients R2, displayed for both sets, are equal to 0.89 and 0.76,
respectively. The surface tension is correctly estimated around
the center of the range but is clearly inadequate for the outer
examples, which impairs the R2 value for the test set where
outliers, being at the ends of the range, have large leverages.
As mentioned in the Introduction, Kondor et al. were the first

to use the COSMO-RS σ-moments for nonlinear regression by
neural networks. To build their model, Kondor et al. used a
database of 1500 surface tensions recorded for 188 molecules at
different temperatures.6 The initial set was partitioned into a
training/validation set of 1275 examples and a test set of 225
examples. The results, obtained with a neural network whose
variables were the COSMO-RS σ-moments mentioned above,
were fair for both sets. However, the method used for
partitioning the set remains unclear since there are more
examples in the test set than the number of initial molecules.
Therefore, some compounds are inevitably in both sets at least
once, though at different temperatures. This is clearly identified

Table 1. Surface Tension Estimation from σ-Moments by Neural Networks (Multilayer Perceptrons). Estimation of the Quality of
Training and of the Predicting Ability for Increasing Neural Network Complexity

number of parameters 29 36 43 50 57 64 71 78 85 92

number of hidden
neurons

4 5 6 7 8 9 10 11 12 13

RMSTEa 2.55 2.41 2.22 1.94 1.75 1.66 1.46 1.28 1.25 1.13
VLOO scoreb 3.54 (0.02) 3.29 (0.05) 3.17 (0.09) 2.98 (0.15) 2.96 (0.11) 2.83 (0.21) 2.72 (0.08) 2.71 (0.13) 2.71 (0.12) 2.74 (0.10)
aRMSTE value (mN·m−1) of the model (out of 100) having the smallest RMSTE for the 244 molecules of the training/validation set. bMean and
standard deviation (in parentheses) of the VLOO scores (mN·m−1) averaged over the 10 models (out of 100) having the smallest VLOO scores for
the 244 molecules of the training/validation set.

Figure 4. Surface tension estimation from σ-moments by neural
networks. VLOO surface tension (ST) estimates computed by neural
network (multilayer Perceptron with 10 hidden neurons) for the 244
molecules of the training/validation set (gray hollow circle) and surface
tension estimates for the 25 molecules of the test set (black filled circle)
vs measured values of the surface tension. The VLOO estimates for the
molecules of the training/validation set and the estimates for the
molecules of the test set are computed with the 10 models (out of 100)
that have the smallest VLOO scores. The dashed gray line is the
regression line for the training/validation set, while the dashed black line
is the regression line for the test set.
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for CO2, with three data points belonging to the training set and
one to the test set. A solid assessment of the prediction ability of
Kondor’s model would request a test with fresh examples not
pertaining to any of the previous sets and possessing known
surface tension values at various temperatures. To the best of our
knowledge, this is yet to be done.
3.2.2. Surface Tension Estimation from SMILES by Graph

Machines. In the present section, we discuss the design and test
of graph machines (described in Section 2.2.4) for the estimation
of the surface tension of the molecules of the complete data set
described in Section 2.2.1, comprising 269 compounds, and
partitioned into a training/validation set of 244 compounds and a
test set of 25 compounds.
The model design methodology for graph machines is the

same as described in Section 3.2.1 for multilayer Perceptrons:
graph machines of increasing complexity (number of hidden
neurons of the node function) were trained. For each model
complexity, 100 models were trained with different random
initial parameter values. RMSTE (eq 12) and the VLOO scores
(eq 13) were computed, and the 10 models having the smallest
VLOO scores were stored.
The third row of Table 2 shows the RMSTE values of the best-

trained models (models with smallest RMSTE) with different
complexities for the 244 molecules of the training/validation set.
As expected, the RMSTE decreases with increasing complexity,
while the mean value of the VLOO scores of the 10 stored
models (fourth row) goes through a minimum (model with 95
parameters, i.e., node function with seven hidden neurons) and
subsequently increases. Therefore, graph machines with seven
hidden neurons were selected for further testing.
As an illustration, the VLOO ST estimates for molecules of the

training/validation set and the ST estimates for the molecules of
the test set are plotted against their measured values in Figure 5.
The RMSE computed for the training/validation and test sets are
both equal to 0.77 mN·m−1, and the determination coefficients
R2, displayed for both sets, are above 0.98. This demonstrates
that the VLOO score on the training/validation set provides an
accurate assessment of the generalization ability of the model. It
also shows that the accuracy of the graph machine estimations is
much better than the accuracy of MLP estimations from the σ-
moments. Indeed, the estimation error of graph machines is on
the order of the experimental uncertainty on the available data.
Tables gathering the results with both group contribution and

corresponding-states based methods, and respective RMSE, are
given in the Supporting Information.

3.3. Comparison of the Four Approaches on the 23
Cosmetic Oils Test Set. For further testing, the cosmetic oils
set (23 molecules) was investigated. Most molecules display
polar functions with oxygen. As such we may expect large
deviation in the prediction with the Zuo and Stenby
corresponding-states method that was developed over a database
containing only nonpolar molecules. To take advantage of the

maximum information on all the available data, the complete set
of 269 molecules was used as a training/validation set. For graph
machines, 250 models with node functions having seven hidden
neurons were trained from that set. The 25 models that had the
smallest VLOO scores were applied to the cosmetic oils set, and
the mean of their estimates of the surface tension was taken as the
final estimate. This resulted in a RMS estimation error of 0.9 mN·
m−1. For the MLP estimation from σ-moments, 250 models
having 10 hidden neurons were trained from the same set. The 25
models that had the smallest VLOO scores were also applied to
the cosmetic oils set, and the mean of their estimates of the
surface tension was taken as the final estimate. The results are
compared with those obtained with the other two methods,
group contribution, and corresponding-states method. Devia-
tions from experimentally measured values of surface tension are
gathered in Table 3. Because of the absence of contribution for
siloxane groups in Conte’s group contribution method, the
surface tension for the dodecamethylcyclohexasiloxane (D6)
cannot be estimated.
A large deviation is observed between the experimental data

and the values predicted by the GC method. We notice that the
molecules considered in Table 3 have a larger molecular weight
than compounds included in the database used for the
predictions. Conte’s original paper did not give a list of data
set molecules but provided several examples.7 Not a single one
concerned such large molecules. This hints at the fact that the

Table 2. Surface Tension Estimation from SMILES byGraphMachines. Estimation of theQuality of Training and of the Predicting
Ability for Increasing Graph Machine Complexity

number of parameters 31 44 59 76 95 116 139 164

number of hidden neurons 3 4 5 6 7 8 9 10
RMSTEa 1.99 1.33 0.94 0.75 0.49 0.40 0.31 0.18
VLOO scoreb 2.77 (0.08) 2.40 (0.15) 2.31 (0.27) 2.05 (0.21) 1.71 (0.29) 1.85 (0.26) 1.90 (0.26) 2.46 (0.77)

aRMSTE value (mN·m−1) of the model (out of 100) having the smallest RMSTE for the 244 molecules of the training/validation set. bMean and
standard deviation (in parentheses) of the VLOO scores (mN·m−1) averaged over the 10 models (out of 100) having the smallest VLOO scores for
the 244 molecules of the training/validation set.

Figure 5. Surface tension estimation from SMILES by graph machines.
VLOO surface tension (ST) estimates computed by graph machines
(node function with seven hidden neurons) for the 244 molecules of the
training/validation set (gray hollow circle) and surface tension estimates
for the 25 molecules of the test set (black filled circle) vs measured
values of the surface tension. The VLOO estimates for the molecules of
the training/validation set and the estimates for the molecules of the test
set are computed with the 10 models (out of 100) that have the smallest
VLOO scores. The dashed gray line is the regression line for the
training/validation set, while the dashed black line is the regression line
for the test set.
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database set used to develop the GC model does not sample the
space of molecules to which the test set we are interested in
belongs.
Thus, in the following, surface tensions estimated with the

corresponding-states methods described by Zuo and Stenby are
compared to results obtained with the neural networks and graph
machines. Figure 6 presents the comparison between the
experimentally measured surface tensions of the 23 cosmetic
oils of the test set and the predicted surface tensions with

corresponding-states based method, neural networks using the
COSMO-RS σ-moments as descriptors, and graph machines.
The method of corresponding states advocated by Zuo and

Stenby performs poorly as was expected. For all but for two
compounds, the surface tensions are grossly underestimated.
The estimations by neural networks from σ-moments are not
very satisfactory, which suggests that the σ-moments do not
contain sufficiently relevant information for our task. In
particular, graph machines provide the most accurate estimation
as they take into account the structure of the molecule, thereby

Table 3. Difference between Measured and Predicted Surface Tension (ST) for 23 Cosmetic Oils

aMean measured surface tension values (ST) are reported in mN·m−1 at 23.5 °C. bDifference between measured and predicted ST using group
contribution method implemented in the IBSS software. cDifference between measured and predicted ST using corresponding state-based method
included in IBSS software.29 dDifference between measured and predicted ST using neural network model based on the five σ-moments.6
eDifference between measured and predicted ST using graph machines.26 fThe root-mean-square error is computed with eq 13 for the 23 molecules
of the test set; the estimations for the surface tension are averaged over the 25 models (out of 250) that have the smallest VLOO scores for the
multilayer Perceptron and the graph machines (71 and 95 parameters, respectively). gn/a: not applicable.
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exempting the model designer from the computation and
selection of features.

4. CONCLUSIONS

Predicting surface tensions of liquids from first-principles is not
straightforward due to the complexity of the interactions taking
place at gas/liquid interfaces. It remains still inaccessible even by
advanced methods such as COSMO-RS able to calculate
accurately interfacial tensions between two liquid phases.26 In
the present study, the estimation of surface tensions of cosmetic
oils was performed by the group contribution method, by the
corresponding-states method, by nonlinear regression (multi-
layer Perceptron) from COSMO-RS σ-moments, and by
regression on graphs (graph machines). To the best of our
knowledge, this is the first study that compares the accuracy of
various methods for estimating the surface tensions of the same
molecules and where the models are tested on two sets of
molecules; it is also the first report of the use of graph machines
for surface tension estimation. The database of surface tensions
was created with special emphasis on the diversity of the
molecules and on the reliability of the experimental results. It was
shown that the group contribution method failed to provide
accurate estimations (root-mean-square estimation error = 6.7
mN·m−1); the corresponding-states method and nonlinear
regression from σ-moments yielded estimations with similar
accuracies (root-mean-square estimation errors = 2.4 and 2.7
mN·m−1 respectively); graph machines, which make estimations
solely from the molecular structure, provided the most accurate
estimations (0.9 mN·m−1). Pending the development of
methods, based on first-principles, for surface tension estimation
only from molecular structures, graph machines are shown to be
able to provide, from molecular structures, estimations whose
errors are on the order of the experimental uncertainty on the
available data. An interactive demonstration of the graph
machine computations, based on the Docker free software
technology (existing for many computer platforms) is available
for download (see the Supporting Information). In the present
study, all measurements were taken at the same temperature. As
surface tension varies with temperature, we intend to use the
ability of graph machines to take into account exogenous
variables (e.g., temperature) for prediction.
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(6) Kondor, A.; Jaŕvaś, G.; Kontos, J.; Dallos, A. Temperature
Dependent Surface Tension Estimation Using COSMO-RS Sigma
Moments. Chem. Eng. Res. Des. 2014, 92, 2867−2872.
(7) Conte, E.; Martinho, A.; Matos, H. A.; Gani, R. Combined Group-
Contribution and Atom Connectivity Index-Based Methods for
Estimation of Surface Tension and Viscosity. Ind. Eng. Chem. Res.
2008, 47, 7940−7954.

Figure 6. Predicted surface tension values computed by graph machine
(red circles), neural networks based on five σ-moments (blue triangles),
and corresponding-states (green crosses) vs experimentally measured
surface tension values for the test set of 23 cosmetic oils.

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00512
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.7b00512/suppl_file/ci7b00512_si_001.pdf
mailto:arthur.duprat@espci.fr
mailto:arthur.duprat@espci.fr
mailto:jean-marie.aubry@univ-lille1.fr
http://orcid.org/0000-0002-2889-1701
http://orcid.org/0000-0001-8065-997X
http://dx.doi.org/10.1021/acs.jcim.7b00512
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jcim.7b00512&iName=master.img-009.jpg&w=239&h=152
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cherd.2014.06.021&citationId=p_n_28_1
http://pubs.acs.org/action/showLinks?crossref=10.1111%2Fj.1745-459X.2007.00136.x&citationId=p_n_12_1


(8) Stanton, D. T.; Jurs, P. C. Computer-Assisted Study of the
Relationship between Molecular Structure and Surface Tension of
Organic Compounds. J. Chem. Inf. Model. 1992, 32, 109−115.
(9) Kauffman, G. W.; Jurs, P. C. Prediction of Surface Tension,
Viscosity, and Thermal Conductivity for Common Organic Solvents
Using Quantitative Structure- Property Relationships. J. Chem. Inf.
Comput. Sci. 2001, 41, 408−418.
(10) Freitas, A. A.; Quina, F. H.; Carroll, F. A. A Linear Free Energy
Analysis of the Surface Tension of Organic Liquids. Langmuir 2000, 16,
6689−6692.
(11) Albahri, T. A.; Alashwak, D. A. Modeling of Pure Compounds
Surface Tension Using QSPR. Fluid Phase Equilib. 2013, 355, 87−91.
(12) Rao, M.; Levesque, D. Surface Structure of a Liquid Film. J. Chem.
Phys. 1976, 65, 3233−3236.
(13) Ghoufi, A.; Malfreyt, P.; Tildesley, D. J. Computer Modelling of
the Surface Tension of the Gas−liquid and Liquid−liquid Interface.
Chem. Soc. Rev. 2016, 45, 1387−1409.
(14) Fu, D.; Lu, J.-F.; Liu, J.-C.; Li, Y.-G. Prediction of Surface Tension
for Pure Non-Polar Fluids Based on Density Functional Theory. Chem.
Eng. Sci. 2001, 56, 6989−6996.
(15) Brock, J. R.; Bird, R. B. Surface Tension and the Principle of
Corresponding States. AIChE J. 1955, 1, 174−177.
(16) Curl, R. F.; Pitzer, K. Volumetric and Thermodynamic Properties
of Fluids-enthalpy, Free Energy, and Entropy. Ind. Eng. Chem. 1958, 50,
265−274.
(17) Escobedo, J.; Mansoori, G. A. Surface Tension Prediction for Pure
Fluids. AIChE J. 1996, 42, 1425−1433.
(18) Li, P.; Ma, P.-S.; Dai, J.-G.; Cao, W. Estimations of Surface
Tensions at Different Temperatures by a Corresponding-States Group-
Contribution Method. Fluid Phase Equilib. 1996, 118, 13−26.
(19) Marrero, J.; Gani, R. Group-Contribution Based Estimation of
Pure Component Properties. Fluid Phase Equilib. 2001, 183−184, 183−
208.
(20) Constantinou, L.; Gani, R. New Group Contribution Method for
Estimating Properties of Pure Compounds. AIChE J. 1994, 40, 1697−
1710.
(21) Egemen, E.; Nirmalakhandan, N.; Trevizo, C. Predicting Surface
Tension of Liquid Organic Solvents. Environ. Sci. Technol. 2000, 34,
2596−2600.
(22) Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase
Thermodynamics and Drug Design, first ed.; Elsevier: Amsterdam, The
Netherlands, 2005.
(23) Klamt, A. Conductor-like Screening Model for Real Solvents: A
New Approach to the Quantitative Calculation of Solvation
Phenomena. J. Phys. Chem. 1995, 99, 2224−2235.
(24) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. Refinement and
Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074−
5085.
(25) Klamt, A.; Eckert, F.; Hornig, M. COSMO-RS: A Novel View to
Physiological Solvation and Partition Questions. J. Comput.-Aided Mol.
Des. 2001, 15, 355−365.
(26) Andersson, M. P.; Bennetzen, M. V.; Klamt, A.; Stipp, S. L. S.
First-Principles Prediction of Liquid/Liquid Interfacial Tension. J.
Chem. Theory Comput. 2014, 10, 3401−3408.
(27) Lukowicz, T.; Benazzouz, A.; Nardello-Rataj, V.; Aubry, J.-M.
Rationalization and Prediction of the Equivalent Alkane Carbon
Number (EACN) of Polar Hydrocarbon Oils with COSMO-RS σ-
Moments. Langmuir 2015, 31, 11220−11226.
(28) Goulon, A.; Picot, T.; Duprat, A.; Dreyfus, G. Predicting Activities
without Computing Descriptors: Graph Machines for QSAR. SAR
QSAR Environ. Res. 2007, 18, 141−153.
(29) Heintz, J.; Belaud, J.-P.; Pandya, N.; Teles Dos Santos, M.;
Gerbaud, V. Computer Aided Product Design Tool for Sustainable
Product Development. Comput. Chem. Eng. 2014, 71, 362−376.
(30) Hukkerikar, A. S.; Sarup, B.; Ten Kate, A.; Abildskov, J.; Sin, G.;
Gani, R. Group-Contribution+ (GC+) Based Estimation of Properties of
Pure Components: Improved Property Estimation and Uncertainty
Analysis. Fluid Phase Equilib. 2012, 321, 25−43.

(31) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of
Gases and Liquids, fifth ed.; McGraw-Hill, 2001.
(32) Pitzer, K. S. Thermodynamics; McGraw-Hill, New York, 1995.
(33) Zuo, Y.-X.; Stenby, E. H. Corresponding-States and Parachor
Models for the Calculation of Interfacial Tensions. Can. J. Chem. Eng.
1997, 75, 1130−1137.
(34) Jasper, J. J. The Surface Tension of Pure Liquid Compounds. J.
Phys. Chem. Ref. Data 1972, 1, 841−1010.
(35) Le Neindre, B. Tensions superficielles des composeś organiques.
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