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Abstract
The aim of this paper is to study the boundary controllability of the linear elasticity system as

a first-order system in both space and time. Using the observability inequality known for the usual
second-order elasticity system, we deduce an equivalent observability inequality for the associated
first-order system. Then, the control of minimal L2-norm can be found as the solution to a space-
time mixed formulation. This first-order framework is particularly interesting from a numerical
perspective since it is possible to solve the space-time mixed formulation using only piecewise linear
C0-finite elements. Numerical simulations illustrate the theoretical results.

1 Introduction and notations
This work is devoted to the study of the boundary null controllability for the linear elasticity system by
means of a first-order equivalent formulation. The main motivation to consider this first order framework
is a computational one. If there is a rich literature concerning the numerical approximation of controls
for the wave equation (see, for instance, [14, 23, 1, 10, 12, 11] and references therein), there are only a
few works studying the linear elasticity case (see, for instance, [9, 19]).

The present work is based on the reformulation of the boundary null controllability of the elastic
system as a space-time mixed formulation. This idea was already exploited for the controllability of the
wave equation in [7, 8]. Notice that, in order to have a conformal finite element approximation of the
solution of this mixed formulation for the wave equation, C1 finite elements are needed. To avoid this
issue, in [16], a first-order formulation was introduced for the numerical approximation of the boundary
control of the wave equation. Another possibility is to employ a non-conformal stabilized approximation
(see, for instance, [4, 5]).

In the sequel we adapt the framework proposed in [16] to the linear elasticity system. This will allow
us to numerical approach the boundary null control of minimal L2 norm for the elasticity system using
a space-time stabilized mixed formulation and P1 finite elements.

Let n ∈ N? and let Ω ⊂ Rn be a non-empty bounded domain with a regular enough boundary Γ := ∂Ω.
For T > 0, we define Q := Ω× (0, T ) and Σ := Γ× (0, T ). We also set Γ0 ⊂ Γ and Σ0 := Γ0× (0, T ). We
then consider the following linear elasticity system:

u′′ − µ∆u− (λ+ µ)∇ divu = 0 in Q, (1a)
u = h on Σ0, (1b)
u = 0 on Σ \ Σ0, (1c)

(u,u′)(·, 0) = (u0,u1) in Ω, (1d)

where u = (u1, . . . , un)> is the state and h = (h1, . . . , hn)> is a boundary control acting on Σ0. Here
and henceforth, we denote by u′ the derivative of u with respect to the time variable t. Moreover, we use
bold characters for the vector-valued functions and the associated spaces. We write for instance L2(Ω) :=
L2(Ω;Rn). Equation (1a), often referred to as the Navier-Cauchy equation, models the evolution of the
(small) displacement u of an elastic body occupying the domain Ω. The constants µ > 0 and λ satisfying
λ+µ ≥ 0 are called the Lamé’s coefficients. They describe the elastic properties of an isotropic material.
For more details related to the model, we refer to the textbook [21].
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Controllability of the linear elasticity as a first-order system

We first recall some facts about the null controllability of system (1) and the control of minimal
L2-norm. If the boundary Γ is regular, C2 being sufficient, for any (u0,u1) ∈ L2(Ω) ×H−1(Ω) and
h ∈ L2(Σ0), there exists (see, for instance, [15]) a unique transposition solution u of (1) with regularity

u ∈ C
(
[0, T ];L2(Ω)

)
∩ C1([0, T ];H−1(Ω)

)
. (2)

The null controllability problem for (1) in time T is the following. For each initial datum (u0,u1) ∈
L2(Ω)×H−1(Ω), find a control h ∈ L2(Σ0) such that the corresponding solution u of (1) satisfies

(u,u′)(·, T ) = (0,0) in Ω. (3)

It is well-known (see, for instance, [15] or [17]) that, under some geometric conditions on Ω and Γ0,
the system (1) is null-controllable in any large time T > T ? = 2

√
µ
R(x0), where R(x0) is depending

on the geometry of the the domain Ω and the control boundary Γ0. Moreover, as a consequence of
the Hilbert Uniqueness Method (HUM) of J.-L. Lions [15], the controllability of (1) is equivalent to an
observability inequality for the associated adjoint system

ϕ′′ − µ∆ϕ− (λ+ µ)∇divϕ = 0 in Q, (4a)
ϕ = 0 on Σ, (4b)

(ϕ,ϕ′)(·, 0) = (ϕ0,ϕ1) in Ω. (4c)

More exactly, there exists a constant Cobs > 0 such that, for any (ϕ0,ϕ1) ∈H1
0(Ω)×L2(Ω), the solution

ϕ of (4) satisfies

µ‖ϕ0‖2H1
0(Ω) + (λ+ µ)‖ divϕ0‖2L2(Ω) + ‖ϕ1‖2L2(Ω) ≤ Cobs

∫
Σ0

(
µ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2 + (λ+ µ)|divϕ|2

)
. (5)

As we point out in Remark 1, the boundary term appearing in the right-hand side of inequality (5) is
well-defined.

We recall that there is an infinite number of controls in time T . Thus, the problem of finding the
control of minimal L2-norm arises naturally. In fact, the control of minimal L2-norm is unique and can
be found (see [15]) as the solution to a minimization problem involving the conjugate functional

J ?(ϕ0,ϕ1) := 1
2

∫
Σ0

∣∣∣∣µ∂ϕ∂ν + (λ+ µ) divϕν
∣∣∣∣2 +

〈
u0,ϕ1〉

L2(Ω) −
〈
u1,ϕ0〉

H−1,H1
0
, (6)

where ϕ is the solution of the adjoint system (4) associated with (ϕ0,ϕ1) ∈H1
0(Ω)×L2(Ω). We denote

by 〈·, ·〉H−1,H1
0
the duality pairing betweenH−1(Ω) andH1

0(Ω). For any u1 ∈H−1(Ω) and ϕ0 ∈H1
0(Ω),

the pairing can be expressed〈
u1,ϕ0〉

H−1,H1
0

= µ

∫
Ω

∇(A−1
0 u1) : ∇ϕ0 + (λ+ µ)

∫
Ω

div(A−1
0 u1) divϕ0, (7)

where ∇ϕ0 is the Jacobian matrix of the vector-valued function ϕ0 and A−1
0 : H−1(Ω)→H1

0(Ω) is the
inverse of the operator A0 := −µ∆− (λ+ µ) div. More precisely, we have g = A−1

0 f if g is solution to

−µ∆g − (λ+ µ)∇ div g = f in Ω,
g = 0 on Γ.

Besides, it is known that the control ĥ of minimal L2(Σ0)-norm for (1) can be written

ĥ =
(
µ
∂ϕ̂

∂ν
+ (λ+ µ) div ϕ̂ ν

) ∣∣∣
Σ0
, (8)

where ϕ̂ is the solution of (4) associated with the minimum point (ϕ̂0, ϕ̂1) ∈ H1
0(Ω) × L2(Ω) of the

functional J ?. We mention that the boundedness by below and the coercivity of J ? are consequences
of the observability inequality (5).
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Remark 1. We recall here the following existence, uniqueness and boundary regularity result for the
adjoint system. For any (ϕ0,ϕ1) ∈H1

0(Ω)×L2(Ω) and f ∈ L1(0, T ;L2(Ω)), there exists a unique weak
solution

ϕ ∈ C
(
[0, T ];H1

0(Ω)
)
∩ C1([0, T ];L2(Ω)

)
(9)

to the system

ϕ′′ − µ∆ϕ− (λ+ µ)∇ divϕ = f in Q, (10a)
ϕ = 0 on Σ, (10b)

(ϕ,ϕ′)(·, 0) = (ϕ0,ϕ1) in Ω. (10c)

Moreover, ∂ϕ∂ν ∈ L
2(Σ), divϕ ∈ L2(Σ) and there exists a positive constant C = C(Ω, T ) such that∫

Σ

(
µ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2+(λ+µ)|divϕ|2

)
≤ C

(
µ‖ϕ0‖2H1

0(Ω)+(λ+µ)‖ divϕ0‖2L2(Ω)+‖ϕ1‖2L2(Ω)+‖f‖2L1(0,T ;L2(Ω))

)
.

In view of this regularity result, the boundary term appearing in (5) makes sense.
As it was pointed out in [8], we can reformulate the minimization of J ? in terms of trajectories of

the elasticity system. Thus, there is a bijective relation between the trajectories and the initial data. As
a consequence, the function ϕ̂ appearing in (8) can be found as the minimum point of the new conjugate
functional

J̃ ?(ϕ) := 1
2

∫
Σ0

∣∣∣∣µ∂ϕ∂ν + (λ+ µ) divϕν
∣∣∣∣2 +

〈
u0,ϕ′(·, 0)

〉
L2(Ω) −

〈
u1,ϕ(·, 0)

〉
H−1,H1

0
, (11)

where ϕ ∈ Φ, with

Φ :=
{
ϕ ∈ L2(Q); ϕ satisfies (4a)–(4b), ∂ϕ

∂ν
∈ L2(Σ) and divϕ ∈ L2(Σ)

}
. (12)

The minimization of the functional J ? is also exploited for the numerical approximation of the control
of minimal L2-norm (see, for instance, [12, 11, 23] for the wave equation and [9, 19] for the elasticity
system).

Following the ideas employed in [16] for the controllability of the wave equation, we write (4) as a
first-order hyperbolic system. More precisely, if ϕ is a solution of (4a), we define the new variables

w := ϕ′ and Q := ∇ϕ, (13)

where ∇ϕ is the Jacobian matrix of ϕ. Then, equation (4a) implies that (w,Q) solves the following
first-order system,

w′ − µdivQ− (λ+ µ)∇ trQ = 0 in Q, (14a)
Q′ −∇w = 0 in Q. (14b)

Reciprocally, if we are able to establish the well-posedness of (14) in some suitable functional space, by
uniqueness, we may recover solutions of (4a). A slightly different reformulation of the elasticity system
as a first order system was proposed in [2]. Note that the new variable Q = (qij)1≤i,j≤n is a matrix,
that trQ :=

∑n
i=1 qii is the trace of Q and that divQ is the vector defined by

divQ :=

 n∑
j=1

∂qij
∂xj


1≤i≤n

. (15)

At this point, it is possible to reformulate the minimization problem associated with J̃ ? in terms of
the solution to a first-order system. Before doing so, we introduce the initial-boundary value problem
associated with (14). First, we must choose the adequate boundary conditions for (w,Q). Since the
solution ϕ of (4) satisfies the boundary condition ϕ = 0 on Σ, we also have ϕ′ = 0 on Σ. Thus, we shall
impose w = 0 on Σ in order to be consistent with (13). In fact, this boundary condition is sufficient
for our purposes and it is not necessary to impose a boundary condition on Q. Regarding the initial
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condition, the natural choice is to set (w,Q)(·, 0) = (ϕ1,∇ϕ0), which means that the initial datum for
(w,Q) should belong to

W := L2(Ω)×∇H1
0, with ∇H1

0 :=
{

∇ϕ; ϕ ∈H1
0(Ω)

}
. (16)

The space ∇H1
0 is a Hilbert space with respect to the inner product〈

Q,Q
〉

∇H1
0

:= µ
〈
Q,Q

〉
L2(Ω) + (λ+ µ)

〈
trQ, trQ

〉
L2(Ω). (17)

Moreover, ∇H1
0 is a closed subspace of L2(Ω;Mn(R)). The Hilbert space W is endowed with the inner

product 〈
(w,Q), (w,Q)

〉
W :=

〈
w,w

〉
L2(Ω) +

〈
Q,Q

〉
∇H1

0
. (18)

Moreover, for Q ∈∇H1
0, we denote by σ(Q) the following stress tensor

σ(Q) := µQ+ (λ+ µ) trQI, (19)

where I is the identity matrix. Remark that equation (14a) then writes

w′ − divσ(Q) = 0 in Q. (20)

We also define

V := H1
0(Ω)×∇H2

0, with ∇H2
0 :=

{
∇ϕ; ϕ ∈H2(Ω) ∩H1

0(Ω)
}
. (21)

The space W is the closure of V with respect to the norm ‖ · ‖W. Besides, for Q ∈ ∇H2
0, note

that divσ(Q) ∈ L2(Ω). With these notations, the first-order initial-boundary value problem associated
with (4) is the following. For any (w0,Q0) ∈W, find (w,Q) solution of (14) and satisfying the following
boundary and initial value conditions

w = 0 on Σ, (22a)
(w,Q)(·, 0) = (w0,Q0) in Ω. (22b)

In what follows, we denote

M(w,Q) :=
(
w′ − divσ(Q),Q′ −∇w

)
. (23)

In order to state a suitable well-posedness result for the first-order system (14)–(22), we consider the
closed and densely defined operator A : V→W defined by

A(w,Q) :=
(

divσ(Q),∇w
)
, ∀(w,Q) ∈ V. (24)

We show in Appendix A that A generates a C0-group of contractions which we denote (Tt)t∈R. Using
this semigroup approach (see, for instance, [18] or [22]), we can introduce the notion of mild solution.

Definition 1. Let (w0,Q0) ∈W and (f ,F ) ∈ L1(0, T ; W). We say that (w,Q) is a mild solution of

w′ − divσ(Q) = f in Q, (25a)
Q′ −∇w = F in Q, (25b)

w = 0 on Σ, (25c)
(w,Q)(·, 0) = (w0,Q0) in Ω, (25d)

if
(w,Q)(·, t) = Tt(w0,Q0) +

∫ t

0
Tt−s(f ,F )(·, s) ds, ∀t ∈ (0, T ). (26)

As a consequence of well-known facts concerning the theory of semigroups and the definition of mild
solutions, we have the following well-posedness statement for (25).

Lemma 1. Let (w0,Q0) ∈W and (f ,F ) ∈ L1(0, T ; W).
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Controllability of the linear elasticity as a first-order system

i) The first-order system (25) has a unique mild solution (w,Q) ∈ C([0, T ]; W) and there exists a
positive constant C = C(Ω, T ) such that

sup
t∈(0,T )

‖(w,Q)(·, t)‖2W ≤ C
(
‖(w0,Q0)‖2W + ‖(f ,F )‖2L1(0,T ;W)

)
. (27)

ii) If (w0,Q0) ∈ V and (f ,F ) ∈ C1([0, T ]; W), then (w,Q) ∈ C([0, T ]; V) ∩ C1([0, T ]; W) and the
equationM(w,Q) = (f ,F ) holds in W.

Similarly to the boundary regularity result stated in Remark 1, we have a boundary regularity result
for the solutions of (25). Indeed, we prove in Lemma 3 that if (w,Q) ∈ C([0, T ]; W) is a solution of (25),
then Qν ∈ L2(Σ), trQ ∈ L2(Σ) and the inequality∫

Σ

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
≤ C

(
‖(w0,Q0)‖2W + ‖(f ,F )‖2L1(0,T ;W)

)
holds true for some positive constant C = C(Ω, T ).

We are now in position to restate the minimization problem associated with J̃ ? (cf (11)) in terms
of the solution to the first-order system (25). A natural way to proceed is to consider a minimization
problem in which the quantities ϕ′ and ∇ϕ are replaced by w and Q respectively. We then define the
following spaces of trajectories,

Z :=
{

(w,Q) ∈ C
(
[0, T ]; W

)
mild solution of (25) associated with (28)

(w0,Q0) ∈W, (f ,F ) ∈ L2(0, T ; W)
}
,

Z0 :=
{

(w,Q) ∈ C
(
[0, T ]; W

)
mild solution of (25) associated with (29)

(w0,Q0) ∈W, (f ,F ) = (0,0)
}
.

With these definitions, the adequate minimization problem in terms of the first-order system is

min
(w,Q)∈Z0

Ĵ ?(w,Q), (30)

where
Ĵ ?(w,Q) := 1

2

∫
Σ0

∣∣∣σ(Q)ν
∣∣∣2 +

〈
u0,w(·, 0)

〉
L2(Ω) −

〈
∇(A−1

0 u1),Q(·, 0)
〉

∇H1
0
. (31)

As for the elasticity system, the boundedness by below and the coercivity of Ĵ ? can be obtained as a
consequence of an observability inequality which takes the form

‖(w,Q)(·, 0)‖2W ≤ µ−1Cobs

∫
Σ0

|σ(Q)ν|2,

for any (w,Q) ∈ Z0 and under suitable conditions on Ω, Γ0, (µ, λ) and T .
The remaining part of this work is structured as follows. In Section 2, we prove an a priori estimate

and a generalized observability inequality for system (25). The third section rewrites the minimization
problem (30) as a mixed formulation. The well-posedness of this mixed formulation is a direct conse-
quence of the estimates proved in Section 2 and provides an easily computable expression for the control
of minimal L2-norm associated with (1). Sections 4 and 5 propose a stabilized version of the mixed for-
mulation introduced in Section 3 and an equivalent reformulation of this stabilized mixed formulation as
a dual extremal problem involving only the state variable. Such a reformulation is particularly interesting
from the numerical perspective and is exploited in Section 6 to numerically illustrate the controllability
for the wave equation and the elasticity system written as first-order systems in both space and time.
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2 Boundary regularity and observability
We first derive an identity which is useful to obtain a priori estimates for (25).

Lemma 2. With Ω of class C2, let β ∈ C1(Ω;Rn) be a vector field. For any solution (w,Q) of (25)
associated with (w0,Q0) ∈ V and (f ,F ) ∈ C1([0, T ]; W), the following identity holds,

1
2

∫
Σ

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
(β · ν) =

[∫
Ω
w · (Qβ)

]T
0

+ 1
2

∫∫
Q

(
|w|2 − µ|Q|2 − (λ+ µ)| trQ|2

)
divβ

+ µ

∫∫
Q

Q : (Q∇β) + (λ+ µ)
∫∫

Q

trQ tr(Q∇β)

−
∫∫

Q

f · (Qβ)−
∫∫

Q

w · (Fβ).

(32)

Proof. Let (w0,Q0) ∈ V and (f ,F ) ∈ C1([0, T ]; W). There exists two functions ϕ0 ∈H2(Ω) ∩H1
0(Ω)

and ψ ∈ C1([0, T ];H1
0(Ω)) such that Q0 = ∇ϕ0 and F = ∇ψ. We start by some properties of (w,Q)

on the boundary Σ. The matrix Q satisfies

Q′ −∇w = F in Q and Q(·, 0) = Q0 in Ω,

therefore
Q(x, t) = ∇ϕ0(x) +

∫ t

0
∇w(x, τ) dτ +

∫ t

0
∇ψ(x, τ) dτ, ∀(x, t) ∈ Q. (33)

Let 1 ≤ i ≤ n. Since ϕ0 ∈ H1
0(Ω), we have ∇ϕ0

i = ∂ϕ0
i

∂ν ν on Γ. Similarly, for any τ ∈ [0, T ], since
w(·, τ) = 0 on Γ and ψ(·, τ) ∈H1

0(Ω), we also have ∇wi(·, τ) = ∂wi

∂ν (·, τ)ν and ∇ψi(·, τ) = ∂ψi

∂ν (·, τ)ν on
Γ. Hence, if qi denotes the i-th line of Q, it follows from (33) that qi = (qi · ν)ν on Σ. Thus, we get

|Q|2 = |Qν|2, (Qν) · ν = trQ, Qβ = (β · ν)Qν and (Qβ) · ν = trQ (β · ν) on Σ. (34)

Multiplying equation (25a) by Qβ and integrating over Q, we have∫∫
Q

w′ · (Qβ)− µ
∫∫

Q

divQ · (Qβ)− (λ+ µ)
∫∫

Q

∇ trQ · (Qβ) =
∫∫

Q

f · (Qβ). (35)

We treat each term one after the other. We recall that there exists ϕ ∈ C1([0, T ];H2(Ω)∩H1
0(Ω)) such

that Q = ∇ϕ.
• For the first term, by integration by parts, we get∫∫

Q

w′ · (Qβ) =
[∫

Ω
w · (Qβ)

]T
0
−
∫∫

Q

w · (Q′β)

=
[∫

Ω
w · (Qβ)

]T
0
−
∫∫

Q

w · (∇wβ)−
∫∫

Q

w · (Fβ).

Moreover, since w = 0 on Σ, we have∫∫
Q

w · (∇wβ) = 1
2

∫∫
Q

∇|w|2 · β = −1
2

∫∫
Q

|w|2 divβ.

Thus, we get ∫∫
Q

w′ · (Qβ) =
[∫

Ω
w · (Qβ)

]T
0

+ 1
2

∫∫
Q

|w|2 divβ −
∫∫

Q

w · (Fβ). (36)

• For the second term, by integration by parts and since Q = ∇ϕ, we get∫∫
Q

divQ · (Qβ) =
∫

Σ
(Qν) · (Qβ)−

∫∫
Q

Q : ∇(Qβ)

=
∫

Σ
|Qν|2(β · ν)−

∫∫
Q

Q : (∇Qβ)−
∫∫

Q

Q : (Q∇β).
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Moreover, we have∫∫
Q

Q : (∇Qβ) = 1
2

∫∫
Q

∇|Q|2 · β = 1
2

∫
Σ
|Q|2(β · ν)− 1

2

∫∫
Q

|Q|2 divβ

= 1
2

∫
Σ
|Qν|2(β · ν)− 1

2

∫∫
Q

|Q|2 divβ.

Thus, we get ∫∫
Q

divQ · (Qβ) = 1
2

∫
Σ
|Qν|2(β · ν) + 1

2

∫∫
Q

|Q|2 divβ −
∫∫

Q

Q : (Q∇β). (37)

• For the third term, by integration by parts and since Q = ∇ϕ, we get∫∫
Q

∇ trQ · (Qβ) =
∫

Σ
trQ (Qβ) · ν −

∫∫
Q

trQdiv(Qβ)

=
∫

Σ
| trQ|2(β · ν)−

∫∫
Q

trQ∇ trQ · β −
∫∫

Q

trQ tr(Q∇β).

Moreover, we have∫∫
Q

trQ∇ trQ · β = 1
2

∫∫
Q

∇| trQ|2 · β = 1
2

∫
Σ
| trQ|2(β · ν)− 1

2

∫∫
Q

| trQ|2 divβ.

Thus, we get∫∫
Q

∇ trQ · (Qβ) = 1
2

∫
Σ
| trQ|2(β · ν) + 1

2

∫∫
Q

| trQ|2 divβ −
∫∫

Q

trQ tr(Q∇β). (38)

Replacing (36) to (38) in (35), we obtain identity (32).

We recall that, if Q ∈∇H2
0, then σ(Q)ν = µQν + (λ+ µ) trQν is well-defined as a distribution in

H−
1
2 (Γ) and Green formula is satisfied,∫

Ω
divσ(Q) ·w +

∫
Ω
σ(Q) : ∇w =

〈
σ(Q)ν,w

〉
H−

1
2 ,H

1
2
, ∀w ∈H1(Ω), (39)

where 〈·, ·〉
H−

1
2 ,H

1
2
denotes the duality pairing betweenH− 1

2 (Γ) andH 1
2 (Γ). The next lemma improves

the regularity of σ(Q)ν when (w,Q) is a solution of (25) belonging to C([0, T ]; V) ∩C1([0, T ]; W) and
allows to define σ(Q)ν when (w,Q) is a mild solution of (25).

Lemma 3. With Ω of class C2, let (w0,Q0) ∈ V, (f ,F ) ∈ C1([0, T ]; W) and let (w,Q) ∈ C([0, T ]; V)∩
C1([0, T ]; W) be the corresponding solution of (25). Then, Qν ∈ L2(Σ), trQ ∈ L2(Σ) and there exists
a positive constant C = C(Ω, T ) such that∫

Σ

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
≤ C

(
‖(w0,Q0)‖2W + ‖(f ,F )‖2L1(0,T ;W)

)
. (40)

Moreover, we have σ(Q)ν ∈ L2(Σ) and∫
Σ
|σ(Q)ν|2 ≤ (λ+ 3µ)C

(
‖(w0,Q0)‖2W + ‖(f ,F )‖2L1(0,T ;W)

)
. (41)

Consequently, there is a unique bounded map

Λ : W× L1(0, T ; W)→ L2(Σ)

such that Λ((w0,Q0), (f ,F )) = σ(Q)ν when (w,Q) ∈ C([0, T ]; V) ∩ C1([0, T ]; W). Accordingly, we
denote σ(Q)ν = Λ((w0,Q0), (f ,F )) when (w,Q) is the mild solution of (25) associated with (w0,Q0) ∈
W and (f ,F ) ∈ L1(0, T ; W). In that case, estimate (41) still holds.
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Controllability of the linear elasticity as a first-order system

Proof. Due to the regularity of the boundary Γ, there exists a vector field β ∈ C1(Ω;Rn) such that
β = ν on Γ. Thus, with this choice of β, identity (32) implies∫

Σ

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
≤ C

(
(1 + T ) sup

t∈(0,T )
‖(w,Q)(·, t)‖2W + ‖(f ,F )‖2L1(0,T ;W)

)
.

We then apply estimate (27) to obtain (40). Besides, from (34), we know that (Qν) · ν = trQ on Σ. It
follows that∫

Σ
|σ(Q)ν|2 =

∫
Σ

∣∣∣µQν + (λ+ µ) trQν
∣∣∣2 =

∫
Σ

(
µ2|Qν|2 + (λ+ µ)2| trQ|2 + 2µ(λ+ µ) trQ (Qν) · ν

)
=
∫

Σ

(
µ2|Qν|2 + (λ+ 3µ)(λ+ µ)| trQ|2

)
≤ (λ+ 3µ)

∫
Σ

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
.

Remark 2. The above lemma can also be proved using the following Rellich-Nečas identities. If q,β ∈
C1(Ω;Rn) are two vector fields, we can check that

2 div((q · β)q)− div(|q|2β) = 2(q · β) div q − |q|2 divβ + 2(∇β q) · q

+ 2
(

(∇q q) · β − (∇q β) · q
)
.

Consequently, for Q ∈ C1(Ω;Mn(R)), we can adapt the previous identity to get

2 div(Q>(Qβ))− div(|Q|2β) = 2(Qβ) · divQ− |Q|2 divβ + 2(Q∇β) : Q

+ 2
(
β>∇Q> −∇Qβ

)
: Q.

Similarly, we show that

2 div((Qβ) trQ)− div(| trQ|2β) = 2(Qβ) · ∇ trQ− | trQ|2 divβ + 2 tr(Q∇β) trQ

+ 2
(

tr(β>∇Q>)− tr(∇Qβ)
)

trQ.

Finally, note that if Q ∈∇H2
0, we have β>∇Q> = ∇Qβ.

Lemma 4. We recall that Z0 is the set of mild solutions (w,Q) of (22), with (w0,Q0) ∈W. For any
T > T ?, there exists a constant Cobs > 0 such that

‖(w0,Q0)‖2W ≤ Cobs

∫
Σ0

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
, ∀(w,Q) ∈ Z0. (42)

The critical time T ? > 0 depends on Ω, Γ0 and (λ, µ). Besides, we have

‖(w0,Q0)‖2W ≤ µ−1Cobs

∫
Σ0

|σ(Q)ν|2, ∀(w,Q) ∈ Z0. (43)

Proof. To obtain (42), we use the observability inequality (5) associated with the adjoint system (4). Let
(w0,Q0) ∈ W. Then, there exists ϕ0 ∈ H1

0(Ω) such that Q0 = ∇ϕ0. We set ϕ1 = w0 and we define
(w,Q) = (ϕ′,∇ϕ), where ϕ is the solution of (4) associated with (ϕ0,ϕ1). If we apply the observability
inequality (5) to ϕ, we get that for T > T ?, the following estimate holds,

‖(w0,Q0)‖2W ≤ Cobs

∫
Σ0

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
.

Finally, it is easy to check that (w,Q) is the mild solution of (22) associated with (w0,Q0). Besides, it
follows from (34) that∫

Σ0

|σ(Q)ν|2 =
∫

Σ0

(
µ2|Qν|2 + (λ+ 3µ)(λ+ µ)| trQ|2

)
≥ µ

∫
Σ0

(
µ|Qν|2 + (λ+ µ)| trQ|2

)
.

8



Controllability of the linear elasticity as a first-order system

Proposition 1. We recall that Z is the set of mild solutions (w,Q) of (25), with (w0,Q0) ∈ W and
(f ,F ) ∈ L2(0, T ; W). For any T > T ?, there exists a positive constant C = C(Ω, T ) such that

‖(w0,Q0)‖2W ≤ C
(
‖σ(Q)ν‖2L2(Σ0) + ‖(f ,F )‖2L1(0,T ;W)

)
, ∀(w,Q) ∈ Z. (44)

Proof. We can split a solution (w,Q) ∈ Z as (w,Q) = (w1,Q1) + (w2,Q2), where (w1,Q1) solves (25)
with (f ,F ) = (0,0) and (w2,Q2) solves (25) with (w0,Q0) = (0,0). By Lemma 4 and Lemma 3, we
have respectively

‖(w0,Q0)‖2W ≤ µ−1Cobs‖σ(Q1)ν‖2L2(Σ0)

and
‖σ(Q2)ν‖2L2(Σ0) ≤ (λ+ 3µ)C‖(f ,F )‖2L1(0,T ;W).

We then get the result using ‖σ(Q1)ν‖2L2(Σ0) ≤ 2‖σ(Q)ν‖2L2(Σ0) + 2‖σ(Q2)ν‖2L2(Σ0).

Remark 3.

i) Since (w,Q) ∈ Z is a mild solution of (25) for some (w0,Q0) ∈W and (f ,F ) ∈ L2(0, T ; W), by
Lemma 3, the normal trace σ(Q)ν ∈ L2(Σ0) is well-defined.

ii) For any (w,Q) ∈ Z, there exists two unique pairs (w0,Q0) ∈ W and (f ,F ) ∈ L2(0, T ; W) such
that (w,Q) is the corresponding solution of (25). We then denoteM(w,Q) = (f ,F ). With this
notation, we have

Z0 =
{

(w,Q) ∈ Z; M(w,Q) = (0,0)
}
.

iii) Note that the generalized observability inequality (44) implies

‖(w0,Q0)‖2W ≤ C
(
‖σ(Q)ν‖2L2(Σ0) + ‖M(w,Q)‖2L2(0,T ;W)

)
, ∀(w,Q) ∈ Z. (45)

For any fixed η > 0, we endow Z with the inner product

〈
(w,Q), (w,Q)

〉
Z :=

∫
Σ0

(σ(Q)ν) · (σ(Q)ν) + η

∫ T

0

〈
M(w,Q),M(w,Q)

〉
W. (46)

We denote ‖ · ‖Z the associated norm.

Lemma 5. The space Z endowed with the inner product 〈·, ·〉Z is a Hilbert space.

Proof. We check that Z is closed with respect to the norm ‖ · ‖Z. Let {(wk,Qk)}k≥0 ⊂ Z be a sequence
converging to some (w,Q) for the norm ‖ · ‖Z. Then, M(wk,Qk) = (fk,F k) converges to some
(f ,F ) ∈ L2(0, T ; W) and the generalized observability inequality (45) implies that (w0

k,Q
0
k) converges

to some (w0,Q0) ∈ W. By the mapping properties of the semigroup which defines the mild solutions
of (25), we get that (wk,Qk) converges to the mild solution of (25) associated with (w0,Q0) and (f ,F ).
We therefore have (w,Q) ∈ Z.

3 Mixed formulation
Problem (30) is a constrained minimization problem in Z where the constraint is the equation solved by
(w,Q), i.e. M(w,Q) = (0,0). We take into account this constraint by introducing a Lagrange multiplier
(ζ,Θ) ∈ Λ := L2(0, T ; W). It leads to the following mixed formulation. Find

(
(w,Q), (ζ,Θ)

)
∈ Z×Λ

solution of

a
(
(w,Q), (w,Q)

)
+ b
(
(w,Q), (ζ,Θ)

)
= `(w,Q), ∀(w,Q) ∈ Z, (47a)

b
(
(w,Q), (ζ,Θ)

)
= 0, ∀(ζ,Θ) ∈ Λ, (47b)

where

a : Z× Z→ R, a
(
(w,Q), (w,Q)

)
:=
〈
σ(Q)ν,σ(Q)ν

〉
L2(Σ0), (48)

b : Z×Λ→ R, b
(
(w,Q), (ζ,Θ)

)
:=
〈
M(w,Q), (ζ,Θ)

〉
L2(0,T ;W), (49)

` : Z→ R, `(w,Q) :=
〈
(−u0,∇(−A0)−1u1), (w,Q)(·, 0)

〉
W. (50)
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Theorem 1. We have the following.

i) The mixed formulation (47) is well-posed.

ii) Let L : Z×Λ→ R be the Lagrangian defined by

L
(
(w,Q), (ζ,Θ)

)
:= 1

2a
(
(w,Q), (w,Q)

)
+ b
(
(w,Q), (ζ,Θ)

)
− `(w,Q). (51)

Then, the unique solution
(
(w,Q), (ζ,Θ)

)
∈ Z×Λ of (47) is solution to the saddle-point problem

sup
(ζ,Θ)∈Λ

inf
(w,Q)∈Z

L
(
(w,Q), (ζ,Θ)

)
.

iii) The solution (w,Q) of (47) is the minimum point of Ĵ ? over Z0. The Lagrange multiplier ζ is
the controlled solution of (1) in the sense of transposition associated to the control

h = σ(Q)ν
∣∣
Σ0
. (52)

Remark 4. We can also consider the augmented Lagrangian Lr, which is defined for any r = (r1, r2),
r1, r2 > 0, by

Lr
(
(w,Q), (ζ,Θ)

)
:= 1

2ar
(
(w,Q), (w,Q)

)
+ b
(
(w,Q), (ζ,Θ)

)
− `(w,Q), (53)

ar
(
(w,Q), (w,Q)

)
:= a

(
(w,Q), (w,Q)

)
+ r1

〈
M(w,Q),M(w,Q)

〉
L2(0,T ;W) (54)

+ r2
〈
Qν⊥,Qν⊥

〉
L2(Σ0).

Since ar
(
(w,Q), (w,Q)

)
= a

(
(w,Q), (w,Q)

)
for any (w,Q) ∈ Z0, the Lagragians L and Lr share the

same saddle point. Remark that the augmented term associated with r2 is zero. Nevertheless, we choose
to add here this term which will be useful for the numerical implementation. Indeed, we need to impose
Q ∈ ∇H1

0 for the numerical spaces. In dimension two, ν⊥ is any unit vector orthogonal to ν, hence if
the r2 is non zero, then this augmentation term impose that the tangent part of Q is close to zero.

Proof. i) In virtue of [3, Theorem 4.2.1], we have to check the following properties.
1) The bilinear forms a and b are continuous. It is obvious from the definition of ‖ · ‖Z.

2) The linear form ` is continuous. It is a direct consequence of the generalized observability inequal-
ity (45).

3) The form a is coercive on the kernel

N (b) :=
{

(w,Q) ∈ Z; b
(
(w,Q), (ζ,Θ)

)
= 0, ∀(ζ,Θ) ∈ Λ

}
.

It is clear from the definition of a. If (w,Q) ∈ N (b) = Z0, then a
(
(w,Q), (w,Q)

)
= ‖(w,Q)‖2Z.

4) The form b satisfies an inf-sup condition over Z×Λ. There exists a constant δ > 0 such that

inf
(ζ,Θ)∈Λ

sup
(w,Q)∈Z

b
(
(w,Q), (ζ,Θ)

)
‖(w,Q)‖Z‖(ζ,Θ)‖Λ

≥ δ. (55)

We fix (ζ̂, Θ̂) ∈ Λ and we consider the unique (ŵ, Q̂) ∈ Z such that M(ŵ, Q̂) = (ζ̂, Θ̂) and
(ŵ, Q̂)(·, 0) = (0,0). The trace inequality (41) implies

‖σ(Q̂)ν‖L2(Σ0) ≤ C‖(ζ̂, Θ̂)‖Λ = C‖M(ŵ, Q̂)‖Λ. (56)

We also have b
(
(ŵ, Q̂), (ζ̂, Θ̂)

)
= ‖(ζ̂, Θ̂)‖2Λ. Therefore,

sup
(w,Q)∈Z

b
(
(w,Q), (ζ̂, Θ̂)

)
‖(w,Q)‖Z‖(ζ̂, Θ̂)‖Λ

≥ ‖(ζ̂, Θ̂)‖Λ
‖(ŵ, Q̂)‖Z

= ‖M(ŵ, Q̂)‖Λ
‖(ŵ, Q̂)‖Z

= ‖M(ŵ, Q̂)‖Λ(
‖σ(Q̂)ν‖2

L2(Σ0) + η‖M(ŵ, Q̂)‖2Λ
) 1

2
≥ 1√

C2 + η
,

where the last inequality is a consequence of (56). Thus, inequality (55) holds with δ = (C2 +η)− 1
2 .

10



Controllability of the linear elasticity as a first-order system

ii) This property is due to the symmetry and positivity of a.
iii) If

(
(w,Q), (ζ,Θ)

)
∈ Z×Λ solves the mixed formulation (47), then equation (47b) impliesM(w,Q) =

(0,0). Therefore, (w,Q) ∈ Z0 and L
(
(w,Q), (ζ,Θ)

)
= Ĵ ?(w,Q).

Besides, equation (47a) holds for any (w,Q) ∈ Z. In particular, if choosing h given by (52), we have∫
Σ0

h · (σ(Q)ν) +
∫∫

Q

ζ · f =
〈
(−u0,∇(−A0)−1u1), (w,Q)(·, 0)

〉
W, (57)

for any (w,Q) ∈ Z such that M(w,Q) = (f ,0), with f ∈ L2(Q). Let (w,Q) ∈ Z with M(w,Q) =
(f ,0) for some f ∈ L2(Q). Then, it is easy to check that (w,Q) can be realized as (w,Q) = (ϕ′,∇ϕ),
where ϕ ∈ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)) is the unique weak solution of

ϕ′′ − µ∆ϕ− (λ+ µ)∇ divϕ = f in Q,
ϕ = 0 on Σ,

(ϕ,ϕ′)(·, T ) = (0,0) in Ω.
(58)

Hence, the formulation (57) is equivalent to∫
Σ0

h ·
(
µ
∂ϕ

∂ν
+ (λ+ µ) divϕν

)
+
∫∫

Q

ζ ·
(
ϕ′′ − µ∆ϕ− (λ+ µ)∇divϕ

)
=

−
〈
u0,ϕ′(·, 0)

〉
L2(Ω) +

〈
u1,ϕ(·, 0)

〉
H−1,H1

0
,

for any solution ϕ of (58), with f ∈ L2(Q). It means that ζ is a transposition solution of (1), so ζ is
the controlled state associated with the initial datum (u0,u1) and the control h.

4 Stabilized mixed formulation
In this section, we introduce a stabilized mixed formulation equivalent to (47). This stabilization adds
some uniform coercivity with respect to the multiplier variable, which allows to bypass the Babuška-
Brezzi inf-sup condition. We define the Hilbert space

Ξ :=
{

(ζ,Θ) ∈ C([0, T ]; W) mild solution of (60) associated with

(ζ0,Θ0) ∈W, h ∈ L2(Σ0), (g,G) ∈ L2(0, T ; W)
}
.

(59)

For (ζ0,Θ0) ∈ W, h ∈ L2(Σ0) and (g,G) ∈ L2(0, T ; W), we say that (ζ,Θ) ∈ C([0, T ]; W) is a mild
solution of

M(ζ,Θ) = (g,G) in Q,
ζ = h on Σ0,

ζ = 0 on Σ \ Σ0,

(ζ,Θ)(·, 0) = (ζ0,Θ0) in Ω,

(60)

if
(ζ,Θ)(·, t) = Tt(ζ0,Θ0) +

∫ t

0
Tt−sBh(·, s) ds+

∫ t

0
Tt−s(g,G)(·, s) ds, ∀t ∈ [0, T ], (61)

where B : L2(Γ0)→ V′ is defined by transposition〈
Bh, (w,Q)

〉
V′,V = −

〈
h,σ(Q)ν

〉
L2(Γ0), ∀(w,Q) ∈ V.

The space Ξ is endowed with the norm given by the following inner product,〈
(ζ,Θ), (ζ,Θ)

〉
Ξ :=

〈
ζ, ζ

〉
L2(Σ0) +

〈
M(ζ,Θ),M(ζ,Θ)

〉
L2(0,T ;W)

+
〈
(ζ,Θ)(·, 0), (ζ,Θ)(·, 0)

〉
W +

〈
(ζ,Θ)(·, T ), (ζ,Θ)(·, T )

〉
W.

(62)

Let r = (r1, r2), r1, r2 > 0, and α = (α1, α2, α3, α4), α1 ∈ (0, 1), α2, α3, α4 > 0. We want to find(
(w,Q), (ζ,Θ)

)
∈ Z×Ξ such that

ar,α
(
(w,Q), (w,Q)

)
+ bα

(
(w,Q), (ζ,Θ)

)
= `(w,Q), ∀(w,Q) ∈ Z, (63a)

bα
(
(w,Q), (ζ,Θ)

)
− cα

(
(ζ,Θ), (ζ,Θ)

)
= dα(ζ,Θ), ∀(ζ,Θ) ∈ Ξ, (63b)
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where ar,α : Z× Z→ R, bα : Z×Ξ→ R, cα : Ξ×Ξ→ R and dα : Ξ→ R are defined by

ar,α
(
(w,Q), (w,Q)

)
:= ar

(
(w,Q), (w,Q)

)
− α1

〈
σ(Q)ν,σ(Q)ν

〉
L2(Σ0), (64)

bα
(
(w,Q), (ζ,Θ)

)
:= b

(
(w,Q), (ζ,Θ)

)
+ α1

〈
σ(Q)ν, ζ

〉
L2(Σ0), (65)

cα
(
(ζ,Θ), (ζ,Θ)

)
:= α1

〈
ζ, ζ

〉
L2(Σ0) + α2

〈
M(ζ,Θ),M(ζ,Θ)

〉
L2(0,T ;W) (66)

+ α3
〈
(ζ,Θ)(·, 0), (ζ,Θ)(·, 0)

〉
W + α4

〈
(ζ,Θ)(·, T ), (ζ,Θ)(·, T )

〉
W,

dα(ζ,Θ) := α3
〈
(−u0,∇(−A0)−1u1), (ζ,Θ)(·, 0)

〉
W. (67)

In view of [3, Remark 4.3.1], if
(
(w,Q), (ζ,Θ)

)
∈ Z×Ξ solves (63), then it is solution to the saddle-point

problem
inf

(w,Q)∈Z
sup

(ζ,Θ)∈Ξ
Lr,α

(
(w,Q), (ζ,Θ)

)
,

with the Lagrangian Lr,α : Z×Ξ→ R given by

Lr,α
(
(w,Q), (ζ,Θ)

)
= Lr

(
(w,Q), (ζ,Θ)

)
− α1

2 ‖σ(Q)ν − ζ‖2L2(Σ0) −
α2

2 ‖M(ζ,Θ)‖2L2(0,T ;W)

− α3

2 ‖(u
0,−∇(−A0)−1u1)− (ζ,Θ)(·, 0)‖2W −

α4

2 ‖(ζ,Θ)(·, T )‖2W

= 1
2ar,α

(
(w,Q), (w,Q)

)
+ bα

(
(w,Q), (ζ,Θ)

)
− 1

2cα
(
(ζ,Θ), (ζ,Θ)

)
− `(w,Q)− dα(ζ,Θ),

where Lr is the augmented Lagrangian defined in (53).
Remark 5. Using integration by parts, we could find an alternative expression for bα. For (w,Q) ∈ Z
and (ζ,Θ) ∈ Ξ, we have

bα
(
(w,Q), (ζ,Θ)

)
= −

〈
(w,Q),M(ζ,Θ)

〉
L2(0,T ;W) − (1− α1)

〈
σ(Q)ν, ζ

〉
L2(Σ0)

−
〈
(w,Q)(·, 0), (ζ,Θ)(·, 0)

〉
W +

〈
(w,Q)(·, T ), (ζ,Θ)(·, T )

〉
W.

This expression may be useful for the numerical simulations. This idea is similar to the partitioned finite
elements methods (see, for instance, [6, 20]).

Theorem 2. For any r = (r1, r2), r1, r2 > 0, and any α = (α1, α2, α3, α4), α1 ∈ (0, 1), α2, α3, α4 > 0,
the stabilized mixed formulation (63) is well-posed.

Proof. From [3, Proposition 4.2.1], it is a straightforward consequence of the boundedness of ar,α, bα,
cα, dα and `, as well as the coercivity of ar,α and cα on Z and Ξ respectively.

Proposition 2. The solution of the mixed formulation (47) and the solution of the stabilized mixed
formulation (63) coincide.

Proof. For any r = (r1, r2), r1, r2 > 0, and any α = (α1, α2, α3, α4), α1 ∈ (0, 1), α2, α3, α4 > 0, we check
that the saddle point

(
(wr,Qr), (ζr,Θr)

)
∈ Z×Λ of Lr is also a saddle point of Lr,α. We observe that,

by Theorem 1, ζr is a controlled solution of (1), in the sens of the transposition, with initial datum in W
and boundary control in L2(Σ0). Thus,

(
(wr,Qr), (ζr,Θr)

)
∈ Z×Ξ. Besides, since

(
(wr,Qr), (ζr,Θr)

)
solves the augmented formulation associated with (47), for any (ζ,Θ) ∈ Ξ, we have

Lr,α
(
(wr,Qr), (ζ,Θ)

)
≤ Lr

(
(wr,Qr), (ζ,Θ)

)
≤ Lr

(
(wr,Qr), (ζr,Θr)

)
= Lr,α

(
(wr,Qr), (ζr,Θr)

)
.

Therefore, (ζr,Θr) maximizes (ζ,Θ) 7→ Lr,α
(
(wr,Qr), (ζ,Θ)

)
. Conversely, the functional F : Z → R

given by F (w,Q) = Lr,α
(
(w,Q), (ζr,Θr)

)
admits a unique extremal point due to the ellipticity of ar,α.

Moreover, for any (w,Q), (w,Q) ∈ Z, we have

d
dεF

(
(w,Q) + ε(w,Q)

)∣∣∣
ε=0

= ar
(
(w,Q), (w,Q)

)
+ b
(
(w,Q), (ζr,Θr)

)
− `(w,Q)

− α1
〈
σ(Q)ν − ζr,σ(Q)ν

〉
L2(Σ0).
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Therefore, from (47), we get

d
dεF

(
(wr,Qr) + ε(w,Q)

)∣∣∣
ε=0

= 0, ∀(w,Q) ∈ Z.

Thus, (wr,Qr) minimizes (w,Q) 7→ Lr,α
(
(w,Q), (ζr,Θr)

)
. Consequently, the pair

(
(wr,Qr), (ζr,Θr)

)
is also a saddle point of Lr,α. The result follows from the uniqueness of the saddle point.

5 Dual extremal problem
Here, we derive an extremal problem which is dual to (30) and only involves the variable (ζ,Θ). For
r = (r1, r2) and α = (α1, α2, α3, α4), we define the linear operator Ar,α : Ξ → Ξ in the following way.
For any (ζ,Θ) ∈ Ξ, Ar,α(ζ,Θ) ∈ Ξ is the unique solution of〈

Ar,α(ζ,Θ), (ζ,Θ)
〉
Ξ = bα

(
(w,Q), (ζ,Θ)

)
+ cα

(
(ζ,Θ), (ζ,Θ)

)
, ∀(ζ,Θ) ∈ Ξ, (68)

where (w,Q) ∈ Z is the unique solution of

ar,α
(
(w,Q), (w,Q)

)
= bα

(
(w,Q), (ζ,Θ)

)
, ∀(w,Q) ∈ Z. (69)

The conditions r1, r2 > 0 and α1 < 1 imply that the augmented bilinear form ar,α is coercive on Z,
hence (69) has a unique solution.

Lemma 6. The operator Ar,α is a strongly elliptic, symmetric isomorphism from Ξ onto Ξ.

Proof. For simplicity, we take η = r1
1−α1

in (46). Since ar,α satisfies the coercivity estimate

ar,α
(
(w,Q), (w,Q)

)
≥ (1− α1)‖(w,Q)‖2Z, ∀(w,Q) ∈ Z,

then the Lax-Milgram lemma implies that for (ζ,Θ) ∈ Ξ, the corresponding solution (w,Q) ∈ Z of (69)
satisfies

‖(w,Q)‖Z ≤
‖bα‖

1− α1
‖(ζ,Θ)‖Ξ.

Therefore, taking (ζ,Θ) = Ar,α(ζ,Θ) in (68) leads to

‖Ar,α(ζ,Θ)‖Ξ ≤
(
‖bα‖2

1− α1
+ ‖cα‖

)
‖(ζ,Θ)‖Ξ,

which gives the boundedness of Ar,α. Let (ζ,Θ), (ζ,Θ) ∈ Ξ and denote respectively (w,Q) ∈ Z and
(w,Q) ∈ Z the corresponding solutions of (69). Then, from (68), we have〈

Ar,α(ζ,Θ), (ζ,Θ)
〉
Ξ = ar,α

(
(w,Q), (w,Q)

)
+ cα

(
(ζ,Θ), (ζ,Θ)

)
, (70)

which implies the positivity and symmetry of Ar,α. Besides, from the coercivity of cα, there exists C > 0
such that, for any (ζ,Θ) ∈ Ξ,〈

Ar,α(ζ,Θ), (ζ,Θ)
〉
Ξ ≥ cα

(
(ζ,Θ), (ζ,Θ)

)
≥ C‖(ζ,Θ)‖2Ξ.

The ellipticity of Ar,α allows to introduce a coercive functional Ĵ ?? in the next lemma.

Lemma 7. For any r = (r1, r2), r1, r2 > 0, let (w0,Q0) ∈ Z be the unique solution of

ar,α
(
(w0,Q0), (w,Q)

)
= `(w,Q), ∀(w,Q) ∈ Z. (71)

Let also Ĵ ?? : Ξ→ R be the functional defined by

Ĵ ??(ζ,Θ) = 1
2
〈
Ar,α(ζ,Θ), (ζ,Θ)

〉
Ξ − bα

(
(w0,Q0), (ζ,Θ)

)
+ dα(ζ,Θ).

Then, the following equality holds,

sup
(ζ,Θ)∈Ξ

inf
(w,Q)∈Z

Lr,α
(
(w,Q), (ζ,Θ)

)
= − inf

(ζ,Θ)∈Ξ
Ĵ ??(ζ,Θ) + Lr,α

(
(w0,Q0), (0,0)

)
.

13



Controllability of the linear elasticity as a first-order system

Proof. For any (ζ,Θ) ∈ Ξ, let (w?,Q?) ∈ Z be the minimum point of (w,Q) 7→ Lr,α
(
(w,Q), (ζ,Θ)

)
.

Thus, (w?,Q?) satisfies the equation

ar,α
(
(w?,Q?), (w,Q)

)
+ bα

(
(w,Q), (ζ,Θ)

)
= `(w,Q), ∀(w,Q) ∈ Z,

and can be decomposed as (w?,Q?) = (w0,Q0)− (w̃, Q̃), where (w̃, Q̃) ∈ Z solves

ar,α
(
(w̃, Q̃), (w,Q)

)
= bα

(
(w,Q), (ζ,Θ)

)
, ∀(w,Q) ∈ Z.

We then have

inf
(w,Q)∈Z

Lr,α
(
(w,Q), (ζ,Θ)

)
= Lr,α

(
(w?,Q?), (ζ,Θ)

)
= Lr,α

(
(w0,Q0)− (w̃, Q̃), (ζ,Θ)

)
:= X1 +X2 +X3 +X4,

with 

X1 = 1
2ar,α

(
(w̃, Q̃), (w̃, Q̃)

)
− bα

(
(w̃, Q̃), (ζ,Θ)

)
− 1

2cα
(
(ζ,Θ), (ζ,Θ)

)
,

X2 = bα
(
(w0,Q0), (ζ,Θ)

)
− dα(ζ,Θ),

X3 = 1
2ar,α

(
(w0,Q0), (w0,Q0)

)
− `(w0,Q0),

X4 = −ar,α
(
(w0,Q0), (w̃, Q̃)

)
+ `(w̃, Q̃).

From the definition of (w0,Q0), we have X4 = 0 and X3 = Lr,α
(
(w0,Q0), (0,0)

)
. Finally, the definition

of (w̃, Q̃) implies

X1 = −1
2bα

(
(w̃, Q̃), (ζ,Θ)

)
− 1

2cα
(
(ζ,Θ), (ζ,Θ)

)
= −1

2
〈
Ar,α(ζ,Θ), (ζ,Θ)

〉
Ξ

and the result follows.

From the ellipticity of the operator Ar,α, the minimization of Ĵ ?? in Z is well-posed. We observe
that, in contrast with the initial problem of finding the control of minimal L2-norm, the minimization of
Ĵ ?? in Z does not entail any constraint.

Due to the symmetry and ellipticity of the operator Ar,α, the conjugate gradient method is well-suited
for the numerical minimization of Ĵ ??. The Polak-Ribière version of the conjugate gradient method reads
as follows. For a given convergence criterion ε > 0, we follow the steps in Algorithm 1.

6 Numerical approximation and simulations
In this section, we numerically illustrate the proposed method for the approximation of the control and
the controlled solution for the two-dimensional wave equation and for the two-dimensional elasticity
system. More precisely, we put in place the procedure described in Section 5 by considering a conformal
finite elements approximation of the spaces Z, Ξ and of the operators Ar,α,M, together with the inner
products of these spaces. In that purpose, we consider uniform triangulations Th (structured or not)
of the domain Q. For such each triangulation, we denote by h > 0 the largest diameter of tetrahedra
composing Th. Two examples of domains Q and the associated meshes are displayed in Figure 1.

We define Ξh ⊂ Ξ as follows:

Ξh =
{

(ζh,Θh) ∈ Ξ; ζ =
(
ζh,1
ζh,2

)
, Θ =

(
Θh,11 Θh,12
Θh,21 Θh,22

)
,

ζh,i|K , Θh,ij |K ∈ P1 for every K ∈ Th and i, j ∈ {1, 2}
}
, (72)

with P1 being the space of polynomials of variables (x, y) and of degree less than 1. Algorithm 1 easily
adapts to this finite dimensional framework considering finite elements approximations of operators
Ar,α, M and of the inner product over Ξ. The implementation of this algorithm was done using
FreeFEM [13]. If it is not specified otherwise, we choose the augmentation parameters r1 = r2 = 10−1

and the stabilization parameters α1 = α2 = α3 = α4 = 10−3. Remark that the control h can be obtained
in two different manners. On the one hand, since ζ correspond to the controlled state of the system (1),
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Algorithm 1 Conjugate algorithm for iteratively solving (70)

1) Initialization. We choose an initial candidate (ζ0,Θ0) ∈ Ξ.
We compute (w0,Q0) ∈ Z solution of

ar,α
(
(w0,Q0), (w,Q)

)
= bα

(
(w,Q), (ζ0,Θ0)

)
− `(w,Q), ∀(w,Q) ∈ Z.

We compute (g0,G0) ∈ Ξ solution of〈
(g0,G0), (ζ,Θ)

〉
Ξ = bα

(
(w0,Q0), (ζ,Θ)

)
+ cα

(
(ζ0,Θ0), (ζ,Θ)

)
+ dα(ζ,Θ), ∀(ζ,Θ) ∈ Ξ.

We set (v0,P 0) = (g0,G0).

2) Iteration. For n ≥ 0, we compute (w̃n, Q̃n) ∈ Z solution of

ar,α
(
(w̃n, Q̃n), (w,Q)

)
= bα

(
(w,Q), (vn,P n)

)
, ∀(w,Q) ∈ Z.

We compute Ar,α(vn,P n) ∈ Ξ solution of〈
Ar,α(vn,P n), (ζ,Θ)

〉
Ξ = bα

(
(w̃n, Q̃n), (ζ,Θ)

)
+ cα

(
(vn,P n), (ζ,Θ)

)
, ∀(ζ,Θ) ∈ Ξ.

We compute

αn = ‖(gn,Gn)‖2Ξ〈
Ar,α(vn,P n), (vn,P n)

〉
Ξ

and we update

(ζn+1,Θn+1) = (ζn,Θn)− αn(vn,P n), (wn+1,Qn+1) = (wn,Qn)− αn(w̃n, Q̃n),

(gn+1,Gn+1) = (gn,Gn)− αnAr,α(vn,P n).

3) Convergence test. If ‖(gn+1,Gn+1)‖Ξ ≤ ε‖(g0,G0)‖Ξ, we stop and set (ζn,Θn) as the approxi-
mation of the minimum point of Ĵ ??. Else, we compute

βn =
〈
(gn+1,Gn+1), (gn+1,Gn+1)− (gn,Gn)

〉
Ξ

‖(gn,Gn)‖2Ξ

and we update
(vn+1,P n+1) = (gn+1,Gn+1) + βn(vn,P n).

Do n← n+ 1 and return to step 2).

we have h = ζ|Σ0 . On the other hand, we can compute h using the dual variables (w,Q) and the
relation (52).

As a first step for the validation of the proposed method, we employ Algorithm 1 for the approximation
of the boundary control and the corresponding controlled state for a two-dimensional wave equation.
Indeed, choosing µ = 1 and λ = −µ, system (1) is nothing else than two independent wave equations
with constant coefficients in dimension two. The boundary controllability of two-dimensional wave
equations was firstly considered from a numerical perspective in [11, 12]. An example of initial data
and the corresponding boundary control of minimal L2-norm are explicitly given in this paper. The
numerical experiments corresponding to the domain Ω = (0, 1)2 and to the initial data in [12, 10] for
which the boundary control is explicitly known are presented in Subsection 6.1.

Once the method validated for the boundary controllability of the two-dimensional wave equation,
numerical experiments were conducted for the elasticity system in dimension two. More exactly, we set
µ = λ = 1. We numerically illustrate this situation in Subsection 6.2 for two different geometries of Ω:
the unit square and the non-convex domain represented in Figure 1 (b).
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Figure 1: Domains Q and associated meshes. (a) A structured mesh of Q = (0, 1)2 × (0, T ). (b) An
example of non-convex domain Ω and (c) a mesh of Q = Ω× (0, T ) associated to this domain.

6.1 Two dimensional wave equation
In this subsection, we set Ω = (0, 1)2 the unit square with the control acting on its whole boundary
(Γ0 = Γ). We consider the initial data constructed in [11, 12] using Fourier series. For this initial data,
displayed in Figure 2, and for T = 1√

2

(
3 + 3

4
)
the boundary control can be explicitly computed (see [12]

for details).

u0 u1

Figure 2: Initial data (u0, u1) constructed in [12].

Remark that by taking µ = −λ, system (1) is composed by two independent wave equations. There-
fore, we can drop the second equation and also dim(Ξh) is smaller.

We consider five levels of meshes described in Table 1. The coarsest of these meshes is depicted in
Figure 1 (a).

Mesh number 1 2 3 4 5
Diameter h of elements 1

10
1
20

1
30

1
40

1
50

Number of nodes 3 267 23 814 76 880 179 867 345 933
Number of tetrahedra 15 600 127 200 426 600 1 017 600 1 980 000

Table 1: Description of five meshes of the domain Q = (0, 1)2 × (0, T ).

In Figure 3 (a), we illustrate the evolution of the norm of the residuals ‖(gn,Gn)‖Ξ appearing in
Algorithm 1. Here and henceforth, we fixed the value of the stopping criterion parameter in the conjugate
gradient algorithm Algorithm 1 to ε = 10−10. In Figure 3 (b), we display the norm of the boundary
control obtained from (ζn,Θn) once the conjugate gradient algorithm has converged.
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Figure 3: Results for initial data (u0, u1) displayed in Figure 2. (a) Evolution of the norm résiduals
(gn,Gn). (b) Norm L2 of the control h(t).

In Figure 4 we display the evolution of the norm of the L2 error between the exact control (explictly
known) and the numerical controls computed from dual and primal variables for two different choices
of stabilization parameter αi. Analyzing these results, we observe a convergence of order h0.5 for the
numerical controls to the explicit control, for the controls obtained from both the primal and dual
variables when αi = 10−1. For an augmentation parameter αi = 10−3 we observe a better convergence (of
order h) for the control computed from the primal variable. The same order of convergence is observed for
large values of h when the control is computed from the dual variable, but the approximation is affected
by a numerical locking phenomenon at 0.02 which is probably due to the values of the stabilization
parameters which are not large enough. A more involved study will be needed for finding the optimal
values of these parameters.

We also remark that the number of iterations needed for the convergence of the conjugate gradient
algorithm remains stable with respect to the discretization parameter h. Nevertheless, as expected, for
smaller values of augmentation and stabilization parameters a higher number of iterations is need for
converge of the conjugate gradient algorithm described in Algorithm 1. In Figure 5, we display the
solution (ζn,Θn) obtained once the Algorithm 1 has converged.

Similar results are obtained for different choices of parameter r = (r1, r2) and α = (α1, α2, α3, α4).

10−12× 10−2 3× 10−2 4× 10−2 6× 10−2

Mesh diameter h

10−1

100

N
or

m
of

th
e

er
ro

r

1

1

αi = 10−1, primal

αi = 10−1, dual

αi = 10−3, primal

αi = 10−3, dual

Figure 4: Norm of the error between the exact and numerical controls for different values of h and two
different values of α1.

Another interesting illustration (see Figure 6 (a)) is the evolution with respect to the time of the
norm of the primal and dual solutions (ζ,Θ) and (w,Q), respectively. As expected, the energy norm of

17



Controllability of the linear elasticity as a first-order system

(a) (b) (c)

Figure 5: Solution (ζn,Θn) obtained once the conjugate algorithm converged for the mesh 5. (a) ζn.
(b) Θn,1. (c) Θn,2.

the primal variable goes to zero when the time is close to the control time T and the energy norm of the
dual variable is conserved in time.

6.2 Elasticity system
In this subsection, we illustrate the approximation of the boundary control for the two-dimensional
elasticity system (µ = λ = 1) for two different domain geometries. In the first case, we consider Ω the
unit square and in the second one Ω is a non convex domain with regular boundary.

6.2.1 Control acting on the whole boundary Γ of Ω = (0, 1)2

For simplicity, we consider here the same geometric situation as in Section 6.1: Ω = (0, 1)2, T = 1√
2

(
3+ 3

4
)

and the initial datum (u0,u1) ∈ L2(Ω)×H−1(Ω) given by

u0 = (u0, u0)>, u1 = (u1, u1)>, (73)

with u0 and u1 depicted in Figure 2. The conjugate gradient algorithm converges for every mesh in less
than 200 iterations for an norm of the residuals smaller than ε = 10−10. The norm L2(Ω) of the controls
h(t) is depicted in Figure 7 for all the five levels of mesh considered here. In the left column of this
figure we display the evolution of the norm of the controls computed as the boundary trace of ζn for
α1 = 10−3 (top) and α1 = 0.9 (bottom). The norm of theses controls are very similar for both values of
the parameter α1. On the right side of the figure we depict the norm of the control computed from Qn

using (52) for the same values of α1 as before. In that case we observe that for α1 = 10−3 the control
has some extra oscillations near t = 0 and t = T . As expected, for values of α1 close to 1, the controls
obtained from the primal variable ζ are very close to the controls obtained from the dual variable Q.
Similarly to the wave equation, the controls seem to converge with respect to the discretization parameter
h. In Figure 6 (b) we also observe a very similar comportment to the wave equation for the evolution in
time of the norms of primal and dual variables.

The six components of the solution (ζn,Θn) obtained once the Algorithm 1 has converged for the
finest mesh in Table 1 are graphically represented in Figure 8.

6.2.2 Control acting on a part of the regular boundary of a non-convex Ω

In this subsection we consider the non-convex domain Ω graphically represented in Figure 1 (b). The
control acts only on the exterior boundary Γ0 of Ω.

For this choice of Ω, we consider a control time T = 3 and the initial data (u0,u1) ∈ L2(Ω)×H−1(Ω)
given by

u0 = u1 solution to
{
−∆u0 = 100 in Ω,
u0 = 0 on Γ. (74)
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Figure 6: Evolution with respect to the time t of the norms of primal and dual solutions for: (a) the
wave equation; (b) the elasticity system and the initial data in Figure 2.
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Figure 7: Norm of the control h for the five meshes described in Table 1 computed from (ζn,Θn) (left)
and from (wn,Qn) (right), for α1 = 10−3 (up) and α1 = 9× 10−1 (bottom), respectively.

Mesh number 1 2 3 4 5
Diameter h of elements 1

10
1
20

1
30

1
40

1
50

Number of nodes 4 557 29 707 99 094 212 234 406 945
Number of tetrahedra 21 510 155 700 515 080 1 185 760 2 303 550

Table 2: Description of five meshes of the domain Q = Ω× (0, T ) for Ω displayed in Figure 1 (b).

We consider five levels of meshes described in Table 2. The coarsest of these meshes is plotted in
Figure 1 (c).

For the set of simulations corresponding to this non-convex domain and initial data given by (74)
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(a) (b) (c)

(d) (e) (f)

Figure 8: The six components of the solution for the initial datum in Figure 2 and the finest mesh in
Table 1. a) ζn,1. (b) Θn,11. (c) Θn,12. (d) ζn,2. (e) Θn,21. (f) Θn,22.

we fixed α1 = 0.9 and we consider α2 ∈ {10−3, 10−2, 10−1}. The parameter α2 enforce that the primal
variable verifies the controlled elasticity system in L2(0, T ; W).
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Figure 9: Norm of the control for initial data given by (74). (a) α2 = 10−3 and different meshes. (b)
Computation on the mesh ]5 and different values for α2.

The norm of the control for α2 = 10−3 and the five meshes described in Table 2 is displayed in
Figure 9 (a). As expected we observe the convergence of the controls with respect to the discretization
parameter h. In Figure 9 (b) we illustrate the norm of the control computed on the finest mesh in Table 2
for three different values of α2. As expected, for larger values of α2 the primal solution ζ is more regular
and the corresponding control is closer to zero near the control time T .
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7 Conclusion and perspectives
This paper studied the boundary null controllability of the elasticity system reformulated as a first order
in time and space system. We also proposed a constructive method to compute the boundary control of
minimal L2-norm for the elasticity system as the solution of a stabilized mixed formulation. Although
the numerical computation of the control remains extremely challenging for the elasticity system, the
proposed method was numerically implemented and the obtained results are very promising. The facts
that we considered a first order system in space and time combined to the very careful augmentation and
stabilization of the mixed formulation were essential for the numerical implementation. More exactly, we
are able to successfully solve the mixed formulation by approaching it using only P1 finite elements and
by the means of a conjugate gradient algorithm. Nevertheless, several difficulties remain and in what
follows we propose some perspectives to tackle them.

As for all space-time methods, the main numerical difficulty was related to the high dimension
of discrete system to solve. Indeed, the time appears as a third dimension for a system being two-
dimensional in space. Even using a parallel solver for the linear systems to solve in the gradient descent
algorithm, this was not enough for very refined meshes. In a further work, we will investigate the
possibility to iteratively solve the mixed formulation characterizing the control and the controlled solution
by a domain decomposition technique combined to a conjugate gradient method. This will allow to fully
parallelize the method and not only the resolution of the involved linear systems as it is actually the
case.

Another delicate question is the choice of the values for the augmentation parameters (ri)1≤i≤2 and for
the stabilization parameters (αi)1≤i≤4. For larger values of these parameters we need less iterations for
the conjugate gradient algorithm convergence but the errors are bigger. For smaller values of parameters
we need a larger number of iterations for the conjugate gradient algorithm and the convergence of
control seems better. A more involved numerically study is needed in order to numerically investigate
the dependence of the inf-sup constant associated to the mixed formulation to these parameters. We
will consider this question in a further work.

A Operator A is the generator of a group of contractions
The following lemma states that the operator A given by (24) generates a group of contractions.

Lemma 8. The operator A : V → W defined by (24) is the infinitesimal generator of a C0-group of
contractions (Tt)t∈R on W.

Proof. It is sufficient to apply the Hille-Yosida theorem to the operators A and −A. We verify the
hypotheses of this theorem for A, the situation being very similar for −A. More precisely, we should
check that (0,+∞) ⊂ ρ(A) and that, for every ξ > 0, the corresponding resolvent operator verifies
‖(ξ Id −A)−1‖ ≤ ξ−1.

Let ξ > 0 and (f ,F ) ∈ W. In order to show that ξ ∈ ρ(A), we should find (w,Q) ∈ V such that
(ξ Id −A)(w,Q) = (f ,F ). This equation is equivalent to

ξw − µdivQ− (λ+ µ)∇ trQ = f , (75a)
ξQ−∇w = F . (75b)

From (75b), we express Q as a function of w. Replacing in (75a), we obtain

ξw − ξ−1µ∆w − ξ−1(λ+ µ)∇ divw = f + ξ−1µdivF + ξ−1(λ+ µ)∇ trF ,

which can be written in variational form as: find w ∈H1
0(Ω) such that, for every w ∈H1

0(Ω),

ξ

∫
Ω
w ·w + ξ−1µ

∫
Ω

∇w : ∇w + ξ−1(λ+ µ)
∫

Ω
divw divw =

∫
Ω
f ·w − ξ−1µ

∫
Ω
F : ∇w

−ξ−1(λ+ µ)
∫

Ω
trF divw. (76)

Using the Lax-Milgram theorem, the above equation admits a unique weak solution w ∈H1
0(Ω). Then,

we recover Q = ξ−1(∇w + F ) ∈∇H1
0. From this expression for Q, we deduce∫

Ω
Q : ∇w = ξ−1

∫
Ω

(∇w + F ) : ∇w and trQ = ξ−1(divw + trF ).
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Together with (76), it implies that, for every w ∈H1
0(Ω),

µ

∫
Ω
Q : ∇w + (λ+ µ)

∫
Ω

trQdivw =
∫

Ω
(f − ξw) ·w.

Let ϕ ∈H1
0(Ω) such that Q = ∇ϕ, from the previous variational formulation, we see that

ϕ = A−1
0 (f − ξw).

Therefore, since f − ξw ∈ L2(Ω), we have ϕ ∈ H2(Ω) ∩H1
0(Ω) and Q ∈ ∇H2

0. Finally, ξ ∈ ρ(A) and
we obtain (0,+∞) ⊂ ρ(A).

In order to prove the estimate for the norm of the resolvent operator (ξ Id − A)−1, from (75), we
easily get

ξ

∫
Ω
|w|2 − µ

∫
Ω

divQ ·w − (λ+ µ)
∫

Ω
∇ trQ ·w =

∫
Ω
f ·w,

ξ

∫
Ω
|Q|2 −

∫
Ω

∇w : Q =
∫

Ω
F : Q.

Integrating by parts and summing the above two relations, we obtain

ξ

∫
Ω
|w|2 + ξ

∫
Ω
|Q|2 + (µ− 1)

∫
Ω
Q : ∇w + (λ+ µ)

∫
Ω

trQdivw =
∫

Ω
f ·w +

∫
Ω
F : Q. (77)

From (75b), we can equivalently write that

∇w = ξQ− F and divw = ξ trQ− trF .

Replacing in (77), it follows that

ξ

∫
Ω
|w|2 + ξ

∫
Ω
|Q|2 + (µ− 1)

∫
Ω
Q : (ξQ− F ) + (λ+ µ)

∫
Ω

trQ(ξ trQ− trF ) =
∫

Ω
f ·w +

∫
Ω
F : Q.

Therefore, we have

ξ

∫
Ω
|w|2 + ξµ

∫
Ω
|Q|2 + ξ(λ+ µ)

∫
Ω
| trQ|2 =

∫
Ω
f ·w + µ

∫
Ω
F : Q+ (λ+ µ)

∫
Ω

trF trQ.

Finally, applying the Cauchy-Schwarz inequality, we get that

ξ‖(w,Q)‖W ≤ ‖(f ,F )‖W and ‖(ξ Id −A)−1‖L(W) ≤ ξ−1,

which concludes the proof of the lemma.
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