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Michel Cogné1,2†, Karin Tarte1,2 and Thierry Fest1,2*†

1 UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France, 2 Pôle de Biologie,
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B cell affinity maturation occurs in the germinal center (GC). Light-zone (LZ) GC B cells
(BGC-cells) interact with follicular dendritic cells (FDCs) and compete for the limited,
sequential help from T follicular helper cells needed to escape from apoptosis and
complete their differentiation. The highest-affinity LZ BGC-cells enter the cell cycle and
differentiate into PCs, following a dramatic epigenetic reorganization that induces
transcriptome changes in general and the expression of the PRDM1 gene in particular.
Human PC precursors are characterized by the loss of IL-4/STAT6 signaling and the
absence of CD23 expression. Here, we studied the fate of human LZ BGC-cells as a
function of their CD23 expression. We first showed that CD23 expression was restricted
to the GC LZ, where it was primarily expressed by FDCs; less than 10% of tonsil LZ BGC-
cells were positive. Sorted LZ BGC-cells left in culture and stimulated upregulated CD23
expression but were unable to differentiate into PCs – in contrast to cells that did not
upregulate CD23 expression. An in-depth analysis (including single-cell gene expression)
showed that stimulated CD23-negative LZ BGC-cells differentiated into plasmablasts and
time course of gene expression changes delineates the transcriptional program that
sustains PC differentiation. In particular, we identified a B cell proliferation signature
supported by a transient MYC gene expression. Overall, the CD23 marker might be of
value in answering questions about the differentiation of normal BGC-cells and allowed us
to propose an instructive LZ BGC-cells maturation and fate model.

Keywords: germinal center (GC), germinal center (GC) B cells, CD23+ B cells, B cell differentiation, plasmablasts/
plasma cells, GC Light-Zone B cells
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HIGHLIGHTS

- Only human light-zone GC B cells that fail to express CD23
after appropriate stimulation are likely to differentiate into
plasma cells

- Light-zone GC B cells heterogeneity through use of the CD23
marker allow to decipher gene expression changes during B
cell differentiation
INTRODUCTION

Within the secondary lymphoid organs, the germinal center (GC) is
the primary site for the maturation of B-cell affinity. Iterative rounds
of proliferation (associated with activation-induced cytidine (AID)
enzyme activity) and positive selection of B-cell receptors (BCRs)
with high affinity for their cognate antigens (Ags) ultimately lead to
the production of memory B cells (MBCs) and plasma cells (PCs).
Fully developed GCs comprise two functional zones, each of which
contains a distinct GC B cell (BGC-cell) subtype. Firstly, the dark
zone (DZ) is close to the T-zone and is where centroblasts
proliferate in bursts. Secondly, the light zone (LZ) mainly
contains non-proliferating centrocytes, some of them testing their
BCR against the Ags displayed by follicular dendritic cells (FDCs)
and thus competing for limited, sequential help from T follicular
helper (Tfh) cells (1–3). Once the Ag is captured by the BCR, the cell
receives a survival signal; the Ag is subsequently internalized,
processed and presented on the cell surface as a class II MHC-
peptide complex, which in turn leads to interaction with cognate
Tfh cells. Hence, Tfh-derived signals enable B-cell proliferation,
differentiation and isotype switching (3). MBCs tend to emerge
earlier from a low-affinity compartment in the LZ, while PCs appear
later during the immune response, committed B cells require strong
Tfh cell help, and accumulate somatic hypermutation (4–6).
Positively selected LZ BGC-cells escape from apoptosis, upregulate
transiently theirMYC expression, re-enter the cell cycle and travel to
the DZ for further cell division and AID activity (7–9). It has been
estimated that between 10% and 30% of the B cells that reach the LZ
are selected and possibly re-enter the DZ; the remainder die mainly
by apoptosis (9). Cognate B cell-T cell contact and help signal
strength (both of which depend on BCR affinity) are likely to
determine B cell fate. Medium-affinity cells express high levels of the
BACH2 transcription factor and replenish the MBC pool, while the
highest-affinity LZ BGC-cells are preferentially selected for cell cycle
entry and differentiation into PCs (10, 11). With regard to this
process, the results of a computational model of BGC-cell fate
suggested that B cells that have been positively selected by
successful Ag processing return to the DZ for asymmetric
division, and that Ag affinity is inherited by only one of the
daughter cells (12). On the other hand, PC precursors can exit
the GC reaction via the DZ due to acquisition of CXCR4 expression
leading cells to move to the CXCL12 rich DZ stromal environment.
There is some experimental evidence to support this theory –
notably the presence of PC precursors in the DZ (5, 13).

Committed B cells differentiate into plasmablasts (PBs)
during an S phase in which specific oxidation of 5-
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methylcytosine (5mC) residues at given genomic positions
leads to the expression of PC identity genes (14). Recently, we
used an in vitro naïve B cell (NBC) differentiation model to
demonstrate that human PC precursors are characterized by the
loss of IL-4/STAT6 signaling and the absence of expression of
CD23 [a pSTAT6-induced, low-affinity receptor for IgE (15)],
although they are still imprinted by the previous IL-4 activation.
In humans, low expression of the CD23 marker is reported in
BGC-cells (16) and LZ BGC-cells (17), and the downregulation of
CD23 is associated with PC commitment (18, 19). In mice,
follicular B cells express CD23 (encoded by the Fcer2a gene), and
CD23 expression is more intense on LZ follicular BGC-cells than
on DZ BGC-cells (4, 20). In addition, B cell differentiation into
PCs is accompanied by the loss of CD23 expression (21) and in
contrast, recently reportedly that early positively selected cMyc+

murine LZ BGC-cells express the Fcer2a gene besides genes
associated with both BCR signaling and immunological
synapse suggesting a very recent activation following BCR
engagement and GC B: Tfh interaction (20).

The objective of the present study was to assess the fate of
human LZ BGC-cells as a function of their CD23 expression. In
immune-histochemistry assessments, we determined the CD23
expression pattern in tonsillar GCs. Staining was restricted to the
LZ, with strong expression by FDCs. By flow cytometry, we found
less than 10% of tonsil LZ BGC-cells positive for CD23. However,
most LZ BGC-cells expressed CD23 in vitro after productive Tfh cell
help or appropriate cytokine stimulation. An in-depth analysis
(including single-cell gene expression) showed that LZ BGC-cells
CD23+ obtained after stimulation are unable to differentiate into
PCs - unlike the cells that remain CD23-. Time course of single-cell
gene expression changes during the differentiation of CD23- LZ
BGC-cells sheds new light on the final transcriptional switch that
take place when human B cells metamorphosis into PBs
characterized by the upregulation of PRDM1 expression.
RESULT

In GCs, Only a Small Proportion of B Cells
Expresses the CD23 Marker
To determine the CD23 cell surface marker’s expression patterns,
sections of human tonsil tissue were stained with several
combinations of antibodies in immunohistofluorescence
experiments. In GCs, CD23 staining was restricted to the LZ. In
line with the literature data (22, 23), CD21L+ FDCs were intensely
stained (Supplemental Figure S1A). Using antibodies against
CD23, PAX5 and PD1, we possibly distinguished CD23+ LZ BGC-
cells located near PD1+ Tfh but without certainty due to the FDC
labeling (Figure 1A and Supplemental Figure S1B). Indeed, CD23
staining of frozen tissue sections showed that the FDCs’ extensions
formed a dense mesh around B and T cells (Figure 1B and
Supplemental Figure S1C). Overall, our data show that FDCs in
LZ are strongly positive for CD23, which makes it harder to detect
CD23+ BGC-cells, in contrast to NBCs in the mantle zone.
(Supplemental Figure S1A).

To determine the proportion of CD23+ B cells in GCs, we used
flow cytometry to analyze cell suspensions obtained from tonsils
December 2021 | Volume 12 | Article 744573
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and reactive lymph nodes (rLNs). Unlike NBCs and IgD+ BGC-cells,
IgD- BGC-cells, PBs and MBCs were predominantly CD23-negative
(Figure 1C and Supplemental Figure S1D). Centrocytes are
defined as CXCR4- BGC-cells; they belong to the LZ compartment
where B cells were also described as CD83+ (1, 17). The mean ±
standard deviation of CD23-expressing LZ BGC-cells was 6.99% ±
Frontiers in Immunology | www.frontiersin.org 3
1.45 in tonsils and 7.7% ± 3.99 in rLNs (Figure 1D and
Supplemental Figure S1E). In B cells, CD23 expression is
induced by Tfh-derived cytokines in general and by IL-4/STAT6
signaling in particular. CD23+ and CD23- LZ BGC-cells expressed
similar levels of IL-21 and IL-4 receptors, CD40 and Ki-67, however,
we found a significantly higher proportion of CCR6+ cells in the
A B

D

E

C

FIGURE 1 | In the GC, CD23 is expressed in the LZ, mainly by FDCs but also by some B cells. (A) Immunofluorescence staining of CD23 (red), PAX5 (pink) and
PD1 (green) in paraffin-embedded tonsil tissues; the white arrow shows a CD23+ B cell located in front of a PD1+ Tfh cell. (B) Immunofluorescence staining of CD23
(pink), PAX5 (red) and CD3 (green) on frozen tonsil tissues; the PAX5 staining pattern for B cells does not really match the CD23 marker; panels 1 & 2 show T cells
surrounded by CD23+ dendritic extensions, and panels 3 & 4 show T cells in the vicinity of CD23- B cells. (C) The proportion of CD23-expressing B cells was
determined by flow cytometry in different B cell populations in tonsils (Right panel) and rLNs (Left panel): CD19+CD38-IgD+ naïve B cells (NBCs), CD19+CD38+IgD+ &
IgD- BGC-cells, CD19

+CD38++IgD- plasmablasts (PBs), and CD19+CD38-IgD-CD27+ memory B cells (MBCs) (one-way Anova & Kruskal-Wallis multiple comparisons
test). (D) The proportion of CD23-positive cells in CXCR4hiCD83lo DZ BGC-cells and CXCR4loCD83hi LZ BGC-cells in tonsils and rLNs. (E) Flow cytometry analysis of
KI67, IL4RA and CCR6 in tonsil CD23+ and CD23- LZ BGC-cells. Results are expressed as the relative mean fluorescence intensity (rMFI) or the percentage of
positive cells (*P ≤ .05; "ns" for non significant; Mann-Whitney test).
December 2021 | Volume 12 | Article 744573
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CD23+ subset consistent with Duan et al. (24) in mice. These cells
could correspond to memory B cell precursors (Figure 1E and
Supplemental Figure S1F) (25).

Given that CD23 expression is signaling-dependent, we
hypothesized that CD23+ LZ BGC-cells correspond to BGC-cells
that had recently engaged in a productive synapse with cognate
Tfh and might therefore harbor a more restricted BCR repertoire
than their CD23- counterparts. We assessed common CDR3
clusters and variable (V) gene usage for both IgM and IgG BCRs
in CD23+ and CD23- LZ BGC-cells isolated from rLNs of three
different subjects. We found common CDR3 clusters in all three
subjects, with no significant differences in V gene usages between
IgMs and IgGs. Interestingly, for one subject we noticed and
enrichment for somatic mutations in CDR1, 2 & 3 in CD23+ cells
compared to CD23- counterparts. No definitive conclusion can
be drawn, however, these results showed that CD23+ and CD23-

LZ BGC-cells have very similar repertoires and so probably share
a common initial activation pathway (Supplemental
Figure S1G).

An Analysis of FCER2/CD23 Expression
Reveals Heterogeneities in LZ BGC-Cells
In humans, the CD23 protein is encoded by the FCER2 gene. To
detect possible transcriptional differences between LZ BGC-cells
as a function of FCER2 expression, we compared previously
published single-cell (sc) RNA-seq data obtained from tonsil-
derived BGC-cells (26). A comparison of 8,465 DZ cells and
11,118 LZ BGC-cells revealed a highly significant difference
between the proportions of FCER2-expressing cells (2.9% and
15.3%, respectively) (Supplemental Figure S2A, Left panel).
Among the 11,118 LZ BGC-cells, 2,360 (21%) had a
proliferative signature (i.e., S-G2-M genes expression) and
among them, only 231 (9.8%) cells (primarily in the S phase
cluster) expressed FCER2 (Supplemental Figure S2A, Right
panel). To investigate the heterogeneity of FCER2 expression in
the LZ compartment and follow the same rationale as Holmes
et al. (26), we focused our analysis on 8,758 nonproliferating LZ
BGC-cells (i.e., those in the G0-G1 stage of the cell cycle) which
presented 1,465 (16.8%) cells expressing FCER2 (Figures 2A, B).
The uniform manifold approximation and projection (UMAP)
representation of the original 12 specific clusters allowed to
detect the projection of FCER2-positive cells and revealed that
this gene expression was significantly associated with cell
activation clusters and two BCR engagement clusters. In
contrast, five clusters presented significantly weaker expression;
they included the PB signature, two clusters associated with BGC-
cell transition between the DZ and the LZ, and one Ribosome
cluster (Figure 2B).

Taken as a whole, these data showed that the majority of
FCER2+ cells belong to a small number of activated, non-
proliferating LZ BGC-cells that might have been diverted from a
PC fate. In contrast, FCER2-negative LZ BGC-cells were more
heterogeneous in their distribution and presented a relative
prevalence in the PB subset by taking into account the
significant low number of FCER2-positive cells in this
compartment. In mice, it has been suggested that most
Frontiers in Immunology | www.frontiersin.org 4
pre-plasmablasts are derived from positively selected cells i.e.,
expressingMYC gene (13, 20), we found among the 1,518 human
MYC-positive LZ BGC-cells from Holmes et al. (26) dataset that
316 (21%) and 1,202 (79%) were, respectively, positive and
negative for FCER2 expression. This result was consistent with
data obtained recently in mice (24). Altogether, these data suggest
that FCER2-negative LZ BGC-cells were either unable to express
FCER2 or had not received sufficient Tfh cell help to express it. In
particular, FCER2-negative LZ BGC-cells might include activated B
cells that have been committed to PB differentiation and therefore
have switched off the IL-4/STAT6 pathway, thereby preventing the
expression of FCER2/CD23 (19).

In order to complete this in silico analysis we explored the
heterogeneity of the LZ BGC-cell compartment by comparing
CD23-negative and CD23-positive cells freshly sorted from
tonsils, and CD19+IgD-CD38bright PBs were included in the
analysis (gating strategy, in Supplemental Figure 2B). We
applied a sensitive sc-qRT-PCR approach to profile the
expression of a set of selected genes from our previous study
(Supplemental Material, Method & Tables, Table 2) (19). An
unsupervised clustering analysis revealed three gene clusters
linked to specific cell functions identified with GeneMANIA
(https://genemania.org/): cell cycle regulation, B cell activation
and PC signature (Figure 2C). Only a few genes in each cluster
were significantly differentially expressed between CD23+ and
CD23- cells, including FCER2 and B cell activation markers
CD86 and NFKB1 (Supplemental, Material, Method &
Tables, Table 6). Note that PRDM1 and IRF4 genes linked to
PC differentiation were not differentially expressed (Figure 2D).
However, CD23- compared to CD23+ LZ BGC-cells expressed
higher levels of cell proliferation E2F1 and MKI67 genes
(Figure 2D). The cell proliferation signature was primarily
attributed to a group of CD23- LZ BGC-cells that also
expressed MYC (Figure 2C). To complete our exploration on a
higher number of analyzed cells, differentiation-associated
transcription factors assessed by flow cytometry showed a
significant enrichment in BCL6-negative and Blimp1-positive
cells in CD23- LZ BGC-cells. In contrast, both subsets expressed
similar levels of c-MYC and phospho-p70 S6 kinase (pS6), two
markers related to B-cell selection (Figure 2E) (7, 8, 27).
Altogether, these findings suggest that the CD23- population
comprises B cells committed to PC differentiation.

CD23 Expression of LZ BGC-Cells Depends
on Response to Tfh-Driven Stimulation
To study the effect of Tfh cell help on the membrane expression
of CD23 on LZ BGC-cells, we first cultured LZ BGC-cells for 12 h
with IL-4, CD40, IL-21 or combinations of these. IL-4 alone,
CD40 alone and especially a combination of IL-4 and CD40 were
effective in inducing the significant upregulation of CD23
expression (Figure 3A). Despite similar expression levels of IL-
4R, CD40 and IL-21R on post-stimulated CD23+ and CD23- LZ
BGC-cells, pSTAT6 was only induced in CD23+ B cells, and
chemical inhibition of pSTAT6 blocked the CD23 expression
(Figure 3B and Supplemental Figures S3A, B). Since the
production of IL-21 and IL-4 by Tfh cells predominantly
December 2021 | Volume 12 | Article 744573
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supports BGC-cells (along with CD40L) (28, 29), we used these
three stimuli in our subsequent experiments on primary LZ BGC-
cells. The data were reproducible, up to 50% of the cells were
CD23+ after 12 h of culture, cell viability was over 70% (data not
Frontiers in Immunology | www.frontiersin.org 5
shown) and cell proliferation was similar in CD23+ and CD23-

cells (Supplemental Figure S3C). We next co-cultured LZ BGC-
cells with paired autologous CD4+CXCR5+ICOS+PD1+ Tfh cells
for 24 h and then analyzed CD23 expression in three
A B

D

E

C

FIGURE 2 | FCER2/CD23 expression delineates specific LZ BGC-cell subsets. (A, B) Single-cell RNA-seq data for human tonsil-derived CXCR4loCD83hi LZ BGC-
cells in the G0-G1 phase of the cell cycle, from Holmes et al., 2020. (A) UMAP of the 12 specific clusters defined by Holmes et al. and expression of FCER2 in these
clusters. (B) Distribution of FCER2+ (red) and FCER2- (black) non-proliferating LZ BGC-cells, in the 12 clusters. Dotted line represent the mean value of positive cells
for all clusters (last barplot named All_cells) (Chi2 test for each population vs. total cells (*P < 0.05, ***P < 0.001; significant test are indicated in the barplot of
enriched CD23-negative or -positive populations accordingly). (C) Selected view of the heatmap with unsupervised clustering of single-cell RT-qPCR data comparing
paired cell-sorted CD23+ and CD23- LZ BGC-cells (CD19+IgD-CD10+CD38+CXCR4lo) and PBs (CD19+IgD-CD38bright). Annotation of three clusters of genes linked to
specific cell functions identified with GeneMANIA related to PCs, B cell activation and cell proliferation. The red arrow on the top of the heatmap indicate in cluster of
cycling cells, mostly CD23- LZ BGC-cells, that are positive for MYC expression represented in the Y-axis pink cluster. (D) Violin plot comparisons of the expression of
few selected genes in CD23+, CD23- LZ BGC-cells and PBs. (E) Flow cytometry analysis of BCL6, BLIMP1, c-MYC and pS6 in tonsil CD23+ and CD23- LZ BGC-
cells. Results are expressed as the percentage of positive cells or the relative mean fluorescence intensity (rMFI) (*P ≤ .05; "ns" for non significant; Mann-Whitney test).
December 2021 | Volume 12 | Article 744573
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independent experiments. Only a weak increase in CD23
expression was observed. In contrast, when Tfh cells were
activated either with a-CDA/a-CD28 antibodies or
staphylococcal enterotoxin B protein, the CD23 expression
increased markedly; 13.6+/-7.4% and 39.4+/-9.0% of the B cells
were CD23+, respectively (Figure 3C).

Taken as a whole, our present data suggest that the low number
of CD23+ LZ BGC-cells is linked to a lack of effective, complete Tfh
cell help in GCs - a key limiting resource for which the B cells
compete (29). After early B cell-Tfh cell contact and in the absence
of sustained Tfh support, CD23+ BGC-cells might also undergo
apoptosis; this has been described in vivo for BGC-cells after 24 h of
antigen recognition and in vitro for CD23+ post-activated B cells
(19, 30). We confirmed the latter observation and showed that only
CD23+ LZ BGC-cells were more numerous when the pan-caspase
inhibitor QVD-OPH was added to the culture for 12 h
(Supplemental Figure S3D).

Since IL-4 signaling goes through the STAT6 pathway, we next
determined the number of B cells receiving Tfh-derived IL-4 in a
contact dependent manner at a given point in time. To this end, we
looked for nuclear expression of pSTAT6 in CD20+ BGC-cells by
staining tonsil tissue sections. Tfh cells were detected by staining for
PD1. By using a machine learning approach to automatically detect
cells on microscopy images, we estimated that approximately 2 to
3% of BGC-cells were pSTAT6+CD20+ (Figure 3D and
Supplemental Figure S3E). By replacing CD20 with PAX5, we
could estimate the number of pSTAT6+ cells in the vicinity of PD1+

T cells for three tonsils. Overall, among the average of 2880 PAX5+/
pSTAT6+ B cells per tonsil, we found 18 (min 13- max 32) and 84
(min 62- max 124) of these cells located, respectively, within 10mm
and 20mm of PD1+ T cells. This corresponds to an average of 1.2%
and 5.2% of B cells in less than 10µm or within 20µm proximity of T
cells that may sufficient to favor contact between cognate B and T
cells (Figures 3E, F). For the reasons mentioned above, we could
not use the CD23 marker in parallel.

CD23- Activated LZ BGC-Cells Contain PC
Precursors
Since the LZ BGC-cell compartment was heterogeneous with regard
of CD23 expression after stimulation, we decided to study CD23-

and CD23+ LZ BGC-cells obtained after 12 h of culture in the
combined presence of IL-21, IL-4 and CD40L (hereafter referred to
as pcCD23- or pcCD23+ LZ BGC-cells, where “pc” indicates “post-
culture”). The gating strategy for cell sorting is presented in
Supplemental Figure S4A. A comparison of these two subsets
showed that FCER2 expression was elevated only in pcCD23+ LZ
BGC-cells (Supplemental Figure S4B). With regard to the four
characteristic transcription factors involved in PC differentiation,
there were no differences between the subsets in BCL6, PAX5 and
XBP1 expression but PRDM1 was significantly upregulated in
pcCD23- LZ BGC-cells (Figure 4A). Flow cytometry analysis
showed significantly higher BCL6 expressing cells in the CD23+

subset while the CD23- counterpart contained more BLIMP1+

cells (Figure 4B).
We then evaluated the subsets’ ability to differentiate into PBs

(CD38bright) and PCs (CD138+). To that end, pcCD23- and
pcCD23+ LZ BGC-cells were cultured separately for 48 h in the
Frontiers in Immunology | www.frontiersin.org 6
presence of IL-2, IL-4 and IL-10. Statistically significant results
showed that only pcCD23- LZ BGC-cells were able to give rise to a
significant number of CD38bright and CD138+ differentiated
cells (Figure 4C).

The stimulation experiments were performed on total LZ
BGC-cells. However, to further specifically explore the CD23+

minority compartment of LZ BGC-cells, sorted tonsillar CD23+

LZ BGC-cells (Supplemental Figure S2B) were cultured for 24 h
under the same conditions as above and analyzed by sc-qRT-
PCR. No marker related to PC differentiation was detected after
stimulation (Supplemental Figure S4C).

Activated CD23- LZ BGC-cells Follow a
Continuous, Homogeneous Trajectory
Towards PBs
Our in vitro results and the literature data on LZ BGC-cells (19)
confirmed that the CD23+ and CD23- subsets contained cells with
distinct cell fates. To further explore this difference, we tracked
spatiotemporally gene expression in stimulated LZ BGC-cells. To
this end, selected genes (SupplementalMaterial, Method &Tables,
Table 2) (19) were analyzed using sc-qRT-PCR at different time
points of the culture. Thus, tonsil sorted PBs were compared with
paired LZ BGC-cells after 4 h and 24 h of culture with IL-21, IL-4
and CD40L. For the 24 h time point, CD23+ and CD23- cells were
sorted (Figure 5A). To investigate the time course of changes in cell
populations, we applied the Monocle trajectory inference algorithm
(https://doi.org/10.1038/nbt.2859). UMAP reduction of the five cell
populations highlighted two clusters that differed in their cell fate as
a function of CD23 expression (Supplemental Figure S5). Only 24
h CD23- LZ BGC-cells followed continuous, homogeneous trajectory
via expression of the BCL6, PAX5, IRF4, XBP1 and PRDM1 genes
associated with differentiation into PBs (Figures 5B, C). However,
some LZ BGC-cells had started to migrate along the differentiation
trajectory as early as 4 h, and clustered with PBs. Using Monocle,
the UMAP projection was color-coded according to the pseudo-
time; this showed a well-ordered progression in quadrants from LZ
BGC-cells to PBs (Figure 5D).

The Time Course of Gene Expression
Changes During the Differentiation of
CD23- LZ BGC-Cells
The expression heatmap for Monocle-ordered cells showed a
sequential transition from CD19+IgD-CD38+CD10+CXCR4- LZ
BGC-cells to CD19

+IgD-CD38bright PBs (Figure 6A). This situation
enabled us to analyze changes over time in gene expression from
one quadrant to the next and excluded T24h CD23+ BGC cells in
agreement with the above result (Supplemental Figure S5). Each
quadrant is enriched with a specific subset of cells (Figure 6B).
The computed clustering allowed to identify six gene modules
annotated by GeneMANIA (Figure 6C) characterized by a specific
expression time course and linked to transcription factors, cell
identity factors, and cell functions (Supplemental Material,
Method & Tables, Table 5). Modules 1 and 2 were linked to
PC identity genes. Modules 3, 5 & 6 were linked to a B cell
activation state. In fact, Module 3 encompassed several
transcription factors (including MYC) and preceded Module 6,
which was linked to transient cell cycle entry prior to extinction in
December 2021 | Volume 12 | Article 744573
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the fourth quadrant (Q4). In Module 4, a transient expression
pattern peaked during Q3 - probably in response to upstream
factors such as MYC. It included the expression of ATF5, a
transcription factor involved in the CREB3L2-ATF5-MCL1
Frontiers in Immunology | www.frontiersin.org 7
survival pathway and which acts as a stress sensor (31). Module
5 featured a transient decline in the expression of B cell identity
genes in Q1, a sharp increase in Q2 and Q3, and a drastic fall
in Q4.
A B

D E

F

C

FIGURE 3 | CD23 expression of LZ BGC-cells depends on response to Tfh-driven stimulation. (A) Flow cytometry analysis of CD23+ LZ BGC-cells obtained after 12 h of culture
with IL-4, CD40L and IL-21 alone or in combinations (**P < .01; ****P < .0001; one-way multiple comparisons test). (B) Flow cytometry analysis of pSTAT6 induction on post-
stimulation CD23+ and CD23- LZ BGC-cells, in four independent experiments: Upper panel, a representative flow histogram; Lower panel, quantitative and statistically significant
analysis. (C) LZ BGC-cells and Tfh cells were co-cultured without treatment (NT) or with aCD3/aCD28 or staphylococcal enterotoxin B (SEB) protein for 24 h and subsequently
analyzed for CD23 and CD38 expression, using flow cytometry: left panel, representative flow graphs; right panel, results of three independent experiments. (D) GC
immunohistostaining on paraffin-embedded tonsil sections with DAPI (blue), CD20 (yellow), PD1 (green), and pSTAT6 (red) presenting two high magnification views, showing
pSTAT6+ B cells in the proximity of PD1+ Tfh cells (white arrows). (E) An image compatible with a cognate B cell-Tfh cell contact characterized by pSTAT6+ B cell in contact with
PD1+ Tfh cell; immunohistostaining on paraffin-embedded tonsil sections with DAPI (blue), PAX5 (green), PD1 (white), and pSTAT6 (red). (F) Number of pSTAT6-PAX5 positive
cells in three tonsils in the vicinity of PD1-positive T cells (left panel) and proportion of B cells closed to T cells among total of pSTAT6/PAX5-positive cells (right panel) in each tonsil.
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Our model of LZ BGC-cell differentiation as a function of CD23
expression makes it possible to calculate how levels of transcription
factors change in space and over time. The changes over time
observed here were in line with the literature data (Figure 6D) (32).
The IRF4 gene was expressed in two phases, with an initial peak
preceding the increase in expression of the B cell identity genes
PAX5, BCL6, BACH2, and SPIB. The second peak occurred when
the four factors were no longer expressed. PAX5 expression showed
a striking increase and peaked at the end of Q3 before dropping
sharply and thus de-repressing the expression of PRDM1.
Frontiers in Immunology | www.frontiersin.org 8
This result is consistent with the fact that LZ BGC-cells enter an
activation state before they switch to the PB differentiation pathway
(32). Although PRDM1 andXBP1s are late transcription factors that
seal the commitment to PBs, XBP1 expression starts as soon as B
cells activate. Furthermore, our model highlights the MYC imprint
involved in the differentiation of B cells; our results are in agreement
with MYC’s description as a mediator of BGC-cell survival and cell-
cycle re-entry and as a marker of positive selection (7, 32, 33, 34).
MYC expression is absent in sorted LZ BGC-cells but rises quickly in
the timeline followed by the expression of early MYC-target genes
A B

C

FIGURE 4 | CD23- LZ BGC-cells contain PB precursors. (A) BCL6, PAX5, XBP1 and PRDM1 gene expression after 12 h culture in the presence of IL-4, CD40L and
IL-21 for LZ BGC-cells vs. freshly sorted, paired LZ BGC-cells and PBs (one-way Anova & Kruskal-Wallis multiple comparisons test). (B) Flow cytometry analysis of
BLIMP1 and BCL6 expression in post-culture CD23+ and CD23- LZ BGC-cells: Left panel, representative flow graphs; Right panel, results of four independent
experiments (*P ≤ .05; Mann-Whitney test. (C) Post-culture CD23+ and CD23- LZ BGC-cells were subsequently maintained for 48 h in the presence of IL-2, IL-4 and
IL-10 prior to flow cytometry analysis, in order to detect CD38brightCD138- PBs and CD38brightCD138+ PCs. Left panel, graphical representation of the experiment
and right panel, detected percentages of PBs and PCs for six independent experiments (**P ≤ .01; Mann-Whitney test).
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TP53, CDK4 and CDK6 (Figure 6E) (35, 36) and then the
proliferative genes from Module 6 plus CCNB1 (Module 4) –
marking cell cycle re-entry.

Overview of IL-4 Signature Integration
in LZ BGC-Cells
The pseudo-time inferred from the Monocle algorithm provided an
overview of the signal delivered by IL-4 (present in our
differentiation cocktail) through the expression of STAT6, IL4R,
Frontiers in Immunology | www.frontiersin.org 9
FCER2 and the well-established IL-4/STAT6 target CCL22 (37)
(Figure 7A). In line with our previous results (19), LZ BGC-cells are
unable to upregulate FCER2 once they have committed to the PBs
pathway but do produce a clear STAT6 response marked by the
expression of IL4R and CCL22. We then positioned on the sc-RNA-
seq UMAP plot of total BGC-cells from Holmes et al. (26) genes a B
cell-specific IL-4 response signature (Figure 7B) (38). Positive cells
for this signature were predominantly located in an area between
pre-MBC and PB clusters, the latter two representing the two
A

B

D

C

FIGURE 5 | Cell destiny of human LZ BGC-cells after Tfh-like stimulation. (A) The experimental plan, with five different cell populations (colored script) analyzed using
sc-RTqPCR. (B) The UMAP representation (colored according to the experimental conditions) highlighted two different fates as a function of CD23 expression.
(C) Projection of B cell identity genes (BCL6 and PAX5) and PC identity genes (PRDM1, XBP1, and IRF4) onto the UMAP representation. (D) The UMAP
representation (colored according to the Monocle pseudotime), showing an ordered, progression in four quadrants from LZ BGC-cells to PBs.
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distinct fates for BGC-cells (Figure 7C). A similar distribution was
obtained for cells expressing FCER2 with higher density on the far
right of the map, drawing a ridge line extending from the
intermediate (INT) 6 cluster to the pre-MBC cluster (Figure 7D).
Statistical analysis showed a striking enrichment for the IL-4
signature in INT5, INT6, light-zone (LZ) and pre-memory
Frontiers in Immunology | www.frontiersin.org 10
clusters compared to other clusters (Figure 7E). IL-4 signaling
was significantly enriched in FCER2+ cells compared to FCER2-

counterparts in some clusters including INT6, LZ and pre-memory
(Figure 7F). Interestingly, these three latter also exhibited the
highest proportion of FCER2+ cells compared to other clusters
(Figure 7G). Finally, unlike pre-MBCs, most differentiated PBs were
A B

D E

C

FIGURE 6 | The time course of gene analysis during LZ BGC-cell differentiation. (A) A heatmap computed for Monocle-ordered cells (LZ BGC-cells, PBs, T4h LZ
BGC-cells, T24h CD23+ LZ BGC-cells, and CD23- LZ BGC-cells), showing six different gene modules annotated with GeneMANIA. The pseudotime scale was
calculated from the gene expression data. (B) Density of cell subsets in each quadrant of the pseudotime. (C) Smooth analysis of the time course of each module by
pseudotime quadrant (Q1 to Q4) for all cell subsets except T24h CD23+ LZ BGC-cells. (D) The time course of gene expression during B cell activation and
differentiation into PCs showing (i) a bimodal expression of IRF4, (ii) a striking peak for PAX5, (iii) PRDM1 elevation synchronized with PAX5 decline, and (iv) the
specific expression of XBP1s in the last quadrant of the pseudotime compared to XBP1. (E) Gene expression during the differentiation of CD23- LZ BGC-cells for
Monocle-ordered cells showing a sequential transition from LZ BGC-cells to PBs for MYC expression, MYC-target genes and gene involved in cell cycle re-entry.
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FIGURE 7 | Overview of the IL-4 signature in LZ BGC-cells. (A) The time course of expression of IL-4-induced genes by quadrant showing a difference between
the almost flat FCER2 expression and the strong CCL22 expression. (B–G) Single-cell RNA-seq data for human tonsil-derived total BGC-cells, from Holmes
et al., 2020. (B) UMAP representation of the 13 specific clusters defined by Holmes et al. (C) UMAP showing cell expression of the IL-4 signature, noteworthy
that positive cells are located in the right part of the map mainly in intermediate 6 (INT6) cluster (enlarged view) with an expression maintained in pre-MBCs (Top,
dotted circle) while PBs are negative (Bottom, dotted circle). (D) UMAP showing FCER2+ cells; the enlarged view shows the preferential enrichment of these
cells on the far right of the map depicting a ridge line extending from the INT6 cluster to the pre-MBC cluster (top, dotted line circle). (E) Violin plots comparing
IL-4 signature expression in each of the 13 GC B cell clusters for FCER2+ (red) and FCER2- (black) cells (Pairwise t-test for IL-4 signature comparison between
clusters is indicated above the plot; ***P < .001; ****P < .0001). (F) Table of P values of Wilcox test comparing FCER2+ and FCER2- BGC-cells for IL-4 signature
in each of the 13 clusters. (G) Percentage of FCER2+ and FCER2- BGC-cells in the 13 clusters. Dotted line represent the mean value of positive cells for all
clusters (last barplot named All_cells). Chi2 test for each population compared to total cells (*p < 0.05, **p < 0.01, ***p < 0.001, "ns" for non significant);
significant test are indicated in the barplot of enriched FCER2 neg or pos populations accordingly.
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negative for both IL-4 signature and FCER2 expression, confirming
that in last steps of the PB commitment, cells turned off their IL-4/
STAT6/FCER2 signaling (19).
DISCUSSION

In the present study, we investigated the functional diversity of
human LZ BGC-cells collected at a single point in time from
tonsils and rLNs. We found that the PC precursors are contained
within the CD23-negative LZ BGC-cell compartment. Based on
our findings, time course gene expression analysis provided new
information on the LZ BGC-cells’ commitment to differentiation
and, in particular, on the kinetics and interconnexion between
transcription factors.

Conventionally, it has been thought that like in mice, human
BGC-cells express CD23 in response to molecules produced by
Tfh cells (19). Our results show that less than 10% of tonsil BGC-
cells expressed this protein, this number increasing when
considering only LZ BGC-cells. In contrast, in rLNs, LZ BGC-
cells express much higher levels of CD23 positive cells reflecting
likely that unlike chronically inflamed tonsils, rLN tissues are
produced in an acute response to a more limited number of
antigens. In addition, our study confirmed previous data by
showing that LZ stromal FDCs express very high levels of the
CD23 receptor (22, 23). Complementing very recently published
data from Cyster’s team showing that FDC restricted IL-4
availability in the GC (24) and our work revealing the
expression of IL-4 receptor and CD40 by FDCs (39), it is
tempting to speculate that FDCs activate CD23 expression by
trapping molecules produced by Tfh cells in the LZ and then
titrating them. In such a case, the LZ BGC-cells require effective,
lasting contact with Tfh cells for activation leading notably in B
cells by the recruitment of the IL-4/STAT6 signaling and CD23
expression (19). Our pSTAT6 protein staining is consistent with
the detection of the CD23 marker and the single-cell data on
FCER2 expression; these findings indicate that only a small
proportion of LZ BGC-cells are engaged in B cell-Tfh cell
contacts at a given point in time. These results also agree with
(i) the transient, dynamic interactions between BGC-cells and Tfh
cells observed in GCs (providing opportunities for competition
between B cells) and (ii) the fact that up to half of the BGC-cells
undergo apoptosis every 6 hours due to the absence of active
positive selection and irrespective of the BCR affinity (34). In
silico reanalyzed data from Holmes et al. (26) shows that FCER2-
expressing LZ BGC-cells are activated, BCR+ cells that might
upregulate CD86 - a gene whose expression in MBCs is induced
by IL-21 (40). In addition, flow cytometry detects significantly
more CCR6+ cells in CD23+ than CD23- LZ BGC-cells. The sc-
qRT-PCR experiment shows no upregulation of genes related to
PC differentiation after stimulation of sorted CD23+ LZ BGC-cells
as well as absence of cells downregulating the FCER2 expression.
Overall, our findings support the hypothesis whereby CD23
expression characterizes Tfh-instructed, post-activated LZ BGC-
cells diverted from a PC fate (40, 41). However, some activated
LZ BGC-cells may decrease the density of the membrane-bound
Frontiers in Immunology | www.frontiersin.org 12
form of CD23 – a probable reason for the expression of the
FCER2 gene in some CD23- tonsillar LZ BGC-cells sorted by flow
cytometry – after release as a freely soluble molecule due to
ADAM10 sheddase (42, 43). This point may contribute to our
BCR repertoire results where CD23+ and CD23- subsets are
clonally related, which do not exclude that clonal evolution could
possibly stand at different stages of their differentiation.
Collectively, our data demonstrate that CD23- LZ BGC-cells are
heterogeneous and contain both stimulated and unstimulated B
cells as well as B cells having committed to the PB pathway. In
these committed B cells, the IL-4 signal is removed and the
FCER2 gene can no longer be upregulated, the PBs being totally
negative for this signaling and this marker. Interestingly,
committed CD23- LZ BGC-cells maintain a transient ability to
upregulate IL-4/pSTAT6-dependent CCL22 after stimulation;
this observation is consistent with the finding that CCL22
promotes positive selection in murine GCs by increasing the
chance of productive Tfh help (44). Thus, in the committal step
of PB generation, IL-4/STAT6 signaling is definitively repressed
before a switch into a PC gene expression pattern during the S
phase of the cell cycle (14, 19). In agreement with a recent study,
we used a sensitive sc-RT-qPCR to detect proliferating CD23- LZ
BGC-cells that steadily increased their expression of MYC - an
indicator of positive selection (45)- after in vitro stimulation (20).
The computed cell trajectory showed that some LZ BGC-cells
reached the PB site after just 4 h and indicated that some cells
were ready to recycle and differentiate after appropriate
stimulation. This finding is consistent with previous data on
high-affinity LZ BGC-cells that migrate to the DZ and can
differentiate into PCs, depending on the amount of CD40
signal captured (13, 46). Overall, the trajectory of CD23- LZ
BGC-cells (i) sheds light on the time course in gene expression
during commitment to the PC pathway, and (ii) enables
comparisons with regard to various genes and possible
interdependencies. For example, transient expression of IRF4
sustains the expression of BCL6 and POU2AF1 (47); POU2AF1
expression is consistent with its ability to activate BGC-cells and
induce GC formation by (at least in part) underpinning the IL-4
response (48) and then enhancing the generation of PCs (49).

Overall, the CD23 marker might be of value in answering
questions about the differentiation of normal BGC-cells. Based on
extensive data in the literature including our previously
published data (14, 50, 51) and present results complemented
by explorations on previous scRNA-seq (26) as well as recent
results of Duan et al. (24), we propose an instructive model of the
maturation and fate of human BGC-cells in LZ (Figure 8). The
majority of BGC-cells are CD23-negative, progress in an affinity-
based proliferation and compete for Tfh help leading to a
productive IL-4/pSTAT6 response. B cells committed in PB
differentiation first lose their capacity to express the CD23
marker, then IL-4/pSTAT6 signaling and finally trigger final
PC programming supported by a specific demethylation process
(14). In this context, CD23-negative committed B cells
correspond to pre-PBs, diverted from cell death, they
transiently express MYC which triggers the cell cycle and gives
rise to a metamorphosis of B cells into PBs. The cell fate split
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between pre-MBC and PB destinies may take place in the INT6
cluster of BGC-cells. There, B cells express the IL-4/STAT6
signature and then migrate either to the pre-MBC group or
after their IL-4/STAT6 signaling has been turned off, to the PB
cluster. Taken as a whole, the present results have implications
for the design of future studies on the differentiation of both
normal human BGC-cells and their malignant counterparts.
Indeed, in patients with follicular lymphoma, the survival was
significantly better in patients carrying CD23+ FL B cells (52).
MATERIALS AND METHODS

Human Samples and Primary B Cell
Purification
Tonsils obtained from children undergoing routine
tonsillectomy were obtained following approval by the French
Ministry of Higher Education and Research (reference: AC-
2014-2315). The children’s parents provided their informed
consent to use of the samples for research purposes. The study
was performed in accordance with the principles of the
Declaration of Helsinki. Tonsil-derived BGC-cells were enriched
by negative selection via magnetic cell separation, using the
Frontiers in Immunology | www.frontiersin.org 13
MojoSort Human Pan B Cell Isolation Kit (Biolegend, San
Diego, CA) with the addition of biotinylated IgD antibody (BD
Biosciences, San Jose, CA) and the AutoMACS deplete program
(Miltenyi Biotech, Bergisch Gladbach, Germany). LZ BGC-cells
(CD19+IgD-CD10+CD38+CXCR4lo) and PBs (CD19+IgD-

CD38bright) were then sorted using a FACSAria system (BD
Biosciences). All antibodies used for flow cytometry are listed in
Supplemental Material, Method & Tables, Table 1.
Single-Cell qPCR Experiments
Single-cell experiments were performed using the Fluidigm® C1
™systems according to manufacturer instructions., Briefly,
sorted cells were captured with CI Single-Cell Auto Prep
integrated fluidic circuits (IFC) 5-10 µm (Fluidigm; 100-5757).
Cells were then lysed, and reversed transcription and pre-
amplification (Ambion Single cell-to-Ct Kit; 4458237) was
done within the C1 system. Gene expression levels was then
assessed by qPCR for selected taqman assays using Taqman
Gene expression master mix Life technologies; 4369016) on
96.96 Dynamic Arrays IFC (Fluidigm; BMK-M-96.96) within
the Fluidigm BioMark™ HD system. The list of TaqMan assay-
on-Demand™ used is provided in Supplemental Material,
Method & Tables, Table 2.
FIGURE 8 | Proposal of an instructive differentiation model of LZ BGC-cells integrating the expression of the CD23 marker. BGC-cells are predominantly CD23-

compete for antigen (Ag) when only limited amount of Ag is available (top-left B cells). Fit cells proliferate, retrieve Ag deposited on follicular dendritic cells (FDCs) and
receive survival signals from stromal cells (top-middle part). Note that FDCs express IL-4R and may take available IL-4 cytokine - in a non-directed manner [IL-4
broadcasting as called in (24)] – produced by Tfh. Both, high and low-affinity cells process Ag and present - in proportion to its affinity - peptide-MHC complex
which supports the interaction with cognate Tfh and the delivery of crucial molecules including IL-21, CD40L and IL-4 leading to pSTAT6 expression (right-middle
part). The split of the B cell fate depends on the integration of sufficient signals which impacts the maintenance or extinction of the IL-4/pSTAT6 signaling pathway.
B cells that have quenched the IL-4/STAT6 signal are unable to express the CD23 marker and progress further to the PB axis of differentiation (bottom-right). These
CD23- LZ BGC-cells correspond to pre-PB described previously (19) which express transiently MYC leading to cell cycle and the committal step of differentiation
described elsewhere (14). In contrast, CD23+ LZ BGC-cells which have maintained IL-4/STAT6 signaling are prone to apoptosis or give rise to pre-MBCs; the
maintenance of CD23 expression depends on the presence of IL-4 and CD40 stimuli (bottom-middle). In the right square, a view of the Figure 7C concerning
scRNA-seq data for BGC-cells representing the fate of activated LZ BGC-cells between pre-MBC or PB outputs.
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Histo-Immunofluorescence Staining
Human tonsils and reactive lymph nodes were embedded in
Optimal Cutting Temperature Compound (OCT, Sakura) and
conserved at -80°C. Cryostat sections (18 µm thick) were fixed
with 4% paraformaldehyde for 15 min at room temperature
(RT). Sections were then incubated during 1 h with a blocking
solution (PBS, 2% Bovine Serum Albumin, 4% donkey serum
and 0.1% saponin) at RT and incubated in a humidified
chamber overnight at 4° C with primary antibodies. Sections
were washed with PBS 0.1% saponin and incubated with
secondary antibodies for 1 h at RT. Finally, tissue sections
were mounted with Mowiol (Merck) antifade reagent
containing 20µM of SytoxBlue nucleic acid stain (Thermo
Fischer) and analyzed by confocal microscopy on a SP8
(Leica Microsystems). ImageJ software (National Institutes of
Health) was used for image analysis. The list of primary and
secondary antibodies used for immunohistofluorescence is
provided in Supplemental Material, Method & Tables,
Tables 3, 4.

For multiplex fluorescence microscopy and analysis, three
FFPE samples of human tonsil were provided by the Pathology
department of Rennes. Four-micrometer-thick whole-slide
sections, obtained with a microtome (Histocore multicut
Leicabiosystems, Nanterre, France) from FFPE tissue, were
transferred onto plus-charged slides (VWR international),
followed by multiplex immunofluorescence staining with a U
DISCOVERY 5 plex immunofluorescence (Roche Diagnostics,
Meylan, France). Four sequential rounds of staining were
performed each including heat deactivation step, followed by
incubation with primary antibody and corresponding HRP
secondary antibody. Hence, primary antibodies expressions (as
described in Supplemental Material, Method & Tables, Table
3) were visualized on the same section. HRP enzyme mediated
deposition of the tyramide; coupled to respectively rhodamine,
DCC, cyanine-5 and FAM fluorophores species (kits Ventana
Medical Systems, Tucson, Arizona) that covalently bound to the
tissue at the site of the reaction. After four sequential reactions,
sections were counterstained with DAPI and cover slipped using
fluoromount (Enzo Life Sciences, Farmingdale, NY, USA).
Visualization was performed with the Nanozoomer
(Hamamatsu Photonics, Massy, France) equipped with the
multicolor fluorescence module.

For the pSTAT6-positive BGC-cell percentage assessment, an
automated analysis by machine learning with the HALO
software was performed. After cell segmentation and nuclear
detection pSTAT6, CD20, PAX5 and PD1 threshold intensities
were set up. Six GCs in three different tonsils were analyzed.
Double CD20 or PAX5 and pSTAT6-positive cells and total
CD20- or PAX5-positive cells were quantified and a percentage
of positive pSTAT6 B cells was assessed.
Information About RNA-Seq Datasets
Used Throughout the Paper
Bulk RNAseq datasets used to select genes analyzed by sc-qPCR
in this study are available in the Gene Expression Omnibus
database under accession no. GSE136990.
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Single-cell-RNAseq datasets from Holmes et al.’s paper (26)
are available in the Gene Expression Omnibus database under
accession no. GSE139833. sc-gene expression data are available
under accession no. GSE139891.
Statistical Analysis
Quantitative variables were expressed as the mean ± standard
deviation (SD). Statistical analyses were performed with Prism
software (version 5, GraphPad Software, San Diego, CA) and R
software (version 3.6.0). Statistical significance was assessed
using the Mann-Whitney nonparametric U test and a one-way
Anova and Kruskal-Wallis multiple comparison test (*P ≤ .05;
**P < .01; ***P < .001; ****P < .0001).
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