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Abstract

We propose an extension of the EM algorithm and its stochastic versions for the construc-
tion of incomplete data models when the selected model minimizes a penalized likelihood
criterion. This optimization problem is particularly challenging in the context of incom-
plete data, even when the model is relatively simple. However, by completing the data,
the E-step of the algorithm allows us to simplify this problem of complete model selection
into a classical problem of complete model selection that does not pose any major diffi-
culties. We then show that the criterion to be minimized decreases with each iteration of
the algorithm. Examples of the use of these algorithms are presented for the identification
of regression mixture models and the construction of nonlinear mixed-effects models.

Keywords: EM, SAEM, Model selection, Penalized likelihood

1. Introduction

The Expectation-Maximization (EM) algorithm is undoubtedly the most popular tool
for maximum likelihood (ML) estimation in incomplete data problems of many types
[1, 2]. When the model contains nonlinearities, performing the E-step is often untractable.
Stochastic versions of EM have then been proposed to circumvent this difficulty by replac-
ing the computation of this conditional expectation with a Monte Carlo approximation in
the MCEM algorithm [3] or with a stochastic approximation method in the SAEM algo-
rithm [4, 5].

In addition to the theoretical properties of convergence of these algorithms, which have
been established under fairly general conditions, their practical interest has been shown
in many situations, such as the identification of mixture models [2] or the estimation of
parameters in nonlinear mixed effects models [6].

The ability to estimate the parameters of a model is, of course, important, but for a
modeller this is only an intermediate step in the not easy process of building the model:
estimating the parameters of a model consists, in fact, in choosing the ”best” model (in
the sense of likelihood) within a family of models that differ from each other precisely
only by the value of their parameters. However, the main challenge for the modeller is to
select the ”best” family of models.
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This problem of model selection has been studied extensively and various approaches
have been proposed, including fully Bayesian approaches [7] and criterion-based methods
[8, 9, 10]. These methods, which aim to optimize a criterion such as the AIC or the BIC,
are in fact penalized maximum likelihood methods, where the penalization concerns the
number of parameters of the model: we look for the model that best fits the observations
with the smallest number of parameters. In turn, the lasso method, originally proposed for
the construction of a linear model, uses the sum of the absolute values of the coefficients
of the model as the penalty [11]. Note that because of the form of the ℓ1-penalty, the lasso
does both variable selection and shrinkage.

The performance of the selected model, both in terms of predictive quality and ex-
planatory quality, depends of course on the criterion chosen. Nevertheless, we will not
address this problem here, but rather focus on how to minimize the criterion used. Sev-
eral optimization algorithms have already been proposed, but mainly for linear regression
problems. When the penalty concerns the number of variables selected, among a rela-
tively small number d of predictors available, it is always possible to fit and compare the
2d possible models. This exhaustive search is no longer possible and can be replaced by an
iterative search when the number of variables is important. In this way, stepwise regres-
sion consists of adding or removing a variable from the model at each step to reduce the
criterion until no new change improves it [12]. On the other hand, least angle regression
(LARS) is a very efficient algorithm for computing the lasso solution [13].

Things get seriously complicated when it comes to selecting a model with incomplete
data, but the EM algorithm and its stochastic variants will prove perfectly suited to solve
this problem. Indeed, the fact that the conditional distribution of the missing data can
be used at each iteration to ”complete” the data in the E-step allows us to transform the
problem of selecting the incomplete model into a much simpler problem of selecting the
complete model in the M-step. For example, if the model for the missing data is a linear
model to be constructed, then the ”classical” variable selection methods can be used with
the completed data. Interestingly, we can also demonstrate that the penalized likelihood
criterion decreases with each iteration of the EM algorithm.

Two examples illustrate the proposed algorithms. First, we show that this EM algo-
rithm in its deterministic version allows the identification of a regression mixture model
[14, 15, 16]. Step E consists here in computing the conditional probabilities for each ob-
servation to belong to the different classes. The completed model is then a weighted linear
regression model for each class, which we can easily build in the M step, using either BIC
or lasso. On the other hand, SAEM consists of generating the unobserved labels at each
iteration: the data are then classified in a natural way so that we can build a regression
model by class.

The second example concerns the construction of a nonlinear mixed-effects model us-
ing SAMBA (Stochastic Approximation for Model Building Algorithm) [17]. SAMBA is
an extension of SAEM for constructing complex models of this type and consists at each
iteration of estimating the parameters of the current model with maximum likelihood, gen-
erating the unobserved data using the estimated conditional distribution, and constructing
a new model using the completed data. A Monte Carlo experiment with simulated data
illustrates the good practical properties of the algorithm. Finally, an application to phar-
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macokinetic (PK) data shows that the algorithm is able to build a very good statistical
model for these data very quickly.

2. Incomplete data model building

2.1. Incomplete data model selection

The models we are interested in here involve a set of observed variables y and a set of
unobserved, or latent, variables ψ. Model selection then consists of selecting a particular
model M̂ from a (possibly very large) set of models M. If data are available, the obvious
choice is to use them for this selection, as opposed to latent data, which by definition
cannot be observed and used.

In a probabilistic framework, a model M is a joint probability distribution p(y, ψ;M).
Selection methods based on the likelihood of the model can only use the observed data
likelihood function L(M; y)

def
= p(y;M), where p(y;M) is the pdf of the observations

computed under model M. Introducing a penalty term pen(M), that favors some models
and disfavors some others is a classic way to incorporate some prior information about
the model. It is also an efficient way to control the complexity of the model to avoid
selecting a model capable of fitting observations excessively well but with poor predictive
performance. The selected model thus minimizes a penalized criterion:

U(M; y) = −2 log (p(y;M)) + pen(M)

M̂ = arg min
M∈M

U(M, y)

Two main problems arise when implementing such a model selection method: the
choice of the penalty term pen(M) and the minimization of the criterion U(M, y).

The problem of choosing the penalty term is basically a problem of statistical infer-
ence. Indeed, this choice must be guided by the statistical properties of the model M̂ that
one wants to select. Nevertheless, we will not deal here with the problem of the choice of
pen(M) and its properties. We are only concerned with the problem of minimizing the
penalized criterion U(M, y), which is a purely algorithmic problem. In other words: we
focus here on the computation of M̂, regardless of the properties of this model.

This optimization problem is particularly tricky when, on the one hand, the criterion is
difficult to compute for a given model, and on the other hand when the number of models
to be compared is very large. The natural idea to tackle such a problem in a context of
incomplete data is to extend the EM algorithm and its stochastic variants.
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2.2. EM-type algorithms

2.2.1. EM algorithm for model building

Let us define a penalized version of the complete log-likelihood function:

V (M; y, ψ) = −2 log (p(y, ψ;M)) + pen(M). (1)

We can then design the following Expectation-Maximization algorithm:

• An initial model M0 is chosen

• At iteration k

– E-step: for any M ∈ M, let

Q(M,Mk−1) = E (V (M, y, ψ) | y,Mk−1)

– M-step: compute
Mk = arg min

M∈M
Q(M,Mk−1)

Proposition 1 The sequence of observed criteria (U(Mk, y), k ≥ 0) is a decreasing
sequence. Furthermore, if the sequence (U(Mk, y), k ≥ 0) is bounded, then U(Mk, y)
converges to some U⋆ <∞.

The proof of this proposition is in the Appendix. It is a straightforward extension of
the proof of convergence of the standard EM algorithm [1].

2.2.2. SAEM algorithm for model building

When the calculation of the conditional expectation cannot be performed in a closed
form, it can be replaced by a stochastic approximation and/or a Monte-Carlo approxima-
tion. The algorithm in its most general form then consists of the following three steps at
iteration k:

• Simulation step: R realizations ψ(k,1), . . . , ψ(k,R) are drawn from the conditional
distribution p(ψ|y;Mk−1).

• Expectation step: Q(M,Mk−1) is approximated by

Q(k)(M) = Q(k−1)(M) + γk

(
1

R

R∑
r=1

V (M, y, ψ(k,r))−Q(k−1)(M)

)
.

• Maximization step:
Mk = arg min

M∈M
Q(k)(M)
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The sequence (γk) is such that
∑

k≥1 γk = +∞ and
∑

k≥1 γ
2
k < +∞. Convergence of

SAEM has been established under quite general conditions in the context of maximum
likelihood estimation [4, 5].

Combining the stochastic approximation with a Monte-Carlo approximation permits
to reduce the variance of the simulation and to better approximate the conditional expec-
tation E (V (M, y, ψ) | y,Mk−1). Note that the use of multiple draws is usually quite easy
to implement. Indeed, if an MCMC algorithm is used to generate these draws, it is pos-
sible to build multiple chains in parallel and also extract multiple draws from the same
chain.

3. Parametric incomplete data model

3.1. Model selection and parameter estimation

A parametric model Mθ assumes that the joint distribution of y and ψ is a parametric
distribution p(y, ψ; θ), where θ is a vector of parameters.

The problem of model selection then combines with a problem of parameter estima-
tion:

• For a given family of models M = {Mθ , θ ∈ Θ}, estimation consists in selecting
a particular element θ in Θ. For instance, maximum likelihood (ML) estimation
consists in selecting the element θ that maximizes the observed likelihood LM(θ; y).

• Let M = {M(ℓ) , 1 ≤ ℓ ≤ L} be a (finite) collection of families of models where
M(ℓ) = {Mθ , θ ∈ Θ(ℓ)} is a family of parametric models. Then, model selection
consists in selecting a family of models M(ℓ) in M and a particular element θ in
Θ(ℓ). In this context, model selection via penalized likelihood optimization consists
in selecting a model M̂ and a vector of parameters θ̂ by minimizing a penalized
criteria:

(M̂, θ̂) = arg min
(M(ℓ)∈M , θ∈Θ(ℓ))

{
−2 log(LM(ℓ)(θ; y)) + pen(M(ℓ), θ)

}
(2)

Let’s see how to design the EM and SAEM algorithms presented Section 2.2 to mini-
mize such criterion.

3.2. EM for parametric model building

Here, EM consists in defining a sequence of families of models (Mk ∈ M), i.e. a
sequence of indexes (lk ∈ {1, 2, . . . , L}) where Mk = M(lk), and a sequence (θk ∈ Θ(lk))
such that

(Mk, θk) = arg min
(M(ℓ)∈M , θ∈Θ(ℓ))

{
−2E (log (p(y, ψ; θ)) |Mk−1) + pen(M(ℓ), θ)

}
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The way this minimization problem is solved at each iteration of EM depends on
the model and the penalization criterion chosen. For example, in the case of a mixture of
regression models, we will see in Section 4.1 that different algorithms can be used to solve
this problem, depending on whether the penalty criterion takes into account the number
of variables in the model or their norm.

3.3. The SAMBA algorithm

The version of EM proposed above assumes that a new model must be selected at each
iteration of the algorithm. This can be particularly costly if a large number of iterations
are required to ensure convergence of an algorithm such as SAEM.

SAMBA (Stochastic Approximation for Model Building Algorithm) is a SAEM algo-
rithm for parametric model building that allows to significantly reduce model updates by
devoting most iterations to parameter estimation and very few iterations to model updat-
ing. Indeed, SAMBA exploits the fact that the optimization problem (2) can be decom-
posed into a parameter estimation problem and a model family selection problem. Indeed,
for ℓ = 1, 2, . . . L, let

θ̂(ℓ) = arg min
θ∈Θ(ℓ)

{
−2 log(LM(ℓ)(θ; y)) + pen(M(ℓ), θ)

}
(3)

be the penalized ML estimator of θ when the model is an element of the family M(ℓ).
Then, the selected family of models is

M̂ = M(ℓ̂)

= arg min
M(ℓ)∈M

{−2 log(LM(ℓ)(θ̂(ℓ); y)) + pen(M(ℓ), θ̂(ℓ))}

and the selected model is the element Mθ̂(ℓ̂) in M(ℓ̂).

Let us now look at how this property can be exploited to redesign SAEM. Assume that
model family Mk = M(ℓk) is selected at iteration k. Then, the three following steps are
performed:

• Estimation step: Compute the penalized ML estimate of θ

θk = θ̂(ℓk)

= arg min
θ∈Θ(ℓk)

{−2 log(LMk
(θ; y)) + pen(Mk, θ)}

• Simulation step: Draw R realizations ψ(k,1), . . . , ψ(k,R) of the conditional distribu-
tion p(ψ|y; θk).

• Selection step: select a new model family Mk+1 using the R sets of completed data
(y, ψ(k,1)), . . . , (y, ψ(k,R)):

Mk+1 = arg min
M(ℓ)∈M

{
min
θ∈Θ(ℓ)

{
−2Λk(θ,M

(ℓ)) + pen(M(ℓ), θ)
}}
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where

Λk(θ,M
(ℓ)) = Λk−1(θ,M

(ℓ))+γk

(
1

R

R∑
r=1

log(LM(ℓ)(θ; y, ψ(k,r)))− Λk−1(θ,M
(ℓ))

)

The main interest of this method lies in the fact that the selection step is generally very
easy to implement once the data is complete and requires little computational effort.

On the other hand, the various numerical experiments we have conducted have shown
that a practical and efficient stopping rule is to consider SAMBA has converged as soon as
Mk+1 = Mk. With this stopping rule, SAMBA usually converges in very few iterations
with a constant step sequence γk = 1.

Finally, note that the estimation step can be performed using the standard SAEM al-
gorithm for ML estimation [4, 5].

4. Illustrations

4.1. Mixture of linear regression models

4.1.1. The model

Finite mixture models aim to identify population heterogeneity through a finite set
of latent classes. Within this framework, regression mixture models specifically seek to
identify differences in the effect of a set of predictors on an outcome. These models are
therefore quite widely used in various fields such as the social and behavioral sciences
[14].

Here, we consider univariate observations y1, y2 ... yn resulting from a mixture of G
linear Gaussian models:

yi ∼
G∑
g=1

πg N
(
Xi βg , σ

2
g

)
where Xi is vector of d individual predictor variables and where βg is a vector of coeffi-
cients that differ between populations.

The set of parameters of the model is θ = (β1,1, β1,2 . . . , βG,d, σ
2
1, . . . , σ

2
G, π1, . . . , πG)

and the probability density function of the observations is

p(y ; θ) =
n∏
i=1

(
G∑
g=1

πg√
2πσ2

g

exp

{
− 1

2σ2
g

(yi −Xi βg)
2

})
.

Among the various estimation and selection methods that have already been proposed
for these models, we can mention, for example, a method for robust parameter estimation
[18] and a method for selecting the number of components [14].
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The regression models we want to build are models with a reduced number of pre-
dictors. In other words, we assume that several components of βg are null in each sub-
population and that the list of null coefficients may differ between subpopulations. For
each subpopulation, therefore, the problem is both one of model selection (selecting the
relevant predictors) and estimation (estimating the non-zero coefficients).

This specific problem of variable selection in a regression mixture model can be ad-
dressed by several methods. In a Bayesian framework, a reversible jump Markov chain
Monte Carlo has recently been proposed to model each component as a sparse regression
model [15]. Alternatively, model selection and parameter estimation problems can be
solved simultaneously by optimizing a penalized likelihood criterion of the form:

U(θ ; y) = −2 log(p(y ; θ)) + pen(θ).

Namely, the selected family of models is implicitly defined by the list of non-zero esti-
mated coefficients. The role of the penalization is to select the regression variables in each
subpopulation. It is therefore only concerned with the vectors of coefficients β1, . . . ,βG.

A joint selection of the number of components and variables is performed in [19]
using an extension of the Akaike Information Criteria (AIC). The method consists in
fitting different models using EM and then comparing them with the proposed criterion.
Such an approach is difficult to consider when there are a large number of predictors, as
the number of models to be fitted can be very large. Several penalties based on the on
the ℓ1 norm of the βg’s are compared in [16]. Again, EM is used to fit the model, but a
quadratic approximation of the penalty term is introduced to perform the M-step of the
algorithm.

We will see that variable selection using a penalized criterion in this context can indeed
be easily integrated into the EM and SAEM algorithms.

4.1.2. EM and SAEM algorithms

For this kind of mixture model, it is convenient to introduce a sequence of label vari-
ables ψ1, ψ2 ... ψn where ψi ∈ {1, 2, . . . , G} denotes the subpopulation from which yi
comes. Then, the complete regression model writes

yi =
G∑
g=1

(Xi βg + σg ei) 1Iψi=g.

where ei∼i.i.d.N (0, 1)

It is assumed here that the penalization term only affects the regression coefficients
and decomposes as pen(θ) =

∑G
g=1 pen(βg). Then, the completed objective function

defined in (1) writes:

V (θ; y, ψ) =
G∑
g=1

(
n∑
i=1

(
−2 log(πg) + log(2πσ2

g) +
1

σ2
g

(yi −Xi βg)
2

)
1Iψi=g + pen(βg)

)
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At iteration k of EM, E-step consists in computing

ti,g,k = E (1Iψi=g|yi; θk−1)

=
(πg,k−1/σg,k−1) exp

{
− 1

2σ2
g,k−1

(yi −Xi βg,k−1)
2
}

∑G
h=1(πh,k−1/σh,k−1) exp

{
− 1

2σ2
h,k−1

(yi −Xi βh,k−1)
2
}

and M-step requires to compute

πg,k =
1

n

n∑
i=1

ti,g,k

βg,k = arg min
β∈Rd

(
n∑
i=1

ti,g,k(yi −Xi β)
2 + pen(β)

)

σ2
g,k =

∑n
i=1 ti,g,k(yi −Xi βg,k)

2∑n
i=1 ti,g,k

The only difficulty here is in updating the vectors of the coefficients β1,k, . . . ,βG,k.
The problem that now arises, however, is much simpler than the original problem. Namely,
it involves selecting the variables of a linear regression model for each group and esti-
mating its parameters. There are well-known algorithms that can be used for this step,
including least angle regression (LARS) to minimize the lasso loss function or stepwise
variable selection for BIC or AIC. If the number d of predictor variables is not too large,
it is even possible to fit the 2d models for each subgroup and select the best one according
to the chosen criterion.

A stochastic approximation version of this EM algorithm is straightforward to derive.
Indeed, the simulation step of SAEM at iteration k consists in computing the conditional
probabilities (ti,g,k , 1 ≤ i ≤ n, 1 ≤ g ≤ G) as we did for the EM algorithm and generat-
ing R sequences of labels ψ(k,1), . . . , ψ(k,R) with these probabilities. The expectation step
then reduces to updating the weights as follows:

wi,g,k = wi,g,k−1 + γk

(
1

R

R∑
r=1

1I
ψ
(k,r)
i =g

− wi,g,k−1

)

The maximization step is then identical to that of the EM algorithm, with the condi-
tional probabilities (ti,g,k) replaced by the weights (wi,g,k).

4.1.3. Numerical experiment

The simulation of the data and the implementation of the algorithms were carried out
using R version 4.0.3.

We consider G = 2 subgroups of respectively n1 = 80 and n2 = 120 observations.
For each individual, d = 10 regression variables were generated from a standard normal
distribution. All the coefficients were set to 0 except β1,3 = 2 and β1,5 = −1 for the first
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group and β2,2 = 2 and β2,4 = −1 for the second group. The standard deviation of the
residual error is the same in both groups: σ1 = σ2 = 2.

Figure A.1 shows the convergence of EM when BIC is used, i.e. setting pen(βg) =
log(200)

∑10
j=1 1Iβg,j ̸=0 for g = 1, 2. Initial covariate model is an empty model for g = 1

and a full model for g = 2.

We can observe that EM converges very quickly in this example, finding the optimal
model (which happens to be the ”true” model used for the simulation here) in only five
iterations. The next ten iterations permit to improve the estimation of the parameters.

The convergence of SAEM is now shown in Figure A.2, using the same initial estimate
and criterion. It can be seen that the behavior of SAEM is similar to that of EM, but with
random fluctuations that decrease during the iterations as the step size γk decreases.

Of course, the convergence of the algorithm does not always go so well... The next
example, based on the use of lasso, will then show us that very simple extensions to the
basic algorithm can be used to improve both the convergence of the algorithm and the
quality of the solution obtained.

Instead of a ℓ0 norm for BIC, lasso regularization is a ℓ1 norm: pen(βg) = λ
∑10

j=1 |βg,j|
for g = 1, 2. Parameter λ controls the number of non-zero coefficients in the regression
models.

Figure A.3-A shows the convergence of the regression coefficients of the first sub-
group only when λ = 15. We can see that a spurious variable is added to the first re-
gression model since β̂1,6 = −0.063. The estimated value of this coefficient seems very
small and would lead us instead to eliminate the 6th covariate from the model. Such a
filtering can be automatically performed in several ways. A particularly efficient method
is to keep only those variables that are significantly correlated with the data. For each
subgroup, we can then compute at each iteration of EM the correlation between each co-
variate and the weighted data (using the (ti,g,k , 1 ≤ i ≤ n, 1 ≤ g ≤ G) as weights), and
eliminate those with a small correlation. We see Figure A.3-B that the 6th covariate is
eliminated when a minimum absolute correlation of 0.2 is required. One could also think
of increasing the value of λ to eliminate this covariate. Nevertheless, Figure A.3-C shows
that EM converges poorly with λ = 18 instead of λ = 15 : This is indeed an example
where EM converges to a local minimum of the criterion. Convergence of EM is displayed
Figure A.3-D when the regularization coefficient λ changes during the iterations using the
following scheme: λk = 15 + 3k/K. Progressively increasing the penalty thus makes it
possible to improve the convergence of the algorithm in this example.

Figure A.3-A shows the convergence of the regression coefficients of the first sub-
group only when λ = 15. We see that a spurious variable has been added to the first
regression model, as β̂1,6 = −0.063. The estimated value of this coefficient appears to be
very small and would lead us to eliminate the 6th covariate from the model. Such filtering
can be performed automatically in a number of ways. One particularly efficient method
is to keep only those variables that are significantly correlated with the data. For each
subgroup, we can then compute the correlation between each covariate and the weighted
data at each iteration of EM (using (ti,g,k , 1 ≤ i ≤ n, 1 ≤ g ≤ G) as weights) and
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eliminate those with low correlation. We see in Figure A.3-B that the 6th covariate is
eliminated when a minimum absolute correlation of 0.2 is required. One could also think
of increasing the value of λ to eliminate this covariate. However, Figure A.3-C shows that
EM converges poorly with λ = 18 instead of λ = 15: This is indeed an example of EM
converging to a local minimum of the criterion. The convergence of EM is shown in Fig-
ure A.3-D when the regularization coefficient λ changes during the iterations according
to the following scheme: λk = 15+3k/K. Thus, the fact that the penalty is progressively
increased makes it to improve the convergence of the algorithm.

These variants of EM, which we have introduced here (selecting variables only among
those that are statistically significant, using a non-constant penalty parameter during iter-
ations), seem to improve the convergence of the algorithm. There is no doubt that other
modifications could also improve this convergence. A more comprehensive study on this
topic would certainly be worthwhile.

4.2. Nonlinear mixed-effects models

4.2.1. The model

Let yi be the ni-vector of measurements for individual i, 1 ≤ i ≤ N , where N is
the number of individuals. To account for variability among individuals, we assume that
the model for yi depends on a vector ψi of individual parameters and possibly a vector of
population parameters ξ. For example, a model for continuous longitudinal data writes

yij = f(tij, ψi) + g(tij, ψi, ξ)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni. (4)

were yij is the observation obtained from subject i at time tij . The residual errors (εij) are
assumed to be standard normal random variables. The residual error model is defined by
function g in model (4). A limited number of possible error models will be considered in
the numerical examples: constant (g = a), proportional (g = bf ), combined1 (g = a+bf )
and combined2 (g =

√
a2 + b2f 2).

On the other hand, we assume a linear Gaussian model for the vector of individual
parameters ψi. More precisely, we assume that there exists a one-to-one transformation
h, a vector of typical parameter values ψpop, a vector of coefficients β and a covariance
matrix Ω such that

h(ψi) ∼ N (h(ψpop) + Ciβ , Ω) , 1 ≤ i ≤ N. (5)

where matrix Ci is formed from individual covariates that are supposed to explain some
of the variability of the ψi’s.

Building a model in this context is particularly complex, as it is a matter of selecting
the structural model f , the residual error model g, the transformation h, the covariate
model, i.e. the structure of matrix Ci, and the correlation model, i.e. the structure of
matrix Ω.

Initial methods for constructing the covariate and correlation models are proposed in
[20]. The vast majority of the methods developed thereafter mainly concern the covariate
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model [21, 22, 23]. We will see here how to use SAMBA to build the covariate model,
the correlation model, and the residual error model, given the structural model f and the
transformation h.

We propose to use the corrected version of the BIC proposed in [24] as a model selec-
tion criterion. This criterion, denoted BICc, penalizes differently the different components
of the vector θ = (ψpop, β, Ω, ξ).

Let ntot =
∑

i ni be the total number of observations, dψpop be the number of pa-
rameters in the structural model f , dβ be the total number of coefficients in the covariate
model, and dΩ be the number of non-zero variances and correlations in Ω. Then for each
model family M(ℓ) and each θ ∈ Θ(ℓ),

penBICc(M
(ℓ), θ) = log(ntot)(dψpop + dξ) + log(N)(dβ + dΩ)

4.2.2. SAMBA for nonlinear mixed-effects models

First, we can note that the criterion BICc depends only on the non-zero elements of
the components of θ, not on their values. Then, for a given family of models M(ℓ), the
penalization used in (3) to define the penalized ML estimate of θ is the same for each
θ ∈ Θ(ℓ). Consequently,

θ̂(ℓ) = arg min
θ∈Θ(ℓ)

{−2 log(LM(ℓ)(θ; y))} .

At each iteration of SAMBA, the Estimation step and the Simulation step can be per-
formed using the SAEM algorithm for ML estimation and a Markov chain Monte Carlo
algorithm, respectively, as described in [25]. These algorithms have already proven their
worth. We will not go into further detail here, considering that we have the ML estimate
θk and R realizations of the conditional distribution p(ψ|y; θk) available at iteration k.

However, the new problem we face is the one related to the Selection step. We will
take advantage of the fact that the joint distribution of y and ψ naturally decomposes into
a product of two distributions:

p(y, ψ ; θ) = p(ψ ; ζ)p(y|ψ ; ξ)

where ζ = (ψpop, β, Ω). We can then split the model selection problem into two subprob-
lems: the selection of the linear Gaussian model Mψ on the one hand, and the selection
of the conditional model My|ψ on the other. Note that for the continuous data defined in
(4), the selection of the conditional model is reduced to the selection of the residual error
model when the structural model f is fixed.

For any k > 0, let αk =
∑k

m=1(1− γm)/R. Then,

Mψ,k+1 = argmin
M

(ℓ)
ψ ∈Mψ

{
minζ∈Z(ℓ)

{
−2Λψ,k(ζ,M

(ℓ)
ψ ) + log(N)(dβ + dΩ)

}}
(6)

My|ψ,k+1 = argmin
M

(ℓ)
y|ψ∈My|ψ

{
minξ∈Ξ(ℓ)

{
−2Λy|ψ,k(ξ,M

(ℓ)
y|ψ) + log(ntot)dξ

}}
(7)
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where

Λψ,k(ζ,M
(ℓ)
ψ ) =

∑k
m=1

∑R
r=1 αk log(LM

(ℓ)
ψ
(ζ;ψ(m,r))) (8)

Λy|ψ,k(ξ,M
(ℓ)
y|ψ) =

∑k
m=1

∑R
r=1 αk log(LM

(ℓ)
y|ψ

(ξ; y, ψ(m,r))) (9)

The first optimization problem (6) is to select the linear Gaussian model that maxi-
mizes the penalized weighted likelihood defined in (8). This is a fairly classical problem
that does not present any particular difficulties [26, 27].

The second optimization problem (7) can be easily solved by directly computing and
comparing the selection criterion for the different possible residual error models.

4.2.3. Numerical experiment

This numerical experiment is based on 100 simulations of the same experiment. For
each simulation, data were generated from a two-compartment pharmacokinetics (PK)
model:

dAc
dt

(t) = − Q

Vc
Ac(t) +

Q

Vp
Ap(t)−

Cl

Vc
Ac(t)

dAp
dt

(t) =
Q

Vc
Ac(t)−

Q

Vp
Ap(t)

(10)

Here Ac(t) and Ap(t) are, respectively, the amounts of drug in the central and periph-
eral compartments at time t while Cc(t) = Ac(t)/Vc is the concentration in the central
compartment. The parameters of the model are the central and peripheral volumes Vc and
Vp and the central and intercompartmental clearances Cl and Q.

N = 100 vectors of 50 individual covariates Ci = (C1,i, . . . , C50,i) were drawn from
standard normal distributions. Then, N = 100 vectors of individual parameters ψi =
(Vc,i, Vp,i, Cli, Qi) were obtained from log-normal distributions:

log(Vc,i) ∼ N (log(6) + 0.2C1,i + 0.3C2,i , 0.2
2) ,

log(Vp,i) ∼ N (log(10) , 0.32) ,

log(Cli) ∼ N (log(20) + 0.3C3,i , 0.4
2) ,

log(Qi) ∼ N (log(5) + 0.4C1,i , 0.4
2) ,

Cor(log(Vc,i), log(Cli)) = 0.6 .

Observed drug concentrations were then simulated for the N = 100 individuals at times
(0.1h, 0.25h, 0.75h, 1h, 2h, 4h, 8h) when a single dose of 1000mg is administrated by
intravenous bolus at t = 0 and assuming a proportional error model:

yij ∼ N
(
Cc(tj ; ψi) , 0.2

2C2
c (tj ; ψi)

)
We then used SAMBA with each of the 100 simulated trials to build the statistical

model. The initial model assumes that there are no relationships between covariates and
individual parameters, no correlation between random effects, and a constant error model.
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Each time, the algorithm selected a model that closely resembled the ”true” model
used for the simulation. Indeed, on average over the 100 replicates, 3.92 of the 4 existing
relationships between covariates and individual parameters were correctly detected (true
positives), while only 2.44 of the 196 nonexisting relationships were falsely considered to
exist (false positives). The existing correlation between log(Cl) and log(Vc) was correctly
detected in 84 of the 100 replicates, while a total of 8 false correlations were detected.
Finally, the correct error model was identified in 94% of the cases, while a combined
model was selected in the remaining 6% of the simulations.

It is important to emphasise that in the cases where the true model was not selected, the
final model was very often better than the true model in terms of corrected BIC. Indeed,
the difference in BICc between these two models was between -2 and -30 in 71% of the
cases and between +2 and +9 in only 6% of the cases. These replicates correspond to
runs where the algorithm failed to converge to the global minimum of the chosen criterion.

Finally, we note that the average time of a run was 75s (sd=24s) on a standard laptop.

4.2.4. Application to tranexamic PK data

Tranexamic acid (TXA) is an antifibrinolytic agent that controls bleeding. In [28],
a population-based pharmacokinetic study conducted to quantify TXA exposure is de-
scribed. Data were obtained from a double-blind, parallel-arm, randomized study: 165
patients received an intravenous bolus of TXA 1 g followed by a continuous infusion of
either placebo (group A) or TXA 1 g (group B) for 8 hours. A total of 811 TXA plasma
concentrations were measured (see Figure A.4).

The structural model is the two-compartment PK model described in (10) and already
used for the simulation study. A log-normal distribution is used for the four individual
PK parameters. There are 12 individual covariates, including 11 physiological covariates
(age, sex, height, weight, body mass index (BMI), body surface area (BSA), lean body
weight (LBW), glomerular filtration rate (GFR), creatinine clearance (CrCl), CKD-EPI,
Cockroft, and treatment group as an additional categorical covariate. All continuous co-
variates were log-transformed to account for linear relationships between log-parameters
and log-covariates.

The initial model contains no relationship between parameters and covariates and no
correlation between random effects. It then took only 3 iterations and 220” for SAMBA
to converge and propose a statistical model for these data. The estimated parameters for
this model are shown in Table A.1.

The covariate model shows an effect of weight on central volume, BSA on peripheral
volume, GFR on clearance, and of LBW on intercompartmental clearance. In addition,
the model indicates that the route of administration has an influence on peripheral volume
and clearance.

Positive correlations are found between clearance and the two volumes. Note that
the correlation model constructed necessarily has a block structure. The correlation be-
tween the two volumes ρVc,Vp is therefore estimated, although it is not significant and can
therefore be considered zero.
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The value of the selection criterion BICc is 5560 for this selected model and 5874 for
the initial model. Note that the model proposed in [28] contains only one relationship
between Crcl and clearance and one between weight and central volume, along with a
unique correlation between clearance and central volume. The value of BICc for this
model is 5815.

Finding the ”best” model in terms of BICc does not necessarily mean that this model
is a ”good” model for fitting these data. It is therefore important to validate this model
choice by ensuring, on the one hand, that the various hypotheses assumed are not rejected
and that the model has good predictive performance. In this regard, it is worth noting
that all components of the selected model are statistically significant, which allows us
to confirm the hypotheses established regarding the relationships between covariates and
parameters, as well as between parameters. Visual predictive check (VPC) is displayed
in Figure A.5. This diagnostic tool allows visual comparison of multiple quantiles of the
empirical distribution of the data with prediction intervals estimated using Monte Carlo
simulation [6]. Thus, we see that the observed data are quite consistent with the predic-
tions of the model, which confirms the very good predictive capabilities of the model. In
conclusion, there is no statistical reason to reject the model built by SAMBA.
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Appendix A. Proof of Proposition 1

Using the fact that, for any models M and M′ in M,

log (p(y;M)) = E (log (p(y;M)) |y;M′)

= E (log (p(y, ψ;M)) |y;M′)− E (log (p(y, ψ|ψ;M)) |y;M′)

we have that

U(Mk, y)− U(Mk−1, y)

=− 2 log (p(y;Mk)) + pen(Mk) + 2 log (p(y;Mk−1))− pen(Mk−1)

=− 2E (log (p(y, ψ;Mk)) |y;Mk−1) + 2E (log (p(y, ψ|y;Mk)) |y;Mk−1)

+ 2E (log (p(y, ψ;Mk−1)) |y;Mk−1)− 2E (log (p(y, ψ|y;Mk−1)) |y;Mk−1)

+ pen(Mk)− pen(Mk−1)

= E (V (y, ψ,Mk)|y;Mk−1)− E (V (y, ψ,Mk−1)|y;Mk−1)

+ 2E (log (p(y, ψ|y;Mk)) |y;Mk−1)− 2E (log (p(y, ψ|y;Mk−1)) |y;Mk−1)

By construction,

E (V (y, ψ,Mk)|y;Mk−1) ≤ E (V (y, ψ,Mk−1)|y;Mk−1)

On the other hand,

E (log (p(y, ψ|y;Mk−1)) |y;Mk−1)− E (log (p(y, ψ|y;Mk)) |y;Mk−1)

is a Kullback-Leibler divergence and is therefore positive (it is null if and only if Mk =
Mk−1).

We deduce that U(Mk, y) < U(Mk−1, y) if Mk ̸= Mk−1 and the sequence (U(Mk, y))
is a decreasing sequence. □
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value s.e. p.value
Vc,pop 6.36 0.18
Vp,pop 10.78 0.28
Qpop 23.46 0.90
Clpop 5.08 0.12
βVc,weight 0.69 0.12 < 10−5

βVp,BSA 1.30 0.15 < 10−5

βVp,group -0.30 0.05 < 10−5

βQ,LBW 0.91 0.16 < 10−5

βCl,GFR 0.56 0.04 < 10−5

βCl,group 0.12 0.03 2 10−4

ωVc 0.32 0.02
ωVp 0.17 0.03
ωQ 0.17 0.04
ωCl 0.22 0.01
ρVc,Cl 0.45 0.08 < 10−5

ρVp,Cl 0.72 0.15 < 10−5

ρVc,Vp 0.04 0.19 0.80
b 0.11 0.00

Table A.1: Estimated population parameters and their standard errors of the tranexamix PK model. The
p-value is that of the t-test used to test if a parameter is null.
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Figure A.1: Convergence of EM using BIC
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Figure A.2: Convergence of SAEM using BIC
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Figure A.3: Convergence of EM using lasso. A: with λ = 15 ; B: with λ = 15 and ρmin = 0.2 ; C: with
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Figure A.4: tranexamic pharmacokinetic data
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Figure A.5: Visual predictive check for the two treatment groups. Observed quantiles of order 10%, 50%
and 90% are displayed (solid lines) with their respective prediction intervals estimated by Monte Carlo
simulation under the model built by SAMBA.
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