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Homogenization of a class of singular elliptic

problems in two-component domains

Federica Raimondi

Univ. Lille, Inria, CNRS, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille, France

E-mail: federica.raimondi@inria.fr

Abstract. This paper deals with the homogenization of a quasilinear elliptic problem having a singular lower order term and
posed in a two-component domain with an ε-periodic imperfect interface. We prescribe a Dirichlet condition on the exterior
boundary, while we assume that the continuous heat flux is proportional to the jump of the solution on the interface via a
function of order εγ .

We prove an homogenization result for −1 < γ < 1 by means of the periodic unfolding method (see SIAM J. Math. Anal.
40 (2008) 1585–1620 and The Periodic Unfolding Method (2018) Springer), adapted to two-component domains in (J. Math.
Sci. 176 (2011) 891–927).

One of the main tools in the homogenization process is a convergence result for a suitable auxiliary linear problem, associated
with the weak limit of the sequence {uε} of the solutions, as ε → 0. More precisely, our result shows that the gradient of uε

behaves like that of the solution of the auxiliary problem, which allows us to pass to the limit in the quasilinear term, and to
study the singular term near its singularity, via an accurate a priori estimate.

Keywords: Two-component domains, Homogenization, Periodic Unfolding Method, Quasilinear elliptic equations, Singular
equations

1. Introduction

In this paper we study the asymptotic behavior of a class of quasilinear elliptic problems presenting
singular lower order terms and posed in two-component domains.

More precisely, the two-component domain � is a bounded open subset of RN which is the union of
two disjoint open subsets, �ε1 and �ε1, and their common boundary Ŵε. The disconnected component �ε2
is the union of the ε-periodic translated sets of εY2, where Y2 is well contained in the reference cell Y
and Ŵ = ∂Y2. The connected component�ε1 is obtained by removing from� the closure of�ε2 such that
the interface Ŵε = ∂�ε2.

We deal with the homogenization, as ε goes to zero, of the following problem:





− div(Aε(x, uε)∇uε) = f ζ(uε) in � \ Ŵε,

uε1 = 0 on ∂�,

(Aε(x, uε1)∇u
ε
1)ν

ε = (Aε(x, uε2)∇u
ε
2)ν

ε on Ŵε,

(Aε(x, uε1)∇u
ε
1)ν

ε = −εγhε(uε1 − uε2) on Ŵε,

where νε is the unit external normal vector to �ε1. We prescribe a Dirichlet condition on the exterior
boundary, while we assume that the continuous heat flux is proportional to the jump of the solution on
the interface by means of a function of order εγ .

0921-7134/$35.00 © 2022 – IOS Press. All rights reserved.
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The quasilinear diffusion matrix field is defined by Aε(x, t) = A( x
ε
, t), where the matrix field A is

uniformly elliptic, bounded, periodic in the first variable and Carathéodory. The nonlinear real function

ζ(s) is nonnegative and singular at s = 0, while f is a nonnegative datum whose summability depends

on the growth of ζ near its singularity. Concerning the boundary condition, hε(x) = h( x
ε
) where h is

assumed to be a periodic, nonnegative and bounded function, and γ ∈] − 1, 1[.

This problem describes the stationary heat diffusion in a two-component composite with an ε-periodic

imperfect interface. In particular, quasilinear diffusion terms describe the behavior of materials like

glass or wood, in which the heat diffusion depends on the range of the temperature (see for instance

[6]). We refer to [20, Section 3] for more details about source terms depending on the solution itself

and becoming infinite when the solutions vanish. These kind of source terms can model, for instance,

electrical conductors where each point becomes a source of heat as a current flows inside. The boundary

condition on Ŵε models a jump of the solution through a rough interface and we refer to [9] for a physical

justification of this model (see also [29]).

In view of a counterexample suggested by H.C. Hummel in [28], one cannot expect bounded a priori

estimates for the solution when γ > 1. For this case we refer to [23] where different a priori estimates

needed. As for our problem, existence and uniqueness results has been proved in [25,26] for γ 6 1.

Here we prove an homogenization result for γ ∈] − 1, 1[ by means of the periodic unfolding method.

This method was originally introduced by D. Cioranescu, A. Damlamian and G. Griso in [13] and [14]

for fixed domains and extended to perforated ones in [16] and [17]. Then, it has been adapted to two-

component domains by P. Donato, K.H. Le Nguyen and R. Tardieu in [22] (see also [21]).

This work has been partially inspired by the works [20] and [24]. Let us point out the main differences

with respect to them and the additional difficulties. In [20] the authors treat the same singularity when

A is linear and in a different geometrical framework where the domain has two connected components

separated by an oscillating interface. This interface tends to a flat one, so that the integral on Ŵε goes

to the one on Ŵ, roughly speaking. But here Ŵε is the union of disconnected sets (of order 1
ε
) so that its

measures goes to inifnity, whence the integral on Ŵε needs particular care.

Let us mention that in [24] the authors consider the same singular problem with A quasilinear but

posed in a periodically perforated domain. Here the holes are replaced by a second material so that we

have to treat in addition all the integrals on the second component and the boundary term with jump.

In Section 2 we present the setting of the problem and we state the main results.

In Section 3 we give a short presentation of the periodic unfolding method, adapted to two-component

domains.

In Section 4 we prove two a priori estimates uniform with respect to ε and we give an estimate of

the integral of the singular term close to the singular set {uε = 0}, in terms of the quasilinear one (cf.

Proposition 4.3).

In Section 5 we prove a crucial convergence result, Theorem 5.4. It is one of the main tools when

proving our homogenization result and it shows that the gradient of uε is equivalent to the gradient of

the solution of a suitable auxiliary linear problem, associated with a weak cluster point of the sequence

{uε}, as ε → 0. This idea was originally introduced in [4] (see also [5]) where some nonlinear problems

with quadratic growth are considered. We refer to [10] and [22] for the study of the auxiliary problem,

while for the proof of the convergence result we adapt some techniques from [20] and [24].

Section 6 is devoted to the proofs of Proposition 2.5 and the homogenization theorem. For these results

Theorem 5.4 plays an important rule not only in the study of the quasilinear term but also in that of the

singular one. Actually, as done in [20] and [24], we split the integral of the singular term into the sum of

two integrals: one on the set where the solution is close to the singularity and one where is it far from it,
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which results not singular. Near the singularity, making use of the estimate given in Proposition 4.3, we
shift the study of the singular term to that of the quasilinear one, for which we can use Theorem 5.4.

Finally, let us point out that the homogenization result we prove here shows that the conductivity of
the first material is the same obtained when there is no material occupying �ε2. On the other hand, since
in the limit problem it appears f instead of θ1f (being θ1 the proportion of the material occupying �ε1),
one has anyway to take into account even the source term in the second component.

The first paper on this subject is due to [3] for the linear (nonsingular) case by multiple scale method.
In [23] and [29] the authors also studied the linear case by using the Tartar method. For similar homog-
enization elliptic problems we refer to [8,20,24,28] and [30]. In [21,22] the authors study the linear case
in presence of linear and nonlinear boundary conditions, respectively.

2. Setting of the problem and main results

Throughout the paper, we use the same notation as in [21,22] for the periodic unfolding method in
two-component domains.

The domain. For N ∈ N, N > 2, let � be a bounded open set in RN with a Lipschitz-continuous
boundary ∂�. Also let Y

.
=

∏N
i=1[0, li[ be a reference cell, with li > 0, i = 1, . . . , N . We suppose that

Y1 and Y2 are two disjoint connected open subsets of Y such that Y2 6= ∅, Y2 ⊂ Y and Y = Y1 ∪ Y2, with
a common boundary Ŵ = ∂Y2 Lipschitz-continuous.

Let {ε}ε>0 be a positive parameter taking values in a sequence converging to zero and set:

• for any k ∈ ZN , kl = (k1l1, . . . , kN lN ) and

Y k = kl + Y, Y ki = kl + Yi, i = 1, 2,

• Kε = {k ∈ ZN | εY k2 ⊂ �} and

�ε2 =
⋃

k∈Kε

εY k2 , �ε1 = � \�ε2, Ŵε = ∂�ε2.

By construction, � results the union of the two disjoint components and their common boundary,
i.e. � = �ε1 ∪�ε2 ∪ Ŵε (see Fig. 1).

Also we introduce the following sets:

K̂ε =
{
k ∈ ZN | εY k ⊂ �

}
, �̂ε = interior

{ ⋃

k∈K̂ε

ε(kl + Y)

}
, 3ε = � \ �̂ε,

and

�̂εi =
⋃

k∈K̂ε

εY ki , 3ε
i = �εi \ �̂εi , i = 1, 2, Ŵ̂ε = ∂�̂ε2.

Also,

there exists ε0 > 0 such that ∀ε 6 ε0, 3
ε
2 = ∅. (2.1)



4 F. Raimondi / Homogenization of some singular problems

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Fig. 1. The two-component domain � and the reference cell Y .

Let us note that here, for the sake of simplicity, we do not allow the second component to meet the

boundary of the domain and also we suppose Y2 connected. Actually the cases where the holes meet the

boundary of � and Y2 has a finite number of connected components can be treated as done in [21] and

[22], respectively.

In the sequel we denote by

• Mω(v)
.
= 1

|ω|

∫
ω
v dx the average of any function v ∈ L1(ω), for any open set ω of RN ,

• χ
ω

the characteristic function of any open set ω of RN ,

• ∼ the zero extension to the whole of � of functions defined on �ε1 or �ε2,

• θi
.
=

|Yi |

|Y |
, i = 1, 2,

• c different positive constants independent on ε,

• M(α, β, Y ) the set of matrix fields A = (ai,j )16i,j6N ∈ (L∞(Y ))N×N such that

(
A(x)λ, λ

)
> α|λ|2 and

∣∣A(x)λ
∣∣ 6 β|λ|, ∀λ ∈ RN and a.e. in Y,

with α, β ∈ R, 0 < α 6 β,

• {e1, . . . , eN } the canonical basis of RN ,

• vi = v|�εi
the restriction to �εi of functions v defined in �, i = 1, 2.

Moreover let us recall the classical decomposition for every real function v

v = v+ − v−, v+ .
= max{v, 0} and v− .

= − min{v, 0} a.e. in �, (2.2)

where v+ and v− are both nonnegative. In particular, one has

(v1 − v2)
(
v−

1 − v−
2

)
=

(
v+

1 − v+
2

)(
v−

1 − v−
2

)
−

(
v−

1 − v−
2

)2

= −v+
1 v

−
2 − v+

2 v
−
1 −

(
v−

1 − v−
2

)2
6 0. (2.3)
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The problem. The aim of the paper is to study the asymptotic behavior, as ε goes to zero, of the
following problem:





− div(Aε(x, uε)∇uε) = f ζ(uε) in � \ Ŵε,

uε1 = 0 on ∂�,

(Aε(x, uε1)∇u
ε
1)ν

ε = (Aε(x, uε2)∇u
ε
2)ν

ε on Ŵε,

(Aε(x, uε1)∇u
ε
1)ν

ε = −εγhε(uε1 − uε2) on Ŵε,

(2.4)

where νε is the unit external normal vector to �ε1, and we prescribe a Dirichlet condition on the exterior
boundary and a jump of the solution on the interface Ŵε, in the case γ ∈] − 1, 1[.

Assumptions on the data.

H1) The real N ×N matrix field A : (y, t) ∈ Y ×R 7→ A(y, t) = (ai,j (y, t))i,j=1,...,N ∈ RN
2

satisfies
the following conditions:





i) A is a Carathéodory function s.t.

A(·, t) is Y -periodic and in M(α, β, Y ), for every t ∈ R;

ii) there exists a real function ω : R → R satisfying the following conditions:

− ω is continuous and non decreasing, with ω(t) > 0 ∀t > 0,

− |A(y, t1)− A(y, t2)| 6 ω(|t1 − t2|) for a.e. y ∈ Y,∀ t1 6= t2,

− ∀s > 0, limy→0+

∫ s
y

dt
ω(t)

= +∞.

H2) The functions ζ and f verify





i) ζ : [0,+∞[→ [0,+∞] is a function such that

ζ ∈ C0([0,+∞[), 0 6 ζ(s) 6 1
sk

for every s ∈]0,+∞[, with 0 < k 6 1;

ii) ζ is non increasing;

iii) f > 0 a.e. in �, f 6≡ 0, with f ∈ Ll(�), for l >
2

1 + k
(> 1).

H3) −1 < γ < 1, and h is a Y -periodic function in L∞(Ŵ) such that

there exists h0 ∈ R : 0 < h0 < h(y) a.e. on Ŵ.

Under the above assumptions we set, for every t ∈ R,

Aε(x, t)
.
= A

(
x

ε
, t

)
for a.e. x ∈ �, hε(x)

.
= h

(
x

ε

)
for a.e. x ∈ Ŵε. (2.5)

The functional framework. We now introduce the functional spaces used in the literature to handle
(2.4)-type problems.

Let V ε .= {v ∈ H 1(�ε1)|v = 0 on ∂�} endowed with the norm

‖v‖V ε = ‖∇v‖L2(�ε1)
.
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Remark 2.1. It is known (see for instance [18, Lemma 1], [19]) that a Poincaré inequality in V ε holds
with a constant cP independent on ε, that is

‖v‖L2(�ε1)
6 cP ‖∇v‖L2(�ε1)

∀v ∈ V ε. (2.6)

Consequently, the norm in V ε is equivalent to that in H 1(�ε1) via a constant independent on ε.

For every γ ∈ R, let H ε
γ be the space defined by

H ε
γ

.
=

{
v ∈ L2(�)| v1 ∈ V ε, v2 ∈ H 1

(
�ε2

)}
,

which, after the identification ∇v := ∇̃v1 + ∇̃v2, is equipped by the norm

‖v‖2
H ε
γ

.
= ‖∇v‖2

L2(�\Ŵε)
+ εγ ‖v1 − v2‖

2
L2(Ŵε)

.

Proposition 2.2 ([22,29]). Let γ 6 1. There exist some positive constants c1, c2 and C, independent

of ε, such that

∀v ∈ H ε
γ , c1‖v‖

2
V ε×H 1(�ε2)

6 ‖v‖2
H ε
γ
6 c2

(
1 + εγ−1

)
‖v‖2

V ε×H 1(�ε2)
.

In addition, if vε = (vε1, v
ε
2) is a bounded sequence in H ε

γ , then

∥∥vε1
∥∥
H 1(�ε1)

6 C,

∥∥vε2
∥∥
H 1(�ε2)

6 C,

∥∥vε1 − vε2

∥∥
L2(Ŵε)

6 Cε−
γ
2 .

The variational formulation associated with problem (2.4) reads





Find uε ∈ H ε
γ such that uε > 0 a.e. in �,∫

�
f ζ(uε)ϕ dx < +∞, and∫

�\Ŵε
Aε(x, uε)∇uε∇ϕ dx +

∫
Ŵε
εγhε(uε1 − uε2)(ϕ1 − ϕ2)dσ

=
∫
�
f ζ(uε)ϕ dx, ∀ϕ ∈ H ε

γ .

(2.7)

In [25,26] it is proved that, under assumptions H1)–H3), problem (2.7) admits a unique solution.
Let us introduce here the homogenized matrix A0(t), t ∈ R, corresponding to our case γ ∈] − 1, 1[.

It is defined by

A0(t)λ
.
=

1

|Y |

∫

Y1

A(y, t)
(
λ− ∇yχλ(y, t)

)
dy ∀λ ∈ RN , (2.8)

where, for every λ ∈ RN , χ
λ
(·, t) ∈ H 1(Y1) are unique solutions of the cell problems





− div(A(·, t)∇yχλ(·, t) = − div(A(·, t)λ) in Y1,

A(·, t)(λ− ∇yχλ(·, t))ν1 = 0 on Ŵ,

χ
λ
(·, t) Y-periodic and MY1

(χ
λ
) = 0.

(2.9)
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The homogenized matrix A0 is actually the one obtained in the framework of perforated domains. It has
been originally introduced in [18] for linear problems with Neumann conditions in perforated domain,
successively extended to quasilinear ones in [1] and [2].

We recall (see [7] and [18]) that the matrix A0 satisfies the following properties:

i) A0 is continuous and A0(t) ∈ M

(
α,
β2

α
,�

)
for every t ∈ R;

ii) there exists a positive constant C, depending only on α, β, Y and T s.t.
∣∣A0(t1)− A0(t2)

∣∣ 6 Cω
(
|t1 − t2|

)

for every t1, t2 ∈ R, with t1 6= t2, where ω is the function given in H1).

(2.10)

Remark 2.3. Observe that assumptions H1)ii and H2)ii are only needed for the uniqueness of the so-
lution of problem (2.7). If they do not hold true, the homogenized problem is still the same but all the
convergences remain valid only for a subsequence.

The main results. We now state the main results of this work, which will be proved in Section 6.

Theorem 2.4. Under assumptions H1)–H3), let uε ∈ H ε
γ be the unique solution of problem (2.7). Then,

there exist a subsequence (still denoted by ε), u1 ∈ H 1
0 (�), û1 ∈ L2(�,H 1

per(Y1)) with MŴ (̂u1) = 0 for

almost every x ∈ � and u2 ∈ L2(�,H 1(Y2)) with MŴ(u2) = 0 for almost every x ∈ � such that





i) T ε
i (u

ε
i ) → u1 strongly in L2(�,H 1(Yi)), i = 1, 2,

ii) T ε(ζ(uε)) → ζ(u1) a.e. in �× Y,

iii) ũε1 ⇀ θ1u1 weakly in L2(�),

iv) T ε
1 (∇u

ε
1) ⇀ ∇u1 + ∇y û1 weakly in L2(�× Y1)

v) T ε
2 (∇u

ε
2) ⇀ ∇yu2 weakly in L2(�× Y2),

(2.11)

and

u1 > 0 a.e. in � and

∫

�

f ζ(u1)ϕ dx < +∞, ∀ϕ ∈ H 1
0 (�). (2.12)

Moreover, the pair (u1, û1) is the unique solution of the unfolded limit equation

{
∀ϕ ∈ H 1

0 (�) and ∀ψ ∈ L2(�;H 1
per(Y1))∫

�×Y1
A(y, u1)(∇u1 + ∇y û1)(∇ϕ + ∇yψ) dx dy = |Y |

∫
�
f ζ(u1)ϕ dx.

(2.13)

Proposition 2.5. Under assumptions H1)–H3), let (u1, û1, ū2) be given by Theorem 2.4. Then

{
û1(y, x) = −

∑N

i=1 χ ei
(y, u1(x))

∂u1

∂xi
(x) ∈ L2(�;H 1

per(Y1)),

∇y ū2 ≡ 0 a.e. in �× Y2,

where χ
ei
(·, u1), i = 1, . . . , N are the solutions of the cell problems (2.9), written for λ = ei .
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Then the homogenization result for problem (2.7) is

Theorem 2.6. Under assumptions H1)–H3), let uε ∈ H ε
γ be the unique solution of problem (2.7) and

u1 given by Theorem 2.4. Then u1 > 0 almost everywhere in � and u1 is the unique solution of the

following singular limit problem:

{
− div(A0(u1)∇u1) = f ζ(u1) in �,

u1 = 0 on ∂�,
(2.14)

where the homogenized matrix A0(t) is given by (2.8) and verifies

A0(u1)∇u1 =
1

|Y |

∫

Y1

A(y, u1)(∇u1 + ∇y û1) dy. (2.15)

Consequently, convergences (2.11) (with ∇y ū2 ≡ 0) hold for the whole sequence.

3. The periodic unfolding method

In this section we give a short presentation of the periodic unfolding method adapted to two-

component domains by P. Donato, K.H. Le Nguyen and R. Tardieu in [22]. This method was origi-

nally introduced by D. Cioranescu, A. Damlamian and G. Griso in [13] and [14] for fixed domains and

extended to perforated ones in [16] and [17].

To this aim, we recall the unfolding operators T ε
1 and T ε

2 and the boundary unfolding operator T b
ε : T ε

1

and T b
ε are exactly those ones introduced in [17] for perforated domains, while T ε

2 has been introduced

for the two-component domain in [22].

Let z ∈ RN , we denote by [z]Y its integer part such that z−[z]Y belongs to Y and set {z}Y
.
= z−[z]Y .

Then, for every positive ε,

x = ε

([
x

ε

]

Y

+

{
x

ε

}

Y

)
∀x ∈ RN .

Definition 3.1. For any Lebesgue-measurable function φ on �εi , the unfolding operators T ε
i , i = 1, 2,

are defined as follows:

T
ε
i (φ)(x, y)

.
=

{
φ(ε[ x

ε
]Y + εy) a.e. for (x, y) ∈ �̂ε × Yi,

0 a.e. for (x, y) ∈ 3ε × Yi .
(3.1)

For any Lebesgue-measurable function φ on Ŵε, the boundary unfolding operator T b
ε is defined as fol-

lows:

T
b
ε (φ)(x, y)

.
=

{
φ(ε[ x

ε
]Y + εy) a.e. for (x, y) ∈ �̂ε × Ŵ,

0 a.e. for (x, y) ∈ 3ε × Ŵ.
(3.2)
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Remark 3.2. If φ is defined in �, we simply write T ε
i (φ) instead of T ε

i (φi), i = 1, 2, for the sake of
semplicity. Also we define T ε(ϕ) as follows:

T
ε(φ)(x, y)

.
=

{
T ε

1 (φ) in �× Y1,

T ε
2 (φ) in �× Y2.

We now recall the main properties of the unfolding operators.

Proposition 3.3 ([17,22]). Let p ∈ [1,+∞[ and i = 1, 2.

1. T ε
i is a linear and continuous operator from Lp(�εi ) to Lp(�× Y).

2. T ε
i (φψ) = T ε

i (φ)T
ε
i (ψ) for every φ,ψ ∈ Lp(�εi ).

3. Let φ ∈ Lp(Yi) be a Y -periodic function and set φε(x) = φ( x
ε
). Then

T
ε
i (φε) → φ strongly in Lp(�× Yi).

4. For all φ ∈ L1(�εi ), one has

1

|Y |

∫

�×Yi

T
ε
i (φ)(x, y) dx dy =

∫

�̂εi

φ(x) dx =

∫

�εi

φ(x) dx −

∫

3εi

φ(x) dx.

5. For all φ ∈ L1(Ŵε), one has

∫

Ŵε
φ(x) dσx =

1

ε|Y |

∫

�×Ŵ

T
b
ε (φ)(x, y) dx dσy .

6. ‖T ε
i (φ)‖Lp(�×Yi ) 6 |Y |

1
p ‖φ‖Lp(�εi ) for every φ ∈ Lp(�εi ).

7. ‖T b
ε (φ)‖Lp(�×Ŵ) 6 ε

1
p |Y |

1
p ‖φ‖Lp(Ŵε) for every φ ∈ Lp(Ŵε).

8. For φ ∈ Lp(�), T ε
i (φ) → φ strongly in Lp(�× Yi).

9. Let {φε} be a sequence in Lp(�) such that φε → φ strongly in Lp(�). Then

T
ε
i (φε) → φ strongly in Lp(�× Yi).

10. Let {φε} be a sequence in Lp(�εi ) such that ‖φε‖Lp(�εi ) 6 c.

If T ε
i (φε) ⇀ φ̂ weakly in Lp(�× Yi), then

φ̃ε ⇀ θiMYi (φ̂) weakly in Lp(�).

11. If φ ∈ W 1,p(�εi ), then ∇y[T
ε
i (φ)] = εT ε

i (∇φ) and T ε
i (φ) ∈ Lp(�,W 1,p(Yi)).

12. If φ ∈ Ls(Ŵε) for s ∈ [1,+∞[, then

∥∥T b
ε (φ)

∥∥
Ls (�×Ŵ)

6 |Y |
1
s ε

1
s ‖φ‖Ls (Ŵε).

We state below the main propositions proved in [12] and [22] concerning the jump on the interface
and some convergence results, under the same notations as in [21].
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Lemma 3.4 ([22]). Let ϕ ∈ D(�) and uε ∈ H ε
γ . For ε small enough one has

ε

∫

Ŵε
hε

(
uε1 − uε2

)
ϕ dσx =

1

|Y |

∫

�×Ŵ

h(y)
(
T
ε

1

(
uε1

)
− T

ε
2

(
uε2

))
T
ε

1 (ϕ) dx dσy .

Theorem 3.5 ([12]). [17,21,22]Let γ ∈ R and uε be a bounded sequence in H ε
γ . Then,

∥∥T ε
1

(
∇uε1

)∥∥
L2(�×Y1)

6 c,

∥∥T ε
2

(
∇uε2

)∥∥
L2(�×Y2)

6 c,

∥∥T ε
1

(
uε1

)
− T

ε
2

(
uε2

)∥∥
L2(�×Ŵ)

6 cε
1−γ

2 ,

(3.3)

and there exist a subsequence (still denoted by ε), u1 ∈ H 1
0 (�) and û1 ∈ L2(�,H 1

per(Y1)) with

MŴ (̂u1) = 0 for almost every x ∈ � such that

{
T ε

1 (u
ε
1) → u1 strongly in L2(�,H 1(Y1)),

T ε
1 (∇u

ε
1) ⇀ ∇u1 + ∇y û1 weakly in L2(�× Y1).

(3.4)

Moreover, if γ 6 1, there exist a subsequence (still denoted by ε), u2 ∈ L2(�) and u2 ∈ L2(�,H 1(Y2))

with MŴ(u2) = 0 for almost every x ∈ � such that

{
T ε

2 (u
ε
2) ⇀ u2 weakly in L2(�,H 1(Y2)),

T ε
2 (∇u

ε
2) ⇀ ∇yu2 weakly in L2(�× Y2).

(3.5)

Furthermore, if γ < 1, then u1 = u2 and also

T
ε

2

(
uε2

)
→ u1 strongly in L2

(
�,H 1(Y2)

)
. (3.6)

4. A priori estimates

In this section we prove two uniform a priori estimates (with respect to ε) for a solution of problem

(2.7). In addition, we recall Proposition 4.3 which gives a bound to the integral of the singular term close

to the singularity.

These estimates allow us to prove the first part of Theorem 2.4 at the end of this section.

Proposition 4.1. Under assumptions H1)–H3), let uε ∈ H ε
γ be the solution of problem (2.7). The follow-

ing a priori estimate holds true:

∥∥∇uε
∥∥
L2(�\Ŵε)

6 C1‖f ‖
1

1+k

L
2

1+k (�)

, (4.1)

where C1 depends on α, cp and c1.
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Also

∥∥uε1 − uε2

∥∥
L2(Ŵε)

6 ε−
γ
2C2‖f ‖

1
1+k

L
2

1+k (�)

, (4.2)

where C2 depends on α, h0, cp, c1.

Proof. Let uε ∈ H ε
γ be the solution of problem (2.7) and let us choose uε as test function. By H1)-H3)

and applying the Young inequality with exponents 2
1−k

and 2
1+k

, we get for every η > 0

α
∥∥∇uε

∥∥2

L2(�\Ŵε)
+ εγh0

∫

Ŵε

(
uε1 − uε2

)2
dσ

6

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇uε dx +

∫

Ŵε
εγhε

(
uε1 − uε2

)2
dσ

=

∫

�

f ζ
(
uε

)
uε dx 6

∫

�

f u1−k dx 6 η
∥∥uε

∥∥2

L2(�\Ŵε)
+ c(η)‖f ‖

2
1+k

L
2

1+k (�)

.

In view of Remark 2.1, the above inequality leads to

α
∥∥∇uε

∥∥2

L2(�\Ŵε)
+ εγh0

∫

Ŵε

(
uε1 − uε2

)2
dσ 6 c(η, cp)

∥∥uε
∥∥2

V ε×H 1(�ε2)
+ c(η)‖f ‖

2
1+k

L
2

1+k (�)

.

Thanks to Proposition 2.2 we get

α
∥∥∇uε

∥∥2

L2(�\Ŵε)
+ εγh0

∫

Ŵε

(
uε1 − uε2

)2
dσ 6 c(η, cp, c1)

∥∥uε
∥∥2

H ε
γ

+ c(η)‖f ‖
2

1+k

L
2

1+k (�)

.

So that,

(
α − c(η, cp, c1)

)∥∥∇uε
∥∥2

L2(�\Ŵε)
+ εγ

(
h0 − c(η, cp, c1)

)∥∥uε1 − uε2

∥∥2

L2(Ŵε)
6 c(η)‖f ‖

2
1+k

L
2

1+k (�)

.

Whence, choosing η sufficiently small so that α− c(η, cp, c1) > 0 and h0 − c(η, cp, c1) > 0, we deduce
the result from the previous estimate. �

Proposition 4.2. Under assumptions H1)-H3), let uε ∈ H ε
γ be the solution of problem (2.7). Then

∥∥f ζ
(
uε

)
ϕ
∥∥
L1(�)

6 c,

for every nonnegative ϕ ∈ H ε
γ with c depending on α, β, cp, c1, ‖∇ϕ‖L2(�\Ŵε) and ‖f ‖Ll(�).

Proof. Let uε ∈ H ε
γ be the solution of problem (2.7) and let us choose a nonnegative ϕ ∈ H 1

0 (�) as test
function. Since ϕ has no jump on Ŵε, the boundary term vanishes. Hence, by using the Hölder inequality
and nonnegativity of f , ζ and ϕ, we have

0 6

∫

�

f ζ
(
uε

)
ϕ dx =

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ϕ dx 6 β

∥∥∇uε
∥∥
L2(�\Ŵε)

‖∇ϕ‖L2(�),
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which implies the result for ϕ ∈ H 1
0 (�), via the estimate (4.1). If now ϕ = (ϕε1, ϕ

ε
2) ∈ H ε

γ is nonnegative,

since Ŵε is Lipschitz continuous, there exist nonnegative ψ1 and ψ2 in H 1
0 (�) such that ϕ = (ϕε1, ϕ

ε
2) =

(ψ1|�ε
1
, ψ2|�ε

2
). Then

0 6

∫

�

f ζ
(
uε

)
ϕ dx =

∫

�ε1

f ζ
(
uε

)
ϕε1 dx +

∫

�ε2

f ζ
(
uε

)
ϕε2 dx

6

∫

�

f ζ
(
uε

)
ψ1 dx +

∫

�

f ζ
(
uε

)
ψ2 dx 6 c.

�

We also recall the following result from [26] (written for h = εγhε and λ = 0). It gives an estimate of
the integral of the singular term close to the singular set {uε = 0}.

Proposition 4.3 ([26]). Under assumptions H1)-H3), let uε ∈ H ε
γ be the solution of problem (2.7) and δ

a fixed positive real number. Then

∫

{0<uε6δ}

f ζ
(
uε

)
ϕ dx 6

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ϕZδ

(
uε

)
dx

+ εγ
∫

Ŵε
hε

(
uε1 − uε2

)(
Zδ

(
uε1

)
ϕ1 − Zδ

(
uε2

)
ϕ2

)
dσ,

for every ϕ ∈ H ε
γ , ϕ > 0, where Zδ is an auxiliary function defined by

Zδ(s) =





1, if 0 6 s 6 δ,

− s
δ
+ 2, if δ 6 s 6 2δ,

0, if s > 2δ.

(4.3)

Proposition 4.4. Under assumptions H1)–H3), let uε ∈ H ε
γ be the unique solution of problem (2.7).

Then, there exist a subsequence (still denoted by ε), u1 ∈ H 1
0 (�), û1 ∈ L2(�,H 1

per(Y1)) with MŴ (̂u1) =

0 for almost every x ∈ � and u2 ∈ L2(�,H 1(Y2)) with MŴ(u2) = 0 for almost every x ∈ � such that

(2.11) and (2.12) hold.

Proof. Let uε be the solution of problem (2.7). Proposition 4.1 allows us to apply Theorem 3.5. It
provides the existence of u1 ∈ H 1

0 (�), û1 ∈ L2(�,H 1
per(Y1)) with MŴ (̂u1) = 0 for almost every x ∈ �

and u2 ∈ L2(�,H 1(Y2)) with MŴ(u2) = 0 for almost every x ∈ � such that, up to a subsequence, one
has convergences (2.11)i,iv,v, since γ < 1.

Now observe that, by construction, for every x ∈ � there exists εx > 0 such that

x ∈ �̂ε, ∀ε 6 εx .

Also, by defintion of unfolding one has, for i = 1, 2

T
ε
i

(
ζ(φ)

)
(x, y) =

{
ζ(T ε

i (φ)(x, y)) a.e. in �̂ε × Yi,

0 a.e. in 3ε × Yi .
(4.4)
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Consequently, for almost every (x, y) ∈ �× Y , there exists εx > 0 such that

T
ε
(
ζ
(
uε

))
= ζ

(
T
ε
(
uε

))
, ∀ε 6 εx . (4.5)

On the other hand, using the continuity of ζ and (2.11)i, we have

ζ
(
T
ε
(
uε

))
→ ζ(u1) a.e. in �× Y. (4.6)

This, together with (4.5), gives the convergence (2.11)ii.

Also, from Proposition 2.2 and convergence (2.11)i, Proposition 3.310 gives

ũε1 ⇀ θ1MY1
(u1) weakly in L2(�),

which reads as (2.11)iii being u1 independent on y.

To show that u1 is nonnegative almost everywhere in �, we note that every solution uε is positive

almost everywhere in �. Then, the definition of the unfolding operator implies T ε(uε) > 0 almost

everywhere in �× Y so that, in view of (2.11)i,

u1 > 0 a.e. in �.

It remains to prove the second condition in (2.12). Let us choose first a nonnegative ϕ ∈ H 1
0 (�). Propo-

sitions 3.32,4 and 4.2, for the subsequence mentioned before, lead to

lim inf
ε→0

1

|Y |

∫

�×Y

T
ε(f )T ε

(
ζ
(
uε

))
T
ε(ϕ) dx dy 6 lim inf

ε→0

∫

�

f ζ
(
uε

)
ϕ dx < +∞. (4.7)

Now, from Proposition 3.38, T ε(f ) and T ε(ϕ) converge to f and ϕ, respectively, almost everywhere in

�× Y , up to a subsequence. Thus, by (2.11)ii,

T
ε(f )T ε

(
ζ
(
uε

))
T
ε(ϕ) → f ζ(u1)ϕ a.e. in �× Y.

Since T ε(f ), T ε(ζ(uε)) and T ε(ϕ) are nonnegative functions, we can use Fatou’s lemma and (4.7) to

obtain

1

|Y |

∫

�×Y

f ζ(u1)ϕ dx dy 6 lim inf
ε→0

1

|Y |

∫

�×Y

T
ε(f )T ε

(
ζ
(
uε

))
T
ε(ϕ) dx dy < +∞.

Being the functions f and u1 independent on y, this implies in particular that

∫

�

f ζ(u1)ϕ dx < +∞

and ends the proof for ϕ > 0. For ϕ with any sign, it suffices to decompose ϕ as ϕ+ − ϕ−. �
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5. A convergence result for an auxiliary problem

This section is devoted to the study of a suitable auxiliary problem and a crucial convergence result,

which is one of the main tools needed for proving Theorem 2.6. In the same spirit of what we have done

in [24] in the case of a periodically perforated domain, we first consider the auxiliary linear problem

(5.2) below and state existence and homogenization results for it. Then, we prove the convergence result

given in Theorem 5.4. It shows that the gradient of uε is equivalent to the gradient of the solution of the

auxiliary linear problem, associated with a weak cluster point of the sequence {uε}, as ε → 0.

We refer to [10] and [22] for the study of the auxiliary problem. For the proof of the convergence

result we adapt some techniques from [20] and [24], which inspired this work.

First of all, as in [10] we introduce a linear operator Lε from H−1(�) to (V ε)′ verifying the following

assumption:

H4) If {ϕε} is a sequence such that

∥∥ϕε
∥∥
V ε

6 c and ϕ̃ε ⇀ θ1ϕ0 weakly in L2(�), (5.1)

then

lim
ε→0

〈
Lε(Z), ϕ

ε
〉
(V ε)′,V ε

= 〈Z, ϕ0〉H−1(�),H 1
0 (�)

.

Let us point out that assumption H4) is satisfied, for example, by the adjoint of the linear operator P ε1
introduced by Cioranescu and Saint Jean Paulin in [18]. Then, see [11, Remark 3.1], if H4) holds, one

has ϕ0 ∈ H 1
0 (�).

5.1. The auxiliary problem

The suitable auxiliary problem we are interested in is the following one:





− div(Aε(x, uε1)∇v
ε
1) = Lε(Z) in �ε1,

− div(Aε(x, uε2)∇v
ε
2) = 0 in �ε2,

vε1 = 0 on ∂�,

(Aε(x, uε1)∇v
ε
1)ν

ε = (Aε(x, uε2)∇v
ε
2)ν

ε on Ŵε,

(Aε(x, uε1)∇v
ε
1)ν

ε = −εγhε(vε1 − vε2) on Ŵε,

(5.2)

under assumptions H1), H3)–H4), and Z ∈ H−1(�).

The variational formulation of problem (5.2) is





Find vε ∈ H ε
γ such that∫

�\Ŵε
Aε(x, uε)∇vε∇ϕ dx +

∫
Ŵε
εγhε(vε1 − vε2)(ϕ1 − ϕ2) dσ

= 〈Lε(Z), ϕ1〉(V ε)′,V ε , ∀ϕ ∈ H ε
γ .

(5.3)

The existence and the uniqueness of a solution of problem (5.3) is a straightforward consequence of the

Lax-Milgram theorem.
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Observe now that in view of Proposition 4.1 and (2.11)iii, the sequence {uε} satisfies conditions (5.1),
i.e.

∥∥uε1
∥∥
V ε

6 c and ũε1 ⇀ θ1u1 weakly in L2(�). (5.4)

The homogenization result below extends Theorem 3.3 of [22] to the case where the matrix field depends
on x. We omit its proof, which follows along the line of [22, Theorem 3.3]. The terms containing the
functional Z and the quasilinearity of A can be treated as in [10] and [7], respectively.

Theorem 5.1. Under assumptions H1), H3)-H4) and Z ∈ H−1(�), let vε ∈ H ε
γ be the unique solution

of problem (5.3). Then, there exist v1 ∈ H 1
0 (�) and v̂1 ∈ L2(�,H 1

per(Y1)) with MŴ (̂v1) = 0 such that





i) ṽεi ⇀ θiv1 weakly in L2(�), i = 1, 2,

ii) T ε
i (v

ε
i ) → v1 strongly in L2(�;H 1(Yi)), i = 1, 2

iii) T ε
1 (∇v

ε
1) ⇀ ∇v1 + ∇y v̂1 weakly in L2(�× Y1),

iv) T ε
2 (∇v

ε
2) ⇀ 0 weakly in L2(�× Y2),

(5.5)

and the pair (v1, v̂1) is the unique solution of the limit equation

{
∀ϕ ∈ H 1

0 (�) and ∀ψ ∈ L2(�;H 1
per(Y1)),∫

�×Y1
A(y, u1)(∇v1 + ∇y v̂1)(∇ϕ + ∇yψ) dx dy = |Y |〈Z, ϕ〉H−1(�),H 1

0 (�)
.

Finally, v1 is the unique solution of the following limit problem:

{
− div(A0(u1)∇v1) = Z in �,

v1 = 0 on ∂�,
(5.6)

where the homogenized matrix A0 is given by (2.8).

Let us consider problem (5.2) for Z = − div(A0(u1)∇u1). Its variational formulation is

∫

�\Ŵε
Aε

(
x, uε

)
∇vε∇ϕ dx +

∫

Ŵε
εγhε

(
vε1 − vε2

)
(ϕ1 − ϕ2) dσ

=
〈
Lε

(
− div

(
A0(u1)∇u1

))
, ϕ1

〉
(V ε)′,V ε

, ∀ϕ ∈ H ε
γ , (5.7)

which admits a unique solution vε ∈ H ε
γ . Theorem 5.1 (written for Z = − div(A0(u1)∇u1)) gives

{
− div(A0(u1)∇v1) = − div(A0(u1)∇u1) in �,

v1 = 0 on ∂�.

Thanks to the assumptions on A, the uniqueness of this problem ensures that

v1 = u1. (5.8)
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Moreover, the same arguments used to prove (2.11)iii give

∥∥vε
∥∥
H ε
γ
6 c and ṽε1 ⇀ θ1u1 weakly in L2(�). (5.9)

As in [20] we define now the following auxiliary functions um:

∀m ∈ N,m > 1, um
.
= Tm(u1),

where Tm is the usual truncation function at level m, so that

0 6 um 6 u1 and um → u1 strongly in H 1
0 (�), as m → +∞. (5.10)

Then, we denote vmε ∈ H 1
0 (�) the solution of the following problem:





− div(Aε(x, uε1)∇v
m
ε,1) = Lε(− div(A0(u1)∇um)) in �ε1,

− div(Aε(x, uε2)∇v
m
ε,2) = 0 in �ε1,

vmε = 0 on ∂�.

Its variational formulation is

∫

�

Aε
(
x, uε

)
∇vmε ∇ϕ dx =

〈
Lε

(
− div

(
A0(u1)∇um

))
, ϕ1

〉
(V ε)′,V ε

, ∀ϕ ∈ H ε
γ . (5.11)

Again, the existence and the uniqueness of a solution of problem (5.11) is straightforward proved by
using the Lax-Milgram theorem.

Remark 5.2. Let us notice that vmε ∈ H 1
0 (�), and consequently vmε,1 = vmε,2 on Ŵε, for every ε.

Thus, in particular, Theorem 5.1 applies to this case with no jump (for Z = − div(A0(u1)∇um)) and,
again by uniqueness, we obtain

∥∥vmε
∥∥
H ε
γ
6 c and ṽmε,1 ⇀ θ1um weakly in L2(�). (5.12)

Also the following convergence holds true:

T
ε
(
vmε

)
→ um strongly in L2

(
�;H 1(Y )

)
. (5.13)

Moreover, by classical results from [31], we have that for every fixed m

∥∥vmε
∥∥
L∞(�)

6 cm, for every ε. (5.14)

Remark 5.3. The sequence {(vmε,1)
−} satisfies conditions (5.1). Indeed, in view of the estimate in (5.12)

and convergence (5.13), one has

∥∥(
vmε,1

)−∥∥
Vε

6
∥∥vmε,1

∥∥
Vε

6 c,
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and

T
ε

1

((
vmε,1

)−)
→ u−

m = 0 strongly in L2(�× Y1),

since um > 0 by construction. Also, by using Proposition 3.310, one has

(̃
vmε,1

)−
⇀ θ1MY1

(
u−
m

)
= 0 weakly in L2(�).

Let us also point out that, from (5.13), one has even

T
ε

2

((
vmε,2

)−)
→ u−

m = 0 strongly in L2(�× Y2).

This is needed in the next subsection.

5.2. A convergence result

We are now able to prove the main result of this section. Here we adapt the arguments we used in

[24] for the quasilinear singular case in periodically perforated domains to the two-component case,

where the holes are replaced by the second component. This is why we analize in detail only the terms

differing from the previous work, namely the boundary term and the quasilinear diffusion term in the

second component.

The proof follows the same steps introduced in that of [20, Theorem 8.5], which concerns the sin-

gular case when A is linear and the domain is made up of two connected components separated by an

oscillating interface.

Theorem 5.4. Under assumptions H1)- H4), let uε and vε be solutions of problems (2.7) and (5.7),

respectively. Then, up to a subsequence,

lim
ε→0

∥∥∇uε − ∇vε
∥∥
L2(�\Ŵε)

= 0.

Proof. The proof is done in 3 steps.

Step 1. Let us prove that

lim
ε→0

∫

�\Ŵε

∣∣∇
(
vmε

)−∣∣2
dx = 0 ∀m > 1. (5.15)

Let us choose −(vmε )
− ∈ H ε

γ as test function in (5.11). From the ellipticity of A, taking into account that

∇vmε = ∇(vmε )
+ − ∇(vmε )

−, and (2.3) we get

0 6 α
∥∥∇

(
vmε

)−∥∥2

L2(�\Ŵε)
6 −

∫

�\Ŵε
Aε

(
x, uε

)
∇vmε ∇

(
vmε

)−
dx

=
〈
Lε

(
− div

(
A0(u1)∇um

))
,−

(
vmε,1

)−〉
(V ε)′,V ε

.
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From Remark 5.3 and H4), we obtain

lim
ε→0

〈
Lε

(
− div

(
A0(u1)∇um

))
,−

(
vmε,1

)−〉
(V ε)′,V ε

=
〈
− div

(
A0(u1)∇um

)
, 0

〉
H−1(�),H 1

0 (�)
= 0,

which concludes the first step.

Step 2. In this step we show that

lim
m→+∞

lim
ε→0

∫

�\Ŵε

∣∣∇
(
uε − vmε

)∣∣2
dx = 0. (5.16)

To do that, let us choose uε − vmε ∈ H ε
γ as test function in (2.7) and (5.11). By subtraction, H1)i and the

nonnegativity of the boundary term, one has

α
∥∥∇

(
uε − vmε

)∥∥2

L2(�\Ŵε)

6

∫

�\Ŵε
Aε

(
x, uε

)
∇

(
uε − vmε

)
∇

(
uε − vmε

)
dx + εγ

∫

Ŵε
hε

(
uε1 − uε2

)2
dσ

=

∫

�

f ζ
(
uε

)(
uε − vmε

)
dx −

〈
Lε

(
− div

(
A0(u1)∇um

))
,
(
uε − vmε

)
1

〉
V ′
ε ,Vε
. (5.17)

Let us prove that, as ε → 0, we have

α lim sup
ε→0

∥∥∇
(
uε − vmε

)∥∥2

L2(�\Ŵε)
6

∫

�

f ζ(u1)(u1 − um)χ {u1>0}
dx

−
〈(
− div

(
A0(u1)∇um

))
, u1 − um

〉
H−1(�),H 1

0 (�)
, (5.18)

so that we obtain the result (5.16) as m → +∞, via convergence (5.10) and the Lebesgue theorem.

Concerning the second term in the right-hand side of the previous inequality, let us observe that uε−vmε
satisfies (5.1), in view of (5.4) and (5.12). So that, by H4)

lim
ε→0

〈
Lε(− div

(
A0(u1)∇um

)
,
(
uε − vmε

)
1

〉
V ′
ε ,Vε

=
〈
− div

(
A0(u1)∇um

)
, u1 − um

〉
H−1(�),H 1

0 (�)
. (5.19)

Let δ > 0. We split the integral of the singular term in (5.17) in two terms as follows:

∫

�

f ζ
(
uε

)(
uε − vmε

)
dx =

∫

�

f ζ
(
uε

)(
uε −

(
vmε

)+)
dx +

∫

�

f ζ
(
uε

)(
vmε

)−
dx

6

2∑

i=1

(
I δε,i + J δε,i

)
+Kε, i = 1, 2, (5.20)
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where, for i = 1, 2,

I δε,i
.
=

∫

�εi ∩{0<uεi6δ}

f ζ
(
uεi

)
uεi dx, J δε,i

.
=

∫

�εi ∩{uεi>δ}

f ζ
(
uεi

)(
uεi −

(
vmε,i

)+)
dx, and

Kε
.
=

∫

�

f ζ
(
uε

)(
vmε

)−
dx.

The terms corresponding to i = 1 are exactly the ones considered in [24, Theorem 5.5] for the case of
periodically perforated domains. It is easy to check that the additional terms I δε,2 and J δε,2 can be treated
exactly in the same way. Indeed, all the convergences used there for the first component hold true also
here in the second component, thanks to (2.1) and convergence (3.6).

Hence,





limδ→0 limε→0(I
δ
ε,1 + I δε,2) = 0,

limδ→0 limε→0(J
δ
ε,1 + J δε,2) = (θ1 + θ2)

∫
�
f ζ(u1)(u1 − um)χ {u1>0}

dx

=
∫
�
f ζ(u1)(u1 − um)χ {u1>0}

dx.

(5.21)

On the contrary, the termKε needs to be treated specifically, since its computation gives rise to a different
boundary term. To this aim, let us observe that

∫

�∩{uε>δ}

f ζ
(
uε

)(
vmε

)−
χ

{u1=δ}
dx = 0,

for every δ ∈ R+\D, where D is a countable set of values (see for instance [20,27] and [24]).
Hence, for δ0 ∈ R+ \D, we can write

Kε =

∫

�∩{0<uε6δ0}

f ζ
(
uε

)(
vmε

)−
dx +

∫

�∩{uε>δ0}

f ζ
(
uε

)(
vmε

)−
χ

{u1 6=δ0}
dx

.
= Aε + Bε. (5.22)

From Proposition 4.3 written with δ = δ0 we get

0 6 Aε

6

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇

(
vmε

)−
Zδ0

(
uε

)
dx

+ εγ
∫

Ŵε
hε

(
uε1 − uε2

)(
Zδ0

(
uε1

)(
vmε,1

)−
− Zδ0

(
uε2

)(
vmε,2

)−)
dσ.

The first term in the right-hand side of the previous inequality goes to zero as ε goes to zero, because of
H1)i, the Hölder inequality, (4.1) and (5.15). On the other hand, since vmε ∈ H 1

0 (�), also (vmε )
− belongs

to H 1
0 (�), so that (vmε,1)

− = (vmε,2)
− on Ŵε and, since Zδ is nonincreasing (see definition (4.3)), we have

εγ
∫

Ŵε
hε

(
uε1 − uε2

)(
Zδ0

(
uε1

)(
vmε,1

)−
− Zδ0

(
uε2

)(
vmε,2

)−)
dσ

= εγ
∫

Ŵε
hε

(
vmε,1

)−(
uε1 − uε2

)(
Zδ0

(
uε1

)
− Zδ0

(
uε2

))
dσ 6 0.
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Thus we deduce that

lim
ε→0

Aε = 0. (5.23)

As done for the previous terms, in order to handle Bε we split it as follows:

Bε = Bε,1 + Bε,2 with Bε,i
.
=

∫

�εi ∩{uεi>δ0}

f ζ
(
uεi

)(
vmε,i

)−
χ

{u1 6=δ0}
dx, i = 1, 2.

The same arguments used to prove that limε→0 Bε,1 = 0 in the proof of [24, Theorem 5.5] apply also to

the second component. So, using again (2.1) and convergence (3.6), we get

lim
ε→0

Bε,2 = 0.

This implies, together with (5.22)–(5.23),

lim
ε→0

Kε = 0. (5.24)

By collecting (5.17), (5.19), (5.20), (5.21), (5.24), we finally obtain the validity of (5.18).

Step 3. In this last step, we show that

lim
m→+∞

lim
ε→0

∫

�\Ŵε

∣∣∇
(
vmε − vε

)∣∣2
dx = 0. (5.25)

We take vmε −vε as test function in the variational formulations (5.11) and (5.7). By subtraction, we have

∫

�\Ŵε
Aε

(
x, uε

)
∇

(
vmε − vε

)
∇

(
vmε − vε

)
dx − εγ

∫

Ŵε
hε

(
vε1 − vε2

)[(
vmε − vε

)
1
−

(
vmε − vε

)
2

]
dσ

=
〈
Lε

(
− div

(
A0(u1)∇(um − u1)

))
,
(
vmε − vε

)
1

〉
V ′
ε ,Vε
.

In view of Remark 5.2, it results

−εγ
∫

Ŵε
hε

(
vε1 − vε2

)[(
vmε − vε

)
1
−

(
vmε − vε

)
2

]
dσ = εγ

∫

Ŵε
hε

(
vε1 − vε2

)2
dσ > 0.

Consequently, by passing to the limit on ε, for H1) and H4)(whose assumptions are satisfied both by vε
and vmε thanks to (5.9) and (5.12)), we get

0 6 α lim
ε→0

∥∥∇
(
vmε − vε

)∥∥2

L2(�\Ŵε)

6 lim
ε→0

〈
Lε

(
− div

(
A0(u1)∇(um − u1)

))
,
(
vmε − vε

)
1

〉
V ′
ε ,Vε

=
〈
− div

(
A0(u1)∇(um − u1)

)
, um − u1

〉
H−1(�),H 1

0 (�)
.
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This together with (5.10) gives

0 6 lim
m→+∞

lim
ε→0

α
∥∥∇

(
vmε − vε

)∥∥2

L2(�\Ŵε)

6 lim
m→+∞

∫

�

A0(u1)∇(um − u1)∇(um − u1) dx = 0.

At last, coupling (5.16) and (5.25) we obtain the desired result. �

6. Proof of the homogenization result

In this last section we prove the second part of Theorem 2.4, Proposition 2.5 and Theorem 2.6.
First, we treat Proposition 2.5 which is a consequence of the convergence result given in Theorem 5.4.

Proof of Proposition 2.5. Let vε be the solution of problem (5.7). The homogenization result given in

Theorem 5.1 (written for Z = − div(A0(u1)∇u1) and v1 = u1, see (5.8)) gives, for the subsequence
verifying (2.4),

{
T ε

1 (∇v
ε
1) ⇀ ∇u1 + ∇y v̂1 weakly in L2(�× Y1),

T ε
2 (∇v

ε
2) ⇀ 0 weakly in L2(�× Y2),

(6.1)

where v̂1 is a function in L2(�;H 1
per(Y1)) with MŴ (̂v1) = 0, such that

v̂1(x, y) = −

N∑

i=1

χ
ei

(
y, u1(x)

)∂u1

∂xi
(x).

Now let us observe that, from Theorem 5.4 and Proposition 3.39, we get

T
ε
(
∇uε − ∇vε

)
→ 0 strongly in L2(�× Y).

This, together with (2.11)iv,v and (6.1), leads to

{
∇y v̂1 = ∇y û1 a.e. in �× Y1,

∇y ū2 ≡ 0 a.e. in �× Y2,
(6.2)

which implies v̂1 = û1 + w(x), for some function w only depending on x.
Since MŴ (̂v1) = MŴ (̂u1) = 0 and

MŴ (̂v1) = MŴ (̂u1)+ MŴ(w),

we derive w = 0 and

v̂1 = û1.
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Whence we obtain the convergence

T
ε

1

(
∇vε1

)
⇀ ∇u1 + ∇y û1 weakly in L2(�× Y1), (6.3)

and the claimed expression of û1. �

We are now able to prove the homogenization theorems.

Proof of Theorem 2.4. Let us first remark that, under our assumptions, Proposition 4.4 holds true. In
particular, by collecting (2.11)iv and (6.2)ii, one gets

T
ε

2

(
∇uε2

)
⇀ 0 weakly in L2(�× Y2). (6.4)

Notice that the function u1 ∈ H 1
0 (�) is nonnegative due to (2.12). Moreover, conditions (5.4) ensures

the validity of H4) and, as a consequence, Theorem 5.4 holds true.
Now, to identify the limit problem satisfied by (u1, û1), we take ϕ, φ ∈ D(�) and ξ ∈ H 1

per(Y ), and
use

ψε(x) = ϕ(x)+ εφ(x)ξ

(
x

ε

)
∈ H ε

γ

as test function in (2.7). We obtain

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ψε dx + εγ

∫

Ŵε
hε

(
uε1 − uε2

)
(ψε,1 − ψε,2) dσ =

∫

�

f ζ
(
uε

)
ψε dx. (6.5)

Let us consider the solution vε of problem (5.3) and write

lim
ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ψε dx = lim

ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇vε∇ψε dx

+ lim
ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇

(
uε − vε

)
∇ψε dx. (6.6)

By using assumption H1), the Hölder inequality and Theorem 5.4, one has

lim
ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇

(
uε − vε

)
∇ψε dx = 0, (6.7)

taking into account that the norm of ψε is bounded in H ε
γ .

By Theorem 5.1 (written for Z = − div(A0(u1)∇u1)), we obtain

lim
ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇vε∇ψε dx

=
1

|Y |

∫

�×Y1

A(y, u1)(∇u1 + ∇y û1)(∇ϕ + φ∇yξ) dx dy, (6.8)

in view of (6.3).
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Concerning the boundary term in (6.5), by unfolding, using Lemma 3.4 and (3.3) we get

εγ
∫

Ŵε
hε

(
uε1 − uε2

)
(ψε,1 − ψε,2) dσ

= εγ+1

∫

Ŵε
hε

(
uε1 − uε2

)
(φ1ξ1 − φ2ξ2) dσ

=
εγ

|Y |

∫

�×Ŵ

h(y)
[
T
ε

1

(
uε1

)
− T

ε
2

(
uε2

)][
ξ1(y)T

ε
1 (ϕ1)− ξ2(y)T

ε
2 (ϕ2)

]
dx dσy

6 cεγ
∥∥T ε

1

(
uε1

)
− T

ε
2

(
uε2

)∥∥
L2(�×Ŵ)

∥∥T ε
1 (ϕ1)

[
ξ1(y)− ξ2(y)

]∥∥
L2(�×Ŵ)

6 cεγ ε
1−γ

2 = cε
1+γ

2 .

Since −1 < γ < 1, passing to the limit as ε → 0, we obtain

lim
ε→0

εγ
∫

Ŵε
hε

(
uε1 − uε2

)
(ψε,1 − ψε,2) dσ = 0. (6.9)

In order to pass to the limit in the singular term of (6.5), we define

µε(x)
.
= εφ(x)ξ

(
x

ε

)
, that is ψε = ϕ + µε. (6.10)

Then one has

T
ε(µε) = εT ε(φ)ξ and ∇µε = ε∇φξ

(
·

ε

)
+ φ∇yξ

(
·

ε

)
,

and
{

i) T ε(µε) → 0 strongly in L2(�× Y),

ii) T ε(∇µε) → φ∇yξ strongly in L2(�× Y).
(6.11)

From now on, without loss of generality we assume ϕ > 0 and µε > 0 in (6.10). Indeed we can
decompose these functions in their positive and negative parts as in (2.2). Now let us split the singular
integral into two terms: one near the singularity and one far from it. For every positive δ we write

0 6

∫

�

f ζ
(
uε

)
ψε dx =

∫

{0<uε6δ}

f ζ
(
uε

)
ψε dx +

∫

{uε>δ}

f ζ
(
uε

)
ψε dx

.
= I δε + J δε . (6.12)

In view of Proposition 4.3 written for ϕ,µε > 0 we have

0 6 lim sup
ε→0

I δε

6 lim sup
ε→0

[∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ψεZδ

(
uε

)
dx

+ εγ
∫

Ŵε
hε

(
uε1 − uε2

)[
Zδ

(
uε1

)
ψε,1 − Zδ

(
uε2

)
ψε,2

]
dσ

]
. (6.13)
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Let us first show that

lim sup
ε→0

εγ
∫

Ŵε
hε

(
uε1 − uε2

)[
Zδ

(
uε1

)
ψε,1 − Zδ

(
uε2

)
ψε,2

]
dσ 6 0, (6.14)

so that it results

0 6 lim sup
ε→0

I δε 6 lim sup
ε→0

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ψεZδ

(
uε

)
dx. (6.15)

Taking into account the decomposition given in (6.10), and the fact that since ϕ, φ ∈ D(�) then ϕ1 = ϕ2

and φ1 = φ2 on Ŵε, we have

εγ
∫

Ŵε
hε

(
uε1 − uε2

){
ϕ1

[
Zδ

(
uε1

)
− Zδ

(
uε2

)]
+ εφ1

[
Zδ

(
uε1

)
ξ1 − Zδ

(
uε2

)
ξ2

]}
dσ

= εγ
∫

Ŵε
hε

(
uε1 − uε2

)
ϕ1

[
(Zδ

(
uε1

)
− Zδ

(
uε2

)]
dσ

+ εγ+1

∫

Ŵε
hε

(
uε1 − uε2

)
φ1

[(
Zδ

(
uε1

)
ξ1 − Zδ

(
uε2

)
ξ2

)]
dσ

6 εγ+1

∫

Ŵε
hε

(
uε1 − uε2

)
φ1

[(
Zδ

(
uε1

)
ξ1 − Zδ

(
uε2

)
ξ2

)]
dσ,

where we used H3), ϕ1 > 0 and the growth condition of Zδ.
From the properties of the unfolding operators (Lemma 3.4 and estimate (3.3)), the fact that Zδ 6 1

by definition and γ ∈] − 1, 1[, we get

εγ+1

∫

Ŵε
hε

(
uε1 − uε2

)
φ1

[(
Zδ

(
uε1

)
ξ1 − Zδ

(
uε2

)
ξ2

)]
dσ

6 cεγ
∥∥T ε

1 (φ1)
[
T
ε

1

(
uε1

)
− T

ε
2

(
uε2

)]∥∥
L2(�×Ŵ)

∥∥ξ1(Zδ
(
T
ε

1

(
uε1

))
− ξ2Zδ

(
T
ε

2

(
uε2

))
]
∥∥
L2(�×Ŵ)

6 cεγ ε
1−γ

2 = c ε
γ+1

2 → 0,

which implies (6.14).
Now, we write

∫

�\Ŵε
Aε

(
x, uε

)
∇uε∇ψεZδ

(
uε

)
dx =

∫

�ε1

Aε
(
x, uε1

)
∇uε1∇ψε,1Zδ

(
uε1

)
dx

+

∫

�ε2

Aε
(
x, uε2

)
∇uε2∇ψε,2Zδ

(
uε2

)
dx.

The arguments used in Theorem 2.8 of [24] to handle the term related to the first component apply also
to the second one. So that, in view of (6.4) and (6.15), we obtain

0 6 lim sup
ε→0

I δε 6
1

|Y |

∫

�×Y1

A(y, u1)(∇u1 + ∇y û1)(∇ϕ + φ∇yξ)χ {u1=0} dx dy = 0, (6.16)
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since, due to the expression of û1 given by Proposition 2.5, the functions ∇u1 and ∇y û1 vanish where u1

is equal to 0.

In order to study the limit behavior of J δε (defined in (6.12)), once again we split it as follows:

J δε =

∫

{uε1>δ}

f ζ
(
uε1

)
ψε,1 dx +

∫

{uε2>δ}

f ζ
(
uε2

)
ψε,2 dx.

The integral on the first component is the same considered in the proof of [24, Theorem 2.8]. By using

those same computations also on the second component, we get

lim
δ→0

lim
ε→0

J δε = (θ1 + θ2)

∫

�

f ζ(u1)ϕχ {u1>0}
dx =

∫

�

f ζ(u1)ϕχ {u1>0}
dx. (6.17)

Then, when passing to the limit in (6.5), we combine (6.6)–(6.9), (6.12), (6.16), (6.17) and have

∫

�×Y1

A(y, u1)(∇u1 + ∇y û1)(∇ϕ + φ∇yξ) dx dy = |Y |

∫

�

f ζ(u1)ϕχ {u1>0}
dx,

for every ϕ, φ ∈ D(�) and ξ ∈ H 1
per(Y ). By density we obtain

∫

�×Y1

A(y, u1)(∇u1 + ∇y û1)(∇ϕ + ∇yψ) dx dy = |Y |

∫

�

f ζ(u1)ϕχ {u1>0}
dx (6.18)

for every ϕ ∈ H 1
0 (�) and ψ ∈ L2(�;H 1

per(Y )). �

Proof of Theorem 2.6. From the expression of û1 given in Proposition 2.5, a standard computation

shows that u1 is a solution of the following problem:

{
− div(A0(u1)∇u1) = f ζ(u1)χ {u1>0}

in �,

u1 = 0 on ∂�.
(6.19)

Also, since the conditions given in (2.10) are satisfied by A0, Theorem 6 from [25] shows that u1 is the

unique solution of this problem. This implies the uniqueness of û1 under the condition MŴ (̂u1) = 0, in

view of Proposition 2.5. Hence convergence (2.11) holds for the whole sequence, as well as (6.4).

We lastly prove that u1 > 0 almost everywhere in �. From the strong maximum principle, by contra-

diction, we derive u1 ≡ 0 in �. This imply
∫
�
f ζ(u1)χ {u1>0}

ϕ dx = 0 for every ϕ ∈ D(�). This means

f ≡ 0 on � which contradicts assumption H2)iii. Consequently u1 > 0 almost everywhere in � and

χ {u1>0} ≡ 1. Then u1 satisfies the limit equation (2.14). �
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