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Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Argentina

Commerson’s dolphins (Cephalorhynchus commersonii) are separated into the
subspecies C. c. commersonii, found along southern South America (SA) and the
Falkland Islands/Islas Malvinas (FI/IM), and C. c. kerguelenensis, restricted to the
subantarctic Kerguelen Islands (KI). Following the dispersal model proposed for the
genus, the latter is thought to have originated from SA after a long-distance dispersal
event. To evaluate this biogeographic scenario, a distribution-wide, balanced sampling
of mitochondrial DNA (mtDNA) control region sequences was designed. New tissue
samples from southern Chile, Argentina, FI/IM, and KI were added to published
sequences from SA and KI, for a total of 256 samples. Genetic diversity indices, genetic
and phylogeographic structure, and migration rates were calculated. One haplotype was
shared between subspecies, with which all haplotypes of C. c. kerguelenensis formed
a distinct group in the haplotype network. A new haplotype for C. c. kerguelenensis is
reported. Differentiation in haplotype frequencies was found among localities within the
distribution of C. c. commersonii, yet the phylogeographic signal was only statistically
significant between subspecies. Coalescent-based historical gene flow estimations
indicated migration between the northern and southern portions of the species’ range
in SA as well as between SA and the FI/IM, but not between these and the KI. The
net nucleotide divergence between dolphins from SA and the FI/IM was lower than the
recommended threshold value suggested for delimiting subspecies, unlike that found
between C. c. commersonii and C. c. kerguelenensis. The results are consistent with
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the model of post-glacial colonization of KI by South American C. commersonii, followed
by an ongoing divergence process and subspecies status. Thus, C. c. kerguelenensis
may represent the most recent diversification step of Cephalorhynchus, where isolation
from their source population is driving a process of incipient speciation.

Keywords: Cephalorhynchus commersonii, colonization, divergence, last glacial maximum, mitochondrial DNA,
phylogeography

INTRODUCTION

Past climate fluctuations are known to have influenced the
distribution of many species (Hewitt, 2000), as well as their
population genetic structure (Collin and de Maintenon, 2002;
Taylor and Hellberg, 2006). The late Pleistocene presented
alternating glacial and interglacial periods which had an impact
on a global scale (Mackensen, 2004) and shaped the geographic
distribution and diversification of several marine organisms,
especially within coastal and benthic habitats (Bennett, 1990;
Thatje et al., 2005). Glaciations during the late Pleistocene
induced changes in the distribution of pinnipeds, such as the
South American fur seal (Arctocephalus australis), and the South
American sea lion (Otaria byronia) (Túnez et al., 2013, 2010;
Oliveira et al., 2017). Changes in the geographic range of southern
elephant seals (Mirounga leonina) during the Holocene are
thought to have been driven by similar processes (de Bruyn
et al., 2009). Such climatic and oceanographic variations have also
influenced the current distribution patterns of cetacean species.
For example, demographic inference based on mitochondrial
DNA (mtDNA) suggests that after glacial events during the
Pleistocene white-beaked dolphins (Lagenorhynchus albirostris)
expanded into the North Atlantic (Banguera-Hinestroza et al.,
2010). In a similar manner, it has been shown that the
population expansion of beluga whales (Delphinapterus leucas)
into the western Nearctic and their dispersal routes from
glacial refuges relates to the retreat of the Pleistocene ice cover
(O’Corry-Crowe et al., 1997).

Climatic variations have also shaped the distribution
and genetic population patterns of dolphins in the genus
Cephalorhynchus. This genus comprises four small-sized
species which live in coastal, temperate to subantarctic
waters around the Southern Hemisphere (Dawson, 2018).
According to the radiation model proposed for this genus,
speciation was promoted by periods of changing climate, and
followed the direction of the West Wind Drift, ultimately
giving rise to the current discontinuous distribution of the
four recognized species (Pichler et al., 2001). This process is
thought to have started in southern Africa, where presently
Heaviside’s dolphins (C. heavisidii) occur off the west coast
of South Africa and Namibia. Subsequently, Cephalorhynchus
arrived at the inshore waters of New Zealand, giving rise
to Hector’s dolphins (C. hectori) and later diverging into
two subspecies, C. hectori hectori in the South Island and
C. hectori maui in the North Island (Baker et al., 2002). The
radiation process of the genus continued eastward across the

Abbreviations: SA, South America; FI/IM, Falkland Islands/Islas Malvinas; KI,
Kerguelen Islands; NSA, northern South America; SSA, southern South America.

South Pacific, arriving at southern South America (SA) where
there are now two recognized species, the Chilean dolphin
(C. eutropia) and the Commerson’s dolphin (C. commersonii).
Chilean dolphins inhabit the coastal waters of central and
southern Chile, from Valparaíso to Isla Navarino (Goodall,
1994) and a few have also been documented on the Atlantic
coast at Puerto Deseado, Argentina (Morgenthaler et al.,
2014). Their current genetic structure along the Chilean
coastline is consistent with predictions from the Expansion-
Contraction biogeographic model with a poleward post-glacial
shift (Pérez-Alvarez et al., 2016).

Commerson’s dolphins are mainly found along the coast of
Argentina south to the central and eastern Strait of Magellan,
and the Falkland Islands/Islas Malvinas (FI/IM) (Brownell
and Praderi, 1985; Dawson, 2018). It has been suggested
that Commerson’s dolphins in the latter region might have
diverged significantly from their conspecifics off SA, even
corresponding to a separate subspecies (Cipriano et al., 2011).
Commerson’s dolphins are also found 8,500 km away from
SA, in the coastal waters of the subantarctic Kerguelen Islands
(KI) in the southern Indian Ocean (Dawson, 2018). This
wide gap in distribution is in marked contrast with the
distribution of the other Cephalorhynchus species and makes
the geographic range of C. commersonii the broadest in the
genus (Goodall et al., 1988). In addition to the conspicuous
geographical distance between SA and KI, morphological and
coloration differences (Robineau, 1984) as well as acoustic
differences (Dziedzic and De Buffrenil, 1989) have been noted
between individuals of both areas. Some of these lines of
evidence led to a subspecies proposal (Robineau, 1986) and
a subsequent formal description as C. c. kerguelenensis, based
on morphological, skeletal and genetic characters (Robineau
et al., 2007). Following the diversification model proposed for
the genus, C. c. kerguelenensis is thought to have originated
around 10,000 years ago through the establishment of a few
migrants from SA (Pichler et al., 2001), akin to a long-
distance dispersal and an establishment model (as defined
by Crisp et al., 2011). This model represents an allopatric
speciation process, originating with an exceptional dispersal
event, from which a new population then establishes across
a barrier at a sufficient distance to limit gene flow between
the two populations (Crisp et al., 2011). Since the subspecies
description, additional studies of the genetic diversity of
C. commersonii have been conducted along the southern
Argentine coast (Pimper et al., 2010; Cipriano et al., 2011).
However, no further investigation has been conducted on the
population genetic structure over the complete distribution of
the two subspecies.
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To explore the establishment of C. commersonii in the KI and
to test whether genetic data support the proposed long-distance
dispersal and establishment model, we designed a geographically
extensive, balanced sampling scheme throughout the global
distribution of Commerson’s dolphins using new and published
mtDNA control region sequences. We included samples from the
previously unsurveyed areas of FI/IM, southern Chile (Fitzroy),
Argentina (Bahía Camarones, Punta Quilla, and Monte León),
new samples from Puerto Deseado (Argentina), and additional
samples from the KI. To complete a general phylogeographic
overview of the species, we combined this new information with
published sequences from the Strait of Magellan, Tierra del Fuego
(Argentina), and the KI.

MATERIALS AND METHODS

Origin of Samples
Skin samples were collected with a biopsy dart from
Commerson’s dolphins in Fitzroy (Chile, 52◦43.28′ S, 71◦23.32′
W), the FI/MI (52◦8.85′ S, 60◦1.77′ W), and the KI (49◦25.82′
S, 70◦10.75′ W) and stored in 90% ethanol. Samples from
the Argentine localities of Bahía Camarones (45◦2.61′ S,
65◦33.68′ W), Puerto Deseado (47◦45.97′ S, −65◦49.83′ W),
Punta Quilla (50◦30.84′ S, 68◦58.39′ W), and Monte León
(50◦8.38′ S, 68◦18.13′ W) were collected by skin “swabbing”
from dolphins (Harlin et al., 1999). In order to obtain a balanced,
distribution-wide sampling of sequences, we also included
previously published sequences from missing or under-sampled
areas in the distribution of this species, particularly 49 from SA
off the Strait of Magellan, Chile, Tierra del Fuego (site Area A3),
and Argentina (Pimper et al., 2010; Cipriano et al., 2011) and
11 from the KI (Robineau et al., 2007). Haplotype frequencies
were retrieved from their respective publications. We decided
against including additional published sequences because their
geographic proximity to some of our sampling sites could
potentially imbalance our analyses.

Mitochondrial Control Region
Amplification
Laboratory analyses were conducted at the Universidad de Chile,
for samples collected in SA and the KI; at the Molecular Core
Facility at the Université de La Rochelle for samples collected
at the KI; and at and at Oregon State University for samples
collected in the FI/IM. DNA extractions were performed on
the tissue samples following either a modified salt-extraction
protocol (Aljanabi and Martinez, 1997), with an additional
proteinase K digestion, or a standard phenol/chloroform
extraction (e.g., Pichler et al., 2001). Amplification of the mtDNA
control region was done with the primers M13 Dlp1.5 5′-
TGTAAAACGACAGCCAGTTCACCCAAAGCTGRARTTCTA-
3′ (forward) and 8G 5′-GGAGTACTATGTCCTGTAACCA-3′
(reverse) (Dalebout et al., 2005). We performed the
amplifications in a total reaction volume of 25.6 µL, consisting
of 12.7 µL water, 5 µL 10X Buffer (Invitrogen), 2 µL 50 mM
MgCl2 (Invitrogen), 2 µL 10 pM dNTPs (Invitrogen), 1 µL
10 pM of each primer (2 µL total), 0.5 µL Taq Polymerase

(recombinant) and Platinum (Invitrogen), and 70–150 ng of
DNA. Amplification was conducted with the following profile:
preliminary denaturation of 2 min at 94◦C; followed by 30
cycles of, denaturation for 30 s at 94◦C, annealing for 40 s
at 56◦C, polymerase extension for 40 s at 72◦C; and a final
polymerase extension for 10 min at 72◦C and an infinite hold
temperature of 4◦C. Each PCR amplification included positive
and negative controls.

PCR products were run on a 1% agarose gel, stained
with either EtBr or 0.3% GelRed and bands were visualized
under UV light. PCR products were purified and sequenced
in both directions either at Oregon State University or
Macrogen Inc., Seoul, South Korea, on a 3730XL DNA Analyzer
(Applied Biosystems).

Genetic Diversity and Genetic Structure
We manually aligned all sequences and visually checked
polymorphic sites either in Sequencher 4.7 (GeneCodes) or in
Proseq 3.5 (Filatov, 2009). A Median-Joining haplotype network
was constructed in Network 10.2.0.01 (Bandelt et al., 1999) and
the final figure was prepared in Popart (Leigh and Bryant,
2015). We estimated the following genetic diversity indices in
Dnasp 5.10.01 (Librado and Rozas, 2009) for each sampling
locality: number of haplotypes (h), number of polymorphic
sites (S), haplotype diversity (Hd), nucleotide diversity (π),
and pairwise differences between sequences (5). We evaluated
pairwise population genetic differentiation between sampling
localities in Arlequin 3.5.2 (Excoffier and Lischer, 2010) by
calculating both genetic structure (FST) and phylogeographic
structure (8ST) indices. Statistical significance of both indices
was evaluated with 1,000 permutations and a significance level of
0.05, and we generated False Discovery Rates adjusted p-values
to correct for multiple comparisons in each analysis (Pike,
2011). To explore genetic and phylogeographic structure at
a larger scale, we organized the sampling localities in two
additional ways: the first followed a geographic criterion and
considered three groups (SA, FI/IM, and KI) and the second
grouping criterion followed the distribution of each subspecies
and considered two groups, C. c. commersonii (SA and FI/IM)
and C. c. kerguelenensis (KI). With these two grouping schemes,
an Analysis of Molecular Variance (AMOVA) (Excoffier et al.,
1992) was performed to assess the portion of genetic variance
among-groups, among-populations within groups and within-
population (Excoffier et al., 1992) and to evaluate if and how
the distribution of variance changes if FI/IM samples are
treated a separate group from SA samples. Similarly, we used
Permut 2.0 (Pons and Petit, 1996) to test for the existence
of phylogeographic structure between geographic areas (SA,
FI/IM, and KI) and between subspecies. This was achieved by
permuting the calculated FST and 8ST values 10,000 times. Since
FST is a genetic differentiation index between populations based
on haplotype frequencies, and 8ST considers both haplotype
frequencies and genetic distance between haplotypes, a higher
value of 8ST compared to FST would indicate the existence
of significant phylogeographic structure. The percentage of

1www.fluxus-engineering.com
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permutations equal or higher than the observed 8ST value
determines the p-value. Finally, with the aim of evaluating the
delimitation of cetacean subspecies using genetic data (Taylor
et al., 2017) we calculated net nucleotide divergence (dA) (Nei,
1987) in DnaSP. All new samples were checked for duplicates
by either identifying individual markings in the field and/or by
genotyping microsatellites (Fitzroy, KI, and FI/IM).

Historical Biogeography and Migration
Rates
For the estimation of effective population size (Ne) and migration
rates with the software Lamarc 2.1.10 (Kuhner, 2006; Kuhner
and Smith, 2007), we grouped sampling locations in continental
SA following a biogeographical criterion (Balech and Ehrlich,
2008) rather than genetic differentiation indices. Low sample
sizes and matrilineal effects may generate genetic structures at
small geographic scales that do not necessarily reflect a migration
process. The samples from central Argentina Bahía Camarones,
Puerto Deseado, and Monte León/Punta Quilla were included
into a group named “northern SA” (NSA), while samples from
the Strait of Magellan, Fitzroy, and Tierra del Fuego were
pooled into “southern SA” group (SSA). FI/IM and KI were
each kept as a separate group. Lamarc estimates these and
other population parameters using coalescence theory, sampling
genealogies from a tree space using a Metropolis Monte Carlo
sampling technique. Likelihood searches used a MCMC approach
with 12 runs of 20 short chains of 1,000 steps and three long
chains of 20,000 steps, with a burn-in of 10,000 genealogies.
We present the mean and standard deviation of the estimated
Ne and Nm values obtained from 12 runs. Ne was calculated
as twice the estimated female effective population size (Nef )

obtained through Lamarc’s estimation of θ = 2Nef , and using
a substitution rate of 5.8% for the mtDNA control region
(Alter and Palumbi, 2009).

RESULTS

DNA Sequences
Mitochondrial DNA control region haplotypes were successfully
amplified and sequenced from skin samples collected in Fitzroy,
Chile (n = 7); Bahía Camarones (n = 37), Puerto Deseado
(n = 41), Punta Quilla (n = 25), and Monte León (n = 11)
along the Argentine coastline; FI/IM (n = 52) and KI (n = 24).
Additionally, we retrieved sequences from previously published
work, particularly from three areas in the Strait of Magellan
(n = 28), Tierra del Fuego (particularly 21 samples from sampling
site called “area A3′’ in the study) (Pimper et al., 2010; Cipriano
et al., 2011) and the KI (n = 11) (Robineau et al., 2007). The
final dataset comprised a total of 256 control region sequences
(Table 1) from sampling points throughout the distribution of
the species (Figure 1). We edited the sequences retrieved from
Robineau et al. (2007) in order to correct for sequencing errors
as described by Pimper et al. (2010). Before calculating diversity
indices and conducting analyses, we grouped the samples from
Punta Quilla, and Monte León together (n = 36) as well as Fitzroy
and the Strait of Magellan (n = 35), in both cases due to their
geographical proximity and small sample size (Table 1).

The initial exploration of the haplotype network revealed two
hypervariable sites, located at the base pairs 325 and 420. These
sites were excluded as they produced several non-informative
loops in the haplotype network and five median vectors (nodes

TABLE 1 | Genetic diversity indices per locality and Cephalorhynchus commersonii subspecies: number of sequences (n), number of haplotypes (k), number of
polymorphic sites (S), haplotype diversity (Hd), nucleotide diversity (π), pairwise differences between sequences (5), and frequency of each found haplotype
(H1-20) per locality.

Locality n k S Hd π 5 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20

Bahía camarones 37 7 13 0.617 0.0050 2.123 7 22 2 1 2 2 1

Puerto deseado 41 4 9 0.345 0.0037 1.556 33 4 1 3

Punta
Quilla/Monte
León

36 7 8 0.803 0.0043 1.794 13 8 3 5 2 2 3

Tierra del fuego
(A3)

21 5 6 0.748 0.0032 1.362 6 8 1 1 5

F+SM 35 5 5 0.597 0.0030 1.247 16 16 1 1 1

South America 170 13 19 0.699 0.0044 1.844 75 4 55 4 7 2 2 6 4 2 3 1 5

Falkland
Islands/Islas
Malvinas

57 7 6 0.457 0.0016 0.683 38 4 1 2 1 5 1

Kerguelen 34 4 3 0.699 0.0022 0.930 11 13 9 1

Total 256 20 23 0.745 0.0046 1.941 113 4 59 4 7 13 2 6 4 2 3 1 6 2 1 5 1 13 9 1

C. c.
commersonii

222 17 21 0.669 0.0039 1.649 113 4 59 4 7 2 2 6 4 2 3 1 6 2 1 5 1

C. c.
kerguelenensis

34 4 3 0.699 0.0022 0.930 11 13 9 1

The average values for continental South America are presented in gray.
Bold values indicate the total value of each column.
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FIGURE 1 | Geographic origin of samples within the distribution of Cephalorhynchus commersonii. Pie charts of each locality detail the respective haplotype
frequencies. Haplotype frequencies are available in Table 1. The localities of Bahía Camarones, Puerto Deseado, and Punta Quilla with Monte León are included in
the greater group of Northern South America (dark blue); Tierra del Fuego (blue), and Fitzroy and Strait of Magellan (light blue) in the group Southern South America;
Falkland Islands/Islas Malvinas (orange) and Kerguelen Islands (green). Map adapted from FreeVectorMaps.com (https://freevectormaps.com).

which represent hypothesized ancestral haplotypes), affecting
its interpretation. Nevertheless, the network including both
hypervariable sites is shown in the Supplementary Material
(Supplementary Figure 1). The final consensus fragment
presented a length of 422 base pairs.

Genetic Diversity
From the 256 sequences, we identified 20 haplotypes defined by
23 variable sites (Figure 2 and Table 1). The combined South
American dataset (n = 170) contained 13 haplotypes, while the

FI/IM (n = 52) contained seven haplotypes and the KI (n = 35)
contained four haplotypes. Two haplotypes, H1 (n = 113) and H3
(n = 59), were found in most individuals sequenced (n = 172 of
256) and were shared by all localities excluding KI (Figure 2 and
Table 1).

Three haplotypes (H1, H3, and H13) were shared between
SA and the FI/IM and one (H6) between SA (Punta Quilla) and
the KI (Figure 2). This haplotype was reported previously by
Pimper et al. (2010) (haplotype Ccom-M) in a sample from a
locality in Tierra del Fuego (TDF-A2 in that study). However, this
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FIGURE 2 | Haplotype network of the 256 sequences. To focus on the greater distribution-wide patterns, localities were color-coded to broadly show their origin
within the distribution of Commerson’s dolphins, as in the map: NSA (dark blue): Bahía Camarones (BC), Puerto Deseado (PD), and Punta Quilla and Monte León
(PQ + ML); SSA ARG: Tierra del Fuego (A3, blue), and Fitzroy and Strait of Magellan (F + SM, light blue), Falkland Islands/Islas Malvinas (FI/IM, orange), and
Kerguelen Islands (KI, green). MV, median vector. Transversal dashes indicate one mutational step. Haplotype frequencies are available in Table 1.

locality (and hence the haplotype) was not included because of
its too large sample size (n = 92), which would have unbalanced
our sampling, and its proximity to an area which was already
included (TDF-A3). No haplotypes were shared between the
FI/IM and the KI.

South America contained the highest number of private
haplotypes (n = 9), while the FI/IM and the KI had four and
three, respectively (Table 1). Populations with the lowest and
highest genetic diversities were both found in SA, Puerto Deseado
(Hd = 0.345), and Punta Quilla/Monte León (Hd = 0.803).
The genetic diversity of FI/IM was lower than KI (Hd = 0.457
vs. 0.699) despite having almost twice as many haplotypes
(k = 7 vs. 4) (Table 1). Unlike the other locations, the KI
was not comprised of one common haplotype but rather three
haplotypes of relatively equal frequencies (n = 11, 13, and 9)
and one low-frequency haplotype. Overall, haplotypes from SA
and the FI/IM appear to be homogeneously distributed in the
haplotype network. In contrast, samples from KI appear to cluster
together, forming a distinct haplogroup (Figure 2). Overall, the
two subspecies had similar genetic diversity (C. c. commersonii
Hd = 0.669 vs. C. c. kerguelenensis Hd = 0.699) (Table 1).

Genetic Structure and Genetic
Differentiation
Among the 21 possible genetic structure comparisons (FST),
we found only six to be non-significant. Five of these
occurred between South American sampling sites, while one
was found between the FI/IM and Puerto Deseado, Argentina
(Table 2). Similarly, the only two statistically non-significant
phylogeographic structure comparisons occurred within SA
(Table 2). All FST and 8ST comparisons involving the FI/IM and
the KI were statistically significant, apart from FI/IM and Puerto
Deseado (FST). The KI showed most of the highest structure

values, which was especially evident in the phylogeographic
structure analysis (Table 2). Statistical significance did not
change after the FDR correction for multiple comparisons.
The AMOVA analysis showed that a higher percentage of the
among groups variance was explained by grouping samples
according to subspecies, rather than following the geographic
grouping (i.e., SA, FI/IM, and KI). Respective percentages of
variation were 47.83% for the subspecies grouping, and 31.18%
for the geographic grouping criterion (Table 3). The test for
phylogeographic signal performed in PERMUT between SA and
the FI/IM was not statistically significant (p = 0.107). Conversely,
this test was significant when comparing subspecies (SA and
FI/IM against KI), as no simulated phylogeographic structure
value was equal or larger than the observed value. Finally, for
the calculations of net nucleotide divergence between areas, for
SA and FI/IM we obtained dA = 0.051%; between SA and KI
dA = 0.424%; while between FI/IM and KI we obtained a value
of dA = 0.346%. The global net nucleotide divergence value we
obtained between the two subspecies, i.e., SA and the FI/IM
against KI, was dA = 0.396%.

Historical Biogeography and Migration
Rates
Coalescent-based estimations of historical gene flow
(Figure 3) indicated that migrations have been occurring
continuously between NSA and SSA (NmNSA→SSA = 4.45;
NmSSA→NSA = 7.12). Lower levels of bidirectional
migrations have been also connecting SSA and the FI/IM
(NmSSA→FI/IM = 1.23; NmyFI/IM→SSA = 2.64) as well as the
FI/IM and NSA (NmNSA→FI/IM = 0.75; NmFI/IM→NSA = 2.76).
The KI are the most isolated population as the number of
effective migrants sent or received per generation ranged from
0.56 to 0.04. The KI also showed the lowest value of theta
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TABLE 2 | Genetic (FST , below diagonal) and phylogeographic (8ST , above
diagonal) structure values between the South American localities of Bahía
Camarones (BC), Puerto Deseado (PD), Punta Quilla and Monte León (PQ/ML),
Tierra del Fuego (TF_A3), Fitzroy and the Strait of Magellan (F + SM); the Falkland
Islands/Islas Malvinas (FI/IM); and Kerguelen Islands (KI).

BC PD PQ + ML TF_A3 F + SM FI/IM KI

BC * 0.247 0.222 0.024b 0.075 0.389 0.619

PD 0.425 * 0.053 0.174 0.119 0.041 0.549

PQ + ML 0.107 0.189 * 0.127 0.072 0.087 0.525

TF_A3 0.051a 0.314 0.036a * 0.001c 0.332 0.656

F + SM 0.052a 0.246 0.034a 0.034a * 0.231 0.633

FI/IM 0.348 0.021a 0.131 0.228 0.169 * 0.652

KI 0.343 0.487 0.235 0.279 0.353 0.434 *

All p-values <0.00000 except for grayed in cells: 0.05 < a < 0.1 < b < 0.2 < c.
Asterisks are separators along the diagonal between genetic and phylogeographic
values.

(2 = 0.001) and the lowest estimated effective population size
(Ne = 1,716). Estimates of theta and effective population size
for the remaining regions were, in ascending order: FI/IM
(2 = 0.0029, Ne = 4,941), SSA (2 = 0.0034, Ne = 5,840) and NSA
(2 = 0.0067, Ne = 11,467).

DISCUSSION

A geographically extensive sampling scheme, including both
new and previously published sequences of the mtDNA control
region, allowed us to estimate the genetic diversity and genetic
structure across the entire range of the Commerson’s dolphin.
From this, we evaluated the previously proposed establishment
hypothesis of the KI population (Pichler et al., 2001) as a long-
distance dispersal model (Crisp et al., 2011).

The genetic diversity indices we obtained for continental SA
are similar to results from previous work conducted in this area.
Along the southern Argentina coast, from Puerto Deseado to
the Strait of Magellan (n = 57), Cipriano et al. (2011) found 11

haplotypes and a genetic diversity of Hd = 0.671. Further south,
along the coast of Tierra del Fuego (n = 196), Pimper et al.
(2010) found 20 haplotypes and Hd = 0.807, although many of
the latter samples are also used in our study. Our genetic and
phylogeographic structure results were also similar to those of
Cipriano et al. (2011), showing genetic structure over similarly
short distances (Table 2). In the absence of physical barriers along
the Argentine coast, behavioral or environmental barriers have
been suggested as drivers for this genetic structure (Pimper et al.,
2010; Cipriano et al., 2011), as in studies on other species in
the genus. In the sister species C. eutropia, strong mitochondrial
and nuclear genetic differentiation between north and south
populations has been described in the absence of physical barriers
along the Chilean coast (Pérez-Alvarez et al., 2015) and coincides
with the boundary of two recognized biogeographic provinces of
the Southeastern Pacific (Camus, 2001; Escribano et al., 2003).
The Chilean dolphin has also shown short movements along
the shore (mean 23.1 km) and reduced home ranges (Heinrich,
2006). Similarly, along the South African coast, Heaviside’s
dolphins also exhibit genetic population structure across short
distances (Gopal et al., 2019). Such small scale genetic structure
may be related to reduced home ranges as detected during
tracking period of 54 days in C. heavisidii females (Elwen et al.,
2006). Finally, Hector’s dolphins show genetic structure over
distances as short as 100 km (Hamner et al., 2012), limited along-
shore movements (average of 31 km) (Bräger et al., 2002) and
display site fidelity and reduced home ranges (Bräger et al., 2002;
Rayment et al., 2009).

In addition to exhibiting genetic structure within areas with no
obvious barriers, Hector’s dolphins also present marked genetic
and phylogeographic structure over areas with potential dispersal
barriers, such as the Cook Strait, which separates New Zealand’s
North and South Islands (Baker et al., 2002; Hamner et al.,
2012). In this latter case, combined genetic and morphologic
evidence led to the description of two different subspecies, C. h.
hectori, also referred to as the South Island Hector’s dolphin;
and the critically endangered C. h. maui exclusively found off
the West Coast of the North Island and known as the Mâui

TABLE 3 | Analysis of Molecular Variance performed with Cephalorhynchus commersonii samples grouped according to the subspecies status (two groups) and
according to geographic distribution (three groups), after 1,000 permutations.

Source of variation df Sum of
squares

Variance
components

Percentage of
variation

2 groups (Cephalorhynchus. commersonii
commersonii, and C. c. kerguelenensis)

Among groups 1 49.816 0.74984 Va 47.83

Among populations within
groups

5 29.307 0.14188 Vb 9.05

Within populations 249 168.303 0.67592 Vc 43.12

Total 255 247.426 1.56764 100

3 groups (South America, Falkland Islands/Islas
Malvinas, and Kerguelen Islands)

Among groups 2 58.893 0.36524 Va 31.18

Among populations within
groups

4 20.23 0.13018 Vb 11.11

Within populations 249 168.303 0.67592 Vc 57.7

Total 255 247.426 1.17133 100

Bold values indicate the total value of each column.
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FIGURE 3 | Schematic representation of the number of effective migrants estimated in Lamarc, between the four defined regions across the distribution of the
Commerson’s dolphin: northern South America (Bahía Camarones, Puerto Deseado, and Punta Quilla and Monte León), southern South America [Strait of Magellan,
Fitzroy and Tierra del Fuego (A3)], Falkland Islands/Islas Malvinas, and Kerguelen Islands. Only values greater than one effective migrant per generation are shown
with arrows, representing continuous historical migration between these areas. Distance between South America and Kerguelen Islands is not to scale. Map
adapted from FreeVectorMaps.com (https://freevectormaps.com).

dolphin (Baker et al., 2002). SA and the FI/IM are separated by
400–550 km of open ocean at their closest point, much more
than the 20 km that separate New Zealand’s North and South
Islands. In contrast to C. h. hectori and C. h. maui, Commerson’s
dolphins from populations along the SA coast and the FI/IM
share several haplotypes (Table 1) and do not show high levels of
genetic differentiation (Table 2). The net nucleotide divergence
between FI/IM and SA of dA = 0.051% is an order of magnitude
below the lower subspecies threshold suggested for cetaceans
(dA = 0.4%) (Taylor et al., 2017). Furthermore, the migration
analysis suggested moderate migration rates between SA and the
FI/IM. The estimated number of effective migrants fits within
the range of one to four, which may indicate a migration-
drift equilibrium between these two regions. Alternatively, some
degree of isolation may be occurring between the FI/IM and
SA populations. On one hand, the low diversity in FI/IM may
suggest a past founder effect after a possible migration from
SA. On the other hand, the low but significant phylogeographic
structure may also suggest an incipient divergence between
them. In this context, the several haplotypes shared between
these regions would be explained by slow linage sorting related
to their population sizes. However, based on the recognized,
currently accepted, consensus criteria, Commerson’s dolphins
of SA and the FI/IM lack enough genetic distinctiveness to be
considered different evolutionary units. These results contribute
genetic data on a cetacean species to the body of information
which supports grouping the FI/IM into the same biogeographic

province as SSA (>40◦S), the Magellanic biogeographic province
(Cousseau et al., 2019). Even if these results are based on a single
mitochondrial marker, they suggest that female-mediated gene
flow between the two areas did occur at least until recently,
which is also supported by the presence of several shared
haplotypes. Commerson’s dolphins are capable of occasionally
traveling long-distances, which makes continued movements
between SA and FI/IM possible. They have been recorded over
180 km out at sea in waters over 1,000 m in depth (Pedraza,
2008), as far out as the Drake Passage (Aguayo, 1975) and
off the coast of South Africa (de Bruyn et al., 2006). In this
genus, such ventures are not exclusive to Commerson’s dolphins;
long-distance movements exceeding 400 km over deep waters
have also been described for Hector’s dolphins (Hamner et al.,
2014). Nevertheless, these long-range movements are considered
unconventional for Commerson’s dolphins, as most records lack
proper evidence and are speculative (Brownell and Praderi, 1985;
van Waerebeek et al., 2010).

The 8,500 km gap in distribution range of C. commersonii,
between SSA, the FI/IM, and the KI (Dawson, 2018), is the widest
gap for this genus and presents a potentially significant barrier
to dispersal. Previously described osteological, morphological,
acoustic and genetic differences between dolphins from these
two distant regions (Robineau, 1986; Dziedzic and De Buffrenil,
1989; Robineau et al., 2007) lead to them being considered two
subspecies, C. c. commersonii and C. c. kerguelenensis. In relation
to previous studies (Robineau et al., 2007; Pimper et al., 2010;
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Cipriano et al., 2011), here we present a geographically broader
sampling scheme, including new areas like Fitzroy, Chile, and the
FI/IM, while increasing sampling size in the KI. This allowed us
to contribute a fuller picture of the global phylogeography of the
species. The phylogeographic structure values between the two
subspecies (8ST = 0.524–0.655) are well above the next highest
value (8ST < 0.39), found between the northernmost locality
of Bahía Camarones and FI/IM, i.e., between C. c. commersonii
populations (Table 2). The detection of a phylogeographic
signal between the samples corresponding to each subspecies
by PERMUT further supports this, as well as the results
obtained with Lamarc. All migration estimates involving the
KI (i.e., samples from the range of C. c. kerguelenensis) were
generally much lower than one effective migrant per generation,
far below the minimum number to avoid divergence between
population. The presence of a single haplotype (H6) shared
at very low frequency by KI and SA, as well as the other
private haplotypes closely related to H6, may reflect a founder
effect followed by the isolation of the colonizers, establishing
a newly isolated population. The small population size of the
KI population may also have accelerated the lineage sorting
process, as observed between Hector’s and Maui’s dolphins
in New Zealand (Baker et al., 2002; Hamner et al., 2012).
Finally, the net nucleotide divergence of dA = 0.396% is within
rounding error of the recommended interval for the sub-species
classification of dA = 0.4–2.0% (Taylor et al., 2017) and is thus
consistent with the current subspecies ranking. The obtained dA
complements the previously described morphological differences
between Commerson’s dolphins from SA and the KI (Robineau
et al., 2007). Future work could explore the second criterion of
diagnosticability (Taylor et al., 2017) using genetic data, such
as nuclear markers. In this regard, the KI subspecies may be
considered as an incipient, divergent clade of C. commersonii.
Pichler et al. (2001) proposed a model of evolution for this
genus in which a long-distance dispersal event from South Africa
would have permitted the establishment of a new population in
New Zealand, which further evolved to C. hectori. In a same
manner, a small group of C. hectori would have reached SA, giving
rise to both C. eutropia on the Pacific side and C. commersonii on
the Atlantic. In this context, C. c. kerguelenensis may represent
the most recent and ongoing step in the diversification of
Cephalorhynchus, where isolation from their source population
is driving an incipient process of future speciation.
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