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Abstract We develop an iterative algorithm to recover the minimum p−norm so-
lution of the functional linear equation Ax = b, where A

p
: X −→ Y is a continuo 

r
us 

linear operator between the two Banach spaces X = L , 1 < p < 2, and Y = L ,
r > 1, with x ∈ X and b ∈ Y. The algorithm is conceived within the same frame-work 
of the Landweber method for functional linear equations in Banach spaces
proposed by Schöpfer, Louis and Schuster (Inverse Probl., 22:311–329, 2006). In-
deed, the algorithm is based on using, at the n−th iteration, a linear combination of 
the steepest current “descent functional” A∗J (b − Axn) and the previous de-
scent functional, where J denotes a duality map of the Banach space Y. In this 
regard, the algorithm can be viewed as a generalization of the classical conjugate
gradient method on the normal equations (CGNR) in Hilbert spaces.
We demonstrate that the proposed iterative algorithm converges strongly to the
minimum p−norm solution of the functional linear equation Ax = b and that it is 
also a regularization method, by applying the discrepancy principle as stopping
rule.

According to the geometrical properties of Lp spaces, numerical experiments show 
that the method is fast, robust in terms of both restoration accuracy and stability, 
promotes sparsity and reduces the over-smoothness in reconstructing edges and 
abrupt intensity changes.
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1 Introduction

We discuss the problem of iteratively recovering a solution of the functional equa-
tion

Ax = b , (1)

where A : X −→ Y is a linear and continuous operator between two functional
spaces X and Y, with x ∈ X and b ∈ Y.
The problem we consider is ill-posed, since its solution is not unique or does not
exist for arbitrary data or does not depend continuously on the data [2]. There
is now an exhaustive and comprehensive literature about linear and nonlinear in-
verse ill-posed problems in Hilbert spaces. Over the last decade, there has been a
growing interest in studying inverse ill-posed problems in Banach spaces, because
many applicative problems are therein better modeled ([3], [8], [19], [20], [22], [21],
[23], [25], to name just a few references).

In [20], Schöpfer, Louis and Schuster computed a regularized solution in Ba-
nach spaces by means of the following generalized Landweber, i.e. gradient-type,
iterative scheme

xn+1 = jX
∗
“

jX (xn)− αnA∗jY (Axn − b)
”

, (2)

where jX , jX
∗

and jY are duality mappings of the corresponding spaces X ,X ∗,Y
[25], and αn > 0 is a appropriately chosen step size. The discrepancy principle is
employed to obtain a suitable stopping index in the case of noisy data. Like in
Hilbert spaces, the method turned out to have good regularizing properties but
its convergence speed is generally very slow.

The conjugate gradient (CG) algorithm for linear systems is known to enjoy
better convergence properties than methods based solely on gradient descent, but
its original formulation by Hestenes and Stiefel applies only in Hilbert spaces. In
this respect, the algorithm we develop in this paper can be considered as an ex-
tension to Banach space settings of the conventional CG method on the normal
equations for linear systems in Hilbert spaces (also known as CGNR method). In-
deed, on the basis of the theoretical framework of [20], we suggest using a different
“descent functional” than the steepest one A∗jY (b−Axn) at each iterative step,
which is defined by the same kind of linear combination as in the CGNR method.
More specifically, in [20] the spaces X is assumed to be smooth and uniformly
convex and Y can even be an arbitrary Banach space. Although our convergence
proof closely follows the arguments of [20], in this paper we restrict the analysis
to the case of X = Lp with 1 < p < 2 and Y = Lr with r > 1. On the other hand,
we argue that a generalization to other Banach spaces could be obtained without
strong changes.

To give a numerical validation, we apply our algorithm to a standard image
restoration problem. The exact solution presents discontinuities characterized by
different dimensions and different intensities. Reconstructions obtained by using
the proposed approach are compared with the ones obtained by CG in Hilbert



spaces, and by both steepest descent and Landweber methods in Hilbert and Ba-
nach spaces.
Since the proposed method is based on the minimization of p-norm (with 1 <
p < 2), it is expected to overcome the typical over-smoothing drawback effects of
regularization in Hilbert spaces and to enhance the sparsity of the reconstructed
solution. Our first numerical evidences confirm such a positive behavior in both
convergence speed and accuracy of the restoration.

Due to the intrinsic non-linearity of the duality maps, we mention that, differ-
ing from original CG method in Hilbert spaces, the short term recursion formula
for computing the descent functionals (which have the same role of the descent
directions in Hilbert spaces) does not guarantee now their full mutual conjugacy.
Thus, the proposed algorithm does not converge within n iterations for n×n linear
systems in Banach spaces. A concomitant proposal by Herzog and Wollner [13] for
the linear system (1) in a reflexive Banach space with A : X −→ X ∗ self-adjoint
and positive, preserves the conjugacy of the descent directions, so that conver-
gence in a finite number of steps holds as in the finite dimensional Hilbertian case.
Another positive fact is that, differing form the proposed algorithm, the method
in [13] does not require to solve any one-dimensional minimization problem for the
computation of the optimal step size at each iteration, since a closed formula holds
as in the Hilbertian case. On the other hand, to keep the mutual conjugacy of any
new descent direction, such an algorithm requires the storage of all the previous
descent directions, which are all used for the implementation of a modified Arnoldi
conjugation procedure as the iterations go on. Although finite convergence is not
assured, the CG-like method proposed in the present paper does not require any
other storage than the last descent (functional) direction and can be used in a
more general setting, since the operator A is here not required to be self-adjoint.
Moreover, differing form [13], the iterations are here explicitly computed in the
dual space X ∗, as generally done in [20], [22] and [3].

The remainder of this paper is organized as follows. In Section 2, we give the
necessary theoretical tools used in Section 3 and Section 4 to prove the strong
convergence for noise-free and noisy data b, respectively. In Section 5, a practical
implementation issue related to the step size computation is described and in
Section 6 the numerical experiments are presented and discussed. Some conclusions
are drawn in Section 7.

2 Preliminaries

The aim of this section is to briefly recall basic tools and classical notations usually
used in the Banach space setting for the regularization of ill-posed problems. For
details and proofs, we suggest the following monographs: [7], [17], [25].
Following the same notation as [20], throughout the paper, both X and Y are
two real Banach spaces with dual spaces X ∗ and Y∗ equipped with the corre-
sponding operator norm . For x∗ ∈ X ∗ and x ∈ X we denote by 〈x∗, x〉X∗×X and
〈x, x∗〉X×X∗ the duality pairing defined as 〈x∗, x〉X∗×X = 〈x, x∗〉X×X∗ = x∗(x).
In general, we omit subscripts indicating the space when this piece of information
is implicitly clear. In particular, this will be done for any norm of vectors or oper-



ators throughout the paper.
The operator A : X −→ Y is continuous and linear, and A∗ : Y∗ −→ X ∗ denotes
its adjoint operator of A, that is, the operator such that 〈Ax, y〉 = 〈x, A∗y〉, ∀x ∈
X and y ∈ Y∗. We have ‖A‖ = ‖A∗‖ in each corresponding operator norm.
For two real numbers a and b, we write a ∨ b = max {a, b} , a ∧ b = min {a, b} .
Throughout the paper, for p, r ∈ (1, +∞), we usually denote by q = p∗ and s = r∗

their Hölder conjugates.

2.1 Duality mapping

The key point in the generalization of the regularization method in Banach spaces
is the duality mapping [1], [14], [18]. A duality map is an appropriate function
which associates an element of a Banach space X with an element of its dual X ∗,
and it is useful when the Banach space X is not isometrically isomorphous to its
dual X ∗. Formally, we have the following definition.

Definition 1 (Duality mapping)
The (set-valued) mapping JX

p : X −→ 2X
∗

with p ≥ 1 defined by

JX
p (x) =

n

x∗ ∈ X ∗ : 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1
o

,

is called duality map of X with gauge function t 7−→ tp−1.

In general, by jXp (x) ∈ X we will denote a single-valued selection of the subset

JX
p (x) ⊂ X . If X = lr or X = Lr, with 1 < r < +∞, the duality map is a

single-valued function which will be denoted as jr
p(·). If r = p, the apex will be

usually omitted.

Example 1 Let us consider x ∈ lr(Rn). For every p ∈ (1, +∞), the duality map jr
p

is given by
jr
p(x) = ‖x‖p−r|x|r−1sign(x) , (3)

where sign(·) denotes the sign function and the product has to be considered as
component-wise. In particular, for the Hilbert space l2, according to the Riesz
representation Theorem, j2 is the identity operator, i.e. j2(x) = x.

The meaning of any duality mapping is naturally related to the sub-gradient of
the Banach norm. We first recall the following basic definition.

Definition 2 (Subgradient of convex functional)
Let f : X −→ R ∪ {+∞} . Then, x∗ ∈ X ∗ is a subgradient of f at x ∈ X if

f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ X .

The set ∂f(x) ⊂ X ∗ of all subgradients of f at x is called subdifferential of f at x.

The following important theorem give us a simple and heuristic way to understand
the meaning of any duality map.

Theorem 1 (Asplund Theorem) [1] Let X be a Banach space and p > 1. Then

JX
p = ∂

„

1

p
‖ · ‖p

«

. (4)

The Asplund Theorem is a key step for an intuitive “geometrical” interpretation
of any Banach space and its duality maps. In our context, it will be useful in
the following sections for the computation of the subdifferential of the residual
functional 1

p
‖Ax− b‖p by the chaining rule.



2.2 Geometry of Banach spaces and Bregman distance

Regarding the regularization theory in Banach spaces, the geometrical properties
of the spaces, like convexity and smoothness, play a crucial role [7]. These prop-
erties, which can be viewed as an extension to Banach space of heuristic basic
properties of Hilbert (or simply Euclidean) spaces, are strictly related to the du-
ality maps and will be useful to prove the convergence of the proposed algorithm.
The “degree” of convexity or smoothness of a Banach space is given by its modulus
of convexity and its modulus of smoothness, and we refer to Section 2.1 of [20]
for their formal definitions and for the subsequent characterization of p-convex,
p-smooth, uniformly convex and uniformly smooth Banach spaces.

In [5], it has been argued that the Bregman distance is the correct measure for
measuring the “quality” of the regularized solution in the case of convex regular-
ization in Banach spaces. Moreover, due to the geometrical properties of Banach
spaces, it is often more appropriate to exploit the Bregman distance between two
vectors x and y instead of more conventional norm-distances like ‖x − y‖p or
‖jXp (x)− jXp (y)‖p to prove convergence of the algorithms [6], [10], [20].

Generally, the Bregman distance associated to a convex functional is defined
as the difference between the functional and its linear approximation around x as
follows [4].

Definition 3 (Bregman distance)
Let f : X −→ R be a convex and contiously-differentiable functional on a Banach
space X . Then the Bregman distance ∆(x, y) of f between x ∈ X and y ∈ X is
defined as

∆(x, y) = f(x)− f(y)− f ′(y)(x− y),

where f ′(y) is the first order Taylor expansion of f at y.

The role of a Bregman distance is similar to the role of any metric. However, any
Bregman distance in general does not satisfy the triangle inequality nor symmetry.
As shown by the following special case first example, the Bregman distance is a
generalization of the square norm distance in Hilbertian contexts, when the basic
square norm distance functional is considered.

Example 2 If X is an Hilbert space, then ∆2(x, y) = 1
2‖x−y‖2, for f2(x) = 1

2‖x‖2.

Example 3 In a general Banach space X , by considering the convex functional
fp(x) = 1

p
‖x‖p, thanks to the Asplund Theorem (4) the associated Bregman dis-

tance ∆p is

∆p(x, y) =
1

p
‖x‖p − 1

p
‖y‖p − 〈jp(y), x− y〉, (5)

for any x, y ∈ X , where jp is a single-valued selection of JX
p .

In general ∆p(x, y) ≥ 0, and ∆p(x, y) = 0 if and only if jp(y) ∈ JX
p (x) [25].

From that, for all x, z ∈ X we have 1
p
‖z‖p − 1

p
‖x‖p − 〈jp(x), z − x〉 ≥ 0 , which,

by setting y = − (z − x), yields

1

p
‖x− y‖p − 1

p
‖x‖p + 〈jp(x), y〉 ≥ 0. (6)



In general, the Bregman distance in the primal space X and the Bregman
distance in its dual space X ∗ are strictly linked, since

∆p(x, y) = ∆q

`

jp(x), jp(y)
´

.

This duality, together with basic relationships about strong convergence in norm
and convergence in Bregman distance (see [25], and [20] Theorem 2.12) and with
the Xu-Roach inequality (see [26], and [20] Theorem 2.8), will have an important
role in the convergence analysis of our algorithm.

3 CG and its convergence: the noise-free case

We restrict to the case X = Lp with 1 < p < 2 and Y = Lr, with r > 1.
By implicitly considering the classical isomorphisms, in the following Lq and Ls

denote the dual spaces of Lp and Lr, respectively.
Concerning our functional equation (1), we are interested in finding the minimum
p-norm solution of (1), denoted hereinafter as x̄, with exact data b ∈ R(A). In this
respect, we first recall the following existence and characterization result.

Theorem 2 [20] If b ∈ R(A), then there exists the minimum p-norm solution
x̄ ∈ Lp of (1) and jp(x̄) ∈ R(A∗).
Moreover, if x̃ ∈ Lp fulfils jp(x̃) ∈ R(A∗) and x̃− x̄ ∈ N (A), then x̃ = x̄.

To recover the minimum p-norm solution x̄, we propose the following algorithm
based on the well known conjugate gradient method in Hilbert spaces.

Algorithm 1 Conjugate Gradient based method in Banach spaces

Choose a constant C ∈ (0, 1), and let

γ =
Cr

2r − 1 + Cr
(7)

be a relaxation parameter and d an arbitrary constant satisfying

0 < d ≤
„

1− 2r − 1 + r

r
γ

«

1

‖A‖ .

Set n = 0, x∗
0 = 0, p∗0 = A∗jr(b), R0 = ‖b‖, and

α0 = arg min
α∈

h

0,
qp−1

‖A‖p R
p−r
0

i

‖Ajq(x
∗
0 + αp∗0)− b‖r. (8)

While Rn > 0 do:
Update n ← n + 1.
Compute

8

<

:

x∗
n = x∗

n−1 + αn−1p
∗
n−1,

xn = jq (x∗
n) ,

p∗n = −A∗jr (Axn − b) + βnp∗n−1,
(9)

where
αn = arg min

α∈[0,Tn]
‖Ajq(x

∗
n + αp∗n)− b‖r (10)



and

βn = γ
Rr

n

Rr
n−1

, (11)

with
Rn = ‖Axn − b‖,

Tn = min

(

R2−r
n (Vn − d‖A‖Qn)

Gq2q−2‖x∗
n‖q−2(q − 1)‖A‖2Q2

n

,
‖x∗

n‖
‖A‖Rr−1

n Qn

)

,

Vn = 1− 2r − 1

r
γQn−1,

Qn =
1− γn+1

1− γ
,

and Gq the constant value of the Banach space defined in [20].
End while

Before providing the convergence proof, which follows the idea developed in
[20], some comments are useful. First, it is interesting to notice that the functional
p∗n is a linear combination of the current steepest descent functional−A∗jr (Axn − b)
and the previous descent functional p∗n−1. This is a key point in the definition of
the CG method in Hilbert spaces, where the descent functionals are just descent
directions.
On the other hand, there are two important facts to mention as main differences be-
tween (the proposed) CG in Banach and (the conventional) CG in Hilbert spaces.
The first is that in Banach spaces the optimal step size αn cannot be directly com-
puted by means of an explicit formula, since the corresponding one-dimensional
minimization problem (10) is no more quadratic. The second is related to the
weight βn of (11). Now βn is different from the Fletcher Reeves formula for CG
in Hilbert spaces. Indeed βn now concerns the ratio of the norms of the two last
residuals (instead of the norms of the last two gradients) and it requires the re-
laxation factor γ < 1/2 defined in (7), which does not appear in the original CG
method. Hence, recalling the optimality condition on the step size (10), differing
from the original CG method, βn is always lower than 1/2. Although such a con-
straint is necessary only for our theoretical convergence proof, our numerical tests
show that it helps the method to be more stable.

We prove the following main convergence result.

Theorem 3 Let X = Lp with 1 < p < 2 and Y = Lr, with r > 1. The sequence
of the iterations (xn)n of Algorithm 1 defined in (9), either stops at or converges
strongly to the minimum p−norm solution x̄ of (1).

Proof First of all, by simple induction on the definition of x∗
n and p∗n, we have that

any x∗
n = jp(xn) ∈ R(A∗), since x∗

0 = 0 ∈ R(A∗) and p∗0 = A∗jr(b) ∈ R(A∗).
Then, if the algorithm at step n gives Rn = 0, by Theorem 2 we have that xn = x̄.
Indeed, by 0 = Rn = ‖Axn − b‖ = ‖A(xn − x̄)‖, we know that xn − x̄ ∈ N (A), so
that xn = x̄.
Otherwise we have that Rn > 0 for all n > 0. In this case, as similarly done in
[20] for the Landweber method in Banach space, the proof of convergence will be
structured in the following four steps:



1. the sequence of the Bregman distances (∆p(x̄, xn))n obeys a recursive inequal-
ity which implies its convergence;

2. the sequence of the residuals (Rn)n is such that limn−→+∞ Rn = 0 ;
3. the sequence of the iterates (xn)n has a Cauchy subsequence;
4. the sequence of the iterates (xn)n converges strongly to x̄ .

Before going on, we itemize some notations used in the proof.

g∗
n = −A∗jr(Axn − b),

∆n = ∆p(x̄, xn),

ck,n =
n
Y

l=k+1

βl = γn−k Rr
n

Rr
k

,

τn =
αn‖A‖Rr−1

n Qn

‖x∗
n‖

,

W = Gq2
q−2(q − 1),

Sn =
Wτn‖x∗

n‖q−1

Rn

Qn

Vn
‖A‖.

1. First step: the sequence of Bregman distances (∆n)n is non-
decreasing and convergent.
By (5), we can write

∆n+1 =
1

p
‖x̄‖p − 1

p
‖xn+1‖p + 〈x∗

n+1, x̄− xn+1〉 =
1

q
‖xn+1‖p +

1

p
‖x̄‖p − 〈x∗

n+1, x̄〉

=
1

q
‖x∗

n+1‖q +
1

p
‖x̄‖p − 〈x∗

n+1, x̄〉

=
1

q
‖x∗

n + αnp∗n‖q +
1

p
‖x̄‖p − 〈x∗

n, x̄〉 − αn〈p∗n, x̄〉.

For n = 0, since x0 = 0, then R0 = ‖b‖ > 0, p∗0 = A∗jr(b) and ∆0 = 1
p
‖x̄‖p. Hence

∆1 =
1

q
‖α0p

∗
0‖q +

1

p
‖x̄‖p − α0〈p∗0, x̄〉 =

1

q
αq

0‖A∗jr(b)‖q + ∆0 − α0〈jr(b), Ax̄〉

=
1

q
αq

0‖A∗jr(b)‖q + ∆0 − α0〈jr(b), b〉 ≤ 1

q
αq

0‖A‖qR
(r−1)q
0 + ∆0 − α0R

r
0

To obtain a reduction of the Bregman distance at first iteration, we consider the
upper-bound for α0 > 0 defined in (8), since

1

q
‖A‖qαq

0R
(r−1)q
0 − α0R

r
0 < 0 ⇐⇒ α0 <

qp−1

‖A‖p
Rp−r

0 =⇒ ∆1 < ∆0. (12)



Now we consider n > 0. Thanks to the Xu-Roach inequality ([20], Theorem 2.8),

∆n+1 =
1

q
‖x∗

n + αnp∗n‖q +
1

p
‖x̄‖p − 〈x∗

n, x̄〉 − αn〈p∗n, x̄〉

≤ 1

q

h

‖x∗
n‖q + qGq

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖

«

dt

−q〈xn,−αnp∗n〉
i

+
1

p
‖x̄‖p − 〈x∗

n, x̄〉 − αn〈p∗n, x̄〉,

that is

∆n+1 ≤ ∆n + Gq

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖

«

dt

+ αn〈p∗n, xn − x̄〉.
(13)

We now study the last two addenda of the inequality (13).

A) Let us consider the term
〈p∗n, xn − x̄〉 . (14)

From

p∗n = g∗
n + βnp∗n−1 = g∗

n +
n−1
X

k=0

2

4

n
Y

l=k+1

βl

3

5 g∗
k = g∗

n +
n−1
X

k=0

ck,ng∗
k

= −A∗

"

jr(Axn − b) +
n−1
X

k=0

ck,njr(Axk − b)

#

,

thanks to (6) we have

〈p∗n, xn − x̄〉 = −〈jr(Axn − b) +
n−1
X

k=0

ck,njr(Axk − b), Axn − b〉

= −Rr
n −

n−1
X

k=0

ck,n〈jr(Axk − b), Axn − b〉

≤ −Rr
n −

n−1
X

k=0

ck,n

»

1

r
‖Axk − b‖r − 1

r
‖Axk − b−Axn + b‖r

–

≤ −Rr
n −

n−1
X

k=0

ck,n

»

1

r
Rr

k −
1

r

“

‖Axk − b‖+ ‖Axn − b‖
”r
–

= −Rr
n +

n−1
X

k=0

ck,n

»

1

r
(Rk + Rn)r − 1

r
Rr

k

–

≤ −Rr
n +

2r − 1

r

n−1
X

k=0

ck,nRr
k ,

(15)

where the last inequality holds by construction of the optimal step size (10)
which guarantees that the residuals Rk decrease.



B) Let us consider the term

Gq

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖

«

dt . (16)

Since 0 ≤ t ≤ 1 and ‖x∗
n‖ ≤ ‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖ ≤ ‖x∗

n‖+ αn‖p∗n‖ , we have

p∗n = −A∗

"

jr(Axn − b) +
n−1
X

k=0

ck,njr(Axk − b)

#

,

so that

‖p∗n‖ =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

−A∗

"

jr(Axn − b) +
n−1
X

k=0

ck,njr(Axk − b)

#˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

≤ ‖A‖
˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

jr(Axn − b) +
n−1
X

k=0

ck,njr(Axk − b)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

≤ ‖A‖
"

‖jr(Axn − b)‖+
n−1
X

k=0

ck,n‖jr(Axk − b)‖
#

= ‖A‖
"

Rr−1
n +

n−1
X

k=0

γn−k Rr
n

Rr
k

Rr−1
k

#

≤ ‖A‖Rr−1
n

"

1 +
n−1
X

k=0

γn−k Rn

Rk

#

≤ ‖A‖Rr−1
n

"

1 +
n−1
X

k=0

γn−k

#

= ‖A‖Rr−1
n

"

1− γn+1

1− γ

#

= ‖A‖Rr−1
n Qn ,

(17)

that is, ‖p∗n‖ ≤ ‖A‖Rr−1
n Qn . This last inequality, together with condition on

Tn of (10), gives
αn‖p∗n‖ ≤ αn‖A‖Rr−1

n Qn ≤ ‖x∗
n‖ . (18)

By means of the latter, we have that

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖

«

dt

≤
Z 1

0

(‖x∗
n‖+ αn‖p∗n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n‖

«

dt

≤
Z 1

0

(‖x∗
n‖+ αn‖p∗n‖)q

t
̺q

tαn‖A‖Rr−1
n Qn

‖x∗
n‖

!

dt

≤
`

‖x∗
n‖+ αn‖p∗n‖

´q
Z 1

0

1

t
̺q (tτn) dt =

`

‖x∗
n‖+ αn‖p∗n‖

´q
Z τn

0

1

t1
̺q (t1) dt1

≤
`

‖x∗
n‖+ αn‖p∗n‖

´q
Z 1

0

1

t
̺q (tτn) dt =

`

‖x∗
n‖+ αn‖p∗n‖

´q
Z τn

0

1

t1
̺q (t1) dt1

≤
`

‖x∗
n‖+ αn‖p∗n‖

´q
Z τn

0

1

t1

q − 1

2
t21dt1 =

`

‖x∗
n‖+ αn‖p∗n‖

´q q − 1

22
τ2
n

≤ (2‖x∗
n‖)q (q − 1)

22
τ2
n = 2q−2‖x∗

n‖q−2(q − 1)α2
n‖A‖2R2(r−1)

n Q2
n.

(19)



Now, reconsidering (13), we can write

∆n+1 ≤ ∆n + Gq

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖

«

dt

+ αn〈p∗n, xn − x̄〉
≤ ∆n + Gq

h

2q−2‖x∗
n‖q−2(q − 1)α2

n‖A‖2R2(r−1)
n Q2

n

i

+ αn

"

−Rr
n +

2r − 1

r

n−1
X

k=0

ck,nRr
k

#

.

We have that (∆n)n is a non-increasing sequence, that is, ∆n+1 ≤ ∆n , if

αn αn

h

Gq2
q−2‖x∗

n‖q−2(q − 1)‖A‖2R2(r−1)
n Q2

n

i

−Rr
n +

2r − 1

r

n−1
X

k=0

ck,nRr
k

!

≤ 0.

(20)
The latter holds if

Rr
n −

2r − 1

r

n−1
X

k=0

ck,nRr
k ≥ 0 (21)

and

0 ≤ αn ≤ min

(

Rr
n − 2r−1

r

Pn−1
k=0 ck,nRr

k

Gq2q−2‖x∗
n‖q−2(q − 1)‖A‖2R2(r−1)

n Q2
n

,
‖x∗

n‖
‖A‖Rr−1

n Qn

)

, (22)

∀n = 1, 2, 3, . . ., where condition (18) has been considered.
First we show that the relaxation parameter γ < 1

2 of (7) allows (21) to be always
true. Indeed we have

n−1
X

k=0

ck,nRr
k =

n−1
X

k=0

γn−k Rr
n

Rr
k

Rr
k =

n−1
X

k=0

γn−kRr
n =

γ − γn+1

1− γ
Rr

n ≤
γ

1− γ
Rr

n ,

so that

Rr
n −

2r − 1

r

n−1
X

k=0

ck,nRr
k ≥

„

1− 2r − 1

r

γ

1− γ

«

Rr
n = (1− C)Rr

n > 0 . (23)

By means of these conditions on γ and αn , we can finally write

0 ≤ ∆n+1 ≤ ∆n + W‖x∗
n‖qτ2

n −
‖x∗

n‖τn

‖A‖Qn
VnRn ≤ ∆n , (24)

where τn, W and Vn have been previously properly defined. According to the aim
of the first step of this proof, this last inequality shows that the sequence (∆n)n

is both non-increasing and bounded by below, so that it is convergent.

Remark 1 From (15) and (23), we obtain that −〈p∗n, xn−x̄〉 > 0, which shows that
p∗n is a descent functional at the current point xn, as expected by any gradient-
type iteration scheme.



2. Second step: the sequence of residuals (Rn)n vanishes, that is,
limn−→+∞ Rn = 0.
On the ground of [20] Theorem 2.12 (b), since by first step we know that (∆n)n is
bounded, then the sequence (xn)n is bounded. In addition, since ‖x∗

n‖ = ‖jp(xn)‖ =
‖xn‖p−1 and Rn = ‖Axn − b‖, then both the sequences (x∗

n)n and (Rn)n are
bounded too.

We rewrite (24) as follows

∆n+1 ≤ ∆n − 1− Sn

‖A‖
Vn

Qn
τn‖x∗

n‖Rn ≤ ∆n

that is

∆n −∆n+1 ≥ 1− Sn

‖A‖
Vn

Qn
τn‖x∗

n‖Rn ≥ 0 .

For all n ∈ N we have

0 ≤
n
X

k=0

1− Sk

‖A‖
Vk

Qk

τk‖x∗
k‖Rk ≤

n
X

k=0

(∆k −∆k+1) = ∆0 −∆n+1 ≤ ∆0

which yields that
+∞
X

k=0

1− Sk

‖A‖
Vk

Qk

τk‖x∗
k‖Rk < +∞, (25)

that is, the numerical series is convergent.
Since Sk ≥ 0 by construction, in order to first ensure that the limit inferior of

(Rn)n is zero we impose the following condition

0 ≤ Sk ≤ 1− d‖A‖Qk

Vk

so that
1− Sk

‖A‖
Vk

Qk

≥ d > 0, (26)

where d is a positive constant independent from n. This guarantees that the prod-
uct of the first two factors of any element of the series (25) stays uniformly bounded
away from zero.

The latter inequality leads to the following constructive condition on the con-
stant d

1− d‖A‖Qk

Vk

≥ 0

which is satisfied when d is chosen such that

0 < d ≤
„

1− 2r − 1 + r

r
γ

«

1

‖A‖ (27)

since

0 < 1− 2r − 1 + r

r
γ ≤ Vk

Qk

. (28)

On this ground, we can write

1− d‖A‖Qk

Vk

≥ Sk =
Wτk‖x∗

k‖q−1

Rk

Qk

Vk

‖A‖ ,



which is equivalent to

τk =
αk‖A‖qRr−1

k Qk

‖x∗
k‖

≤ (Vk − d‖A‖Qk) Rk

W‖x∗
k‖q−1Qk‖A‖

,

that is,

αk ≤
R2−r

k (Vk − d‖A‖Qk)

W‖x∗
k‖q−2Q2

k‖A‖2
, (29)

as requested by the the upper bound Tn of (10). From (25), we finally have

d
+∞
X

k=0

τk‖x∗
k‖Rk ≤

n
X

k=0

1− Sk

‖A‖
Vk

Qk

τk‖x∗
k‖Rk < +∞. (30)

Suppose now that lim infn−→+∞ Rn > 0 . Then there exists n0 ∈ N and ε > 0
such that Rn ≥ ε ∀n ≥ n0 . In this case, from (30), we would have

εd
∞
X

k=n0

τk‖x∗
k‖ ≤ d

+∞
X

k=n0

τk‖x∗
k‖Rk < +∞.

Since the series is convergent, then we should have true at least one of the
following two conditions:

1. (xk)k is a null sequence.

1

p
‖x‖p = ∆p(0, x) = lim

k−→+∞
∆p(xk, x) <

1

p
‖x‖p

p

But this is a contradiction, so that (xn)n cannot be vanishing.
2. the numerical sequence (τk)n is a null sequence.

Since τk =
αk‖A‖R

r−1
k

Qk

‖x∗
k
‖ , if τk −→ 0 then αk −→ 0 because Rk ≥ ε, and

‖x∗
k‖ ≤ c.

But the step size αk, which solves the one-variable minimization problem (10),
cannot be a vanishing sequence when the residual does not vanish, that is, if
Rk ≤ ε definitively, as supposed. Indeed, from (14) and (23), we have that

〈p∗k, xk − x̄〉 ≤ −(1− C)Rr
k ≤ −(1− C)εr < 0 ,

which means that any functional p∗k is a descent functional with negative slope
uniformly bounded away from zero. Moreover, since the duality map jq is
continuous, then the map φk : R −→ R defined as

α −→ φk(α) = ‖Ajq(x
∗
k + αp∗k)− b‖r

is continuous with respect to α, with φk(0) = Rr
k ≥ εr and φ′

k(0) ≤ c < 0, with
c = c(ε) a fixed constant. On this grounds, by sign permanence Theorem, we
have that there exists a δ > 0 such that φn(α) is decreasing in [0, δ], so that
αk ≥ δ > 0 for any k. So, we have necessarily that lim infn−→+∞ Rn = 0 .
On the other hand, by construction of the step size based on the one dimen-
sional minimization problem (10), we recall that 0 < Rn+1 ≤ Rn, so that

lim
n−→+∞

Rn = 0. (31)

3. Third step: the sequence (xn)n has a Cauchy subsequence.
By boundedness of (xn)n and (jp(xn))n we can find a subsequence (xnk)k such
that



(a) the sequence of the norm (‖xnk‖)k is convergent,
(b) the sequence (jp(xnk))k is weakly convergent,
The sequence (Rnk)k is also null by (31). We want to show that (xnk)k is
a Cauchy (sub)sequence. By virtue of [20] Theorem 2.12 (e), we have for all
k, l ∈ N, with l > k,

∆p(xnk , xnl) =
1

q
(‖xnk‖p − ‖xnl‖p) + 〈jp(xnl)− jp(xnk), xnl〉 .

The first addendum satisfies

(‖xnk‖p − ‖xnl‖p) −→ 0 as k −→ +∞ for [20] Theorem 2.12 (d) (ii).

Regarding the second term, we have

〈jp(xnl)− jp(xnk), xnl〉 = 〈jp(xnl)− jp(xnk), x̄〉+ 〈jp(xnl)− jp(xnk), xnl − x̄〉 .
(32)

Here
〈jp(xnl)− jp(xnk), x̄〉 −→ 0 as k −→ +∞ for (b), and

|〈jp(xnl) − jp(xnk), xnl − x̄〉| =
˛

˛

˛

˛

˛

nl−1
X

n=nk

〈jp(xn+1)− jp(xn), xnl − x̄〉
˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn〈p∗n, xnl − x̄〉
˛

˛

˛

˛

˛

≤

˛

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn

‚

‚

‚

‚

‚

‚

jr(Axn − b) +
n−1
X

j=0

cj,njr(Axj − b)

‚

‚

‚

‚

‚

‚

‖Axnl − b‖

˛

˛

˛

˛

˛

˛

≤
nl−1
X

n=nk

αnRr−1
n QnRn =

nl−1
X

n=nk

τn‖x∗
n‖Rn

‖A‖ → 0 as k → +∞ by (30).

Hence we can write

〈jp(xnl)− jp(xnk), xnl〉 −→ 0,

which prove that the (sub)sequence (xnk)k is a Cauchy sequence. Finally, since
it is Cauchy, it converges strongly to a point x̃ ∈ X .

4. Forth step: the sequence (xn)n converges strongly to the mini-
mum p-norm solution x̄
We know that the subsequence (xnk)nk

converges to an element x̃ ∈ X . We
prove now that x̃ = x̄ and limn−→+∞ ‖xn − x̄‖ = 0.
From ‖Axnk − b‖ = ‖A (xnk − x̄) ‖ = Rnk −→ 0 as k −→ +∞ , then, by
continuity of A, we have that (x̃− x̄) ∈ N (A) and jp(x̃) ∈ R(A∗). Hence, by
recalling Theorem 2, x̃ = x̄. It remains to prove that not only the subsequent
(xnk)k converges to x̄, but the full sequence (xn)n converges strongly to x̄.
By continuity of the Bregman distance, we can state that

lim
k−→+∞

∆nk = lim
k−→+∞

∆p(x̄, xnk) = ∆p(x̄, lim
k−→+∞

xnk) = ∆p(x̄, x̄) = 0.



Hence the sequence (∆n)n is convergent (by first point of the proof), and has
a subsequence converging to zero. Theorem 2.12 (d) of [20], allows us to state
that xn −→ x̄ strongly, that is,

‖xn − x̄‖ −→ 0 as n −→ +∞ ,

which concludes the proof.

4 CG and its regularization properties: the noisy case

In the previous section, we proved that the CG method, in the case X = Lp with
1 < p < 2 and Y = Lr, converges to the minimum p-norm solution of (1) for exact
data b ∈ R(A). In the same setting, now we consider the case of noisy data bδ ∈ Y
with a known noise level δ > 0, that is,

‖b− bδ‖ ≤ δ.

According to the well known semi-convergence behavior of any iterative regular-
ization algorithm, in the case of noisy data an early stop of the iterations prevents
noise amplification in the restoration process. Hence, our algorithm for noisy data
is based on the discrepancy principle stopping rule, that is, the iterations are
stopped as soon as ‖Axn − bδ‖ ≤ τδ , where τ > 1 is a fixed constant value. This
way, the restoration is accepted as soon as its residual is equal or less than τ times
the magnitude of the noise of the (noisy) data bδ (indeed, searching for a solution
xn such that the corresponding residual is smaller than the noise level δ is un-
reasonable). After introducing the algorithm, in the subsequent theorem we will
prove that it belongs to the class of iterative regularization methods, by showing
that its iterations either stop at or converge strongly to the minimum p−norm
solution x̄ of (1) as the noise level δ goes to zero.

Algorithm 2 Regularization by Conjugate Gradient method in Banach
spaces

Choose two constants C ∈ (0, 1) and τ ∈ (1, +∞) such that C + τ−1 ∈ (0, 1),
and let

γ =
Cr

(2 + τ−1)r − 1 + Cr
(33)

be a relaxation parameter and d an arbitrary constant satisfying

0 < d ≤ (1− γ)(1− τ−1)− (2 + τ−1)r − 1

r
γ

!

1

‖A‖ .

Set n = 0, x∗
0 = 0, p∗0 = A∗jr(bδ), R0 = ‖bδ‖, and

α0 = arg min
α∈

»

0,
qp−1(1−τ−1)p−1

R
p−r
0

‖A‖p

–

‖Ajq(x
∗
0 + αp∗0)− bδ‖r, (34)

While Rn > τδ do:
Update n ← n + 1.
Compute



8

<

:

x∗
n = x∗

n−1 + αn−1p
∗
n−1,

xn = jq (x∗
n) ,

p∗n = −A∗jr (Axn − bδ) + βnp∗n−1,
(35)

where
αn = arg min

α∈[0,Tn]
‖Ajq(x

∗
n + αp∗n)− bδ‖r (36)

and

βn = γ
Rr

n

Rr
n−1

, (37)

with
Rn = ‖Axn − bδ‖,

Tn = min

(

R2−r
n (Vn − d‖A‖Qn)

Gq2q−2‖x∗
n‖q−2(q − 1)‖A‖2Q2

n

,
‖x∗

n‖
‖A‖Rr−1

n Qn

)

,

Vn = 1− τ−1 − (2 + τ−1)r − 1

r
γQn−1,

Qn =
1− γn+1

1− γ
,

and Gq the constant value of the Banach space defined in [20].
End while

Theorem 4 Let X = Lp with 1 < p < 2 and Y = Lr, with r > 1. The sequence
of the iterations (xn)n of Algorithm 2 is a regularization method.

Proof According to [20], to show that Algorithm 2 is a regularization method we
consider a sequence of “less and less” noisy data (bh)h∈N such that

‖b− bh‖ ≤ δh,

with limh−→+∞ δh = 0, and 0 < δh+1 < δh. We then will prove that for any data
δh there exists an iteration xn such that ‖Axn−bh‖ < τδh , and that the sequence
of iterates (xn)n either stops at or converges strongly to the minimum p−norm
solution x̄ of (1) as the noise level δh goes to zero. To this aim, we consider the
following adaptive setting of the noisy data (bh)h as the iterations go on.

REPEAT, for n = 0, 1, 2, . . ., the following steps:

IF for all h > hn−1 (where h−1 = 0) the discrepancy principle is satisfied, that
is,

‖Axn − bh‖ < τδh , (38)

THEN STOP the iterations;
ELSE choose the smallest integer value hn > hn−1 such that ‖Axn − bhn

‖ ≥
τδhn

, and consider Algorithm 2 with noisy data bδ = bhn
, that is

8

<

:

x∗
n = x∗

n−1 + αn−1p
∗
n−1

xn = jq (x∗
n)

p∗n = −A∗jr (Axn − bhn
) + βnp∗n−1

(39)



We notice that the discrepancy principle related to δh is satisfied for any hn <
h ≤ hn−1, and the algorithm find a regularized solution for the associated data
bh with hn < h ≤ hn−1. On the other hand, if the inequality (38) holds for all
h > hn−1 at a certain iteration n, then xn = x̄ as in the case of exact data (indeed
the sequence of noise levels is such that limh−→+∞ δh = 0), that is, the iterations
stop at the minimum p−norm solution of (1).

So we have to consider only the case where inequality (38) is never fulfilled. In
such a case Rn = ‖Axn − bhn

‖ > 0 for all n. The proof follows the same steps of
the noiseless case of Theorem 3, so we report the basic different arguments.

First we show that, since Rn = ‖Axn− bhn
‖ > τδhn

, the sequence of Bregman
distances (∆n)n is non-decreasing and convergent.

As already shown at the beginning of the first step of the proof of Theorem 3,
we have

∆n+1 =
1

q
‖x∗

n + αnp∗n‖q +
1

p
‖x̄‖p − 〈x∗

n, x̄〉 − αn〈p∗n, x̄〉.

For n = 0, it becomes

∆1 =
1

q
αq

0‖A∗jr(bh0
)‖q +

1

p
‖x̄‖p − α0〈jr(bh0

), Ax̄〉

=
1

q
αq

0‖A∗jr(bh0
)‖q + ∆0 − α0〈jr(bh0

), bh0
〉+ α0〈jr(bh0

), bh0
− b〉

≤ 1

q
αq

0‖A‖qR
(r−1)q
0 + ∆0 − α0R

r
0 + α0R

r−1
0 δh0

.

Similarly to (12), this gives the upper-bound for α0 > 0, in order to obtain a
reduction of the Bregman distance at the first iteration. Indeed, since R0 > τδh0

we have that, if

1

q
αq

0‖A‖qR
(r−1)q
0 − α0R

r
0 + α0R

r
0τ

−1 < 0 ⇐⇒ α0 <
qp−1

`

1− τ−1
´p−1

Rp−r
0

‖A‖p

then =⇒ ∆1 < ∆0 .

For n > 0, we have again (13)

∆n+1 ≤ ∆n + Gq

Z 1

0

(‖x∗
n + tαnp∗n‖ ∨ ‖x∗

n‖)q

t
̺q

„

t‖αnp∗n‖
‖x∗

n + tαnp∗n‖ ∨ ‖x∗
n‖q

«

dt

+ αn〈p∗n, xn − x̄〉 .

We study the two latter addenda of this inequality.

A) Following the analogous computation of (15), since Rk > τδhk
we have



〈pn, xn − x̄〉 = 〈−A∗
“

jr(Axn − bhn
) +

n−1
X

k=0

ck,njr(Axk − bhk
)
”

, xn − x̄〉

= −〈jr(Axn − bhn
), Axn − bhn

〉+ 〈jr(Axn − bhn
), b− bhn

〉

−
n−1
X

k=0

ck,n〈jr (Axk − bhk
) , Axn − b〉

≤ −Rr
n + Rr−1

n δhn
−

n−1
X

k=0

ck,n

»

1

r
‖Axk − bhk

‖r

−1

r
‖Axk − bhk

−Axn + b‖r

–

≤ −Rr
n + τ−1Rr

n

−
n−1
X

k=0

ck,n

»

1

r
Rr

k −
1

r

`

‖Axk − bhk
‖+ ‖Axn − bhn

‖+ δhn

´r
–

≤ (τ−1 − 1)Rr
n +

n−1
X

k=0

ck,n

»

1

r

`

Rk + (1 + τ−1)Rn

´r − 1

r
Rr

k

–

≤ (τ−1 − 1)Rr
n +

(2 + τ−1)r − 1

r

n−1
X

k=0

ck,nRr
k.

(40)

B) The other term (which is equivalent to (16)) is estimated as in (17), where in-
stead of jr (Axn − b) and jr (Axk − b), we respectively consider jr (Axn − bhn

)
and jr (Axk − bhk

), obtaining again the same bound (18) and the same inequa-
lity (19).

Now reconsidering (13), we have

∆n+1 ≤ ∆n + Gq

h

2q−2‖x∗
n‖q−2(q − 1)α2

nR2(r−1)
n Q2

n

i

+ αn

"

(τ−1 − 1)Rr
n +

(2 + τ−1)r − 1

r

n−1
X

k=0

ck,nRr
k

#

,

so that ∆n+1 ≤ ∆n if

Gq

h

2q−2‖x∗
n‖(q−2)α2

nR2(p−1)
n Q2

n

i

+ αn

"

(τ−1 − 1)Rr
n +

(2 + τ−1)r − 1

r

n−1
X

k=0

ck,nRr
k

#

≤ 0 .
(41)

The relaxation parameter (33) , as shown by the same computations of (23), now
leads to

(1− τ−1)Rr
n −

(2 + τ−1)r − 1

r

n−1
X

k=0

ck,nRr
k ≥ 1− (C + τ−1) > 0 , (42)

since C + τ−1 ∈ (0, 1) by definition, so that (41) holds if

0 ≤ αn ≤ min

8

<

:

(1− τ−1)Rr
n − (2+τ−1)r−1

r

Pn−1
k=0 ck,nRr

k

Gq2q−2‖x∗
n‖q−2(q − 1)‖A‖2R2(r−1)

n Q2
n

,
‖x∗

n‖
‖A‖Rr−1

n Qn

9

=

;

, (43)



∀n = 1, 2, 3, . . ., where condition (18) has been considered. Thanks to the same
results of (24), the sequence (∆n)n is convergent.

The second step, as well as for the noiseless case of Theorem 3, is to show that
limn−→+∞ Rn = 0. Following exactly the same formal computation, the series (25)
still converges. Similarly to (27) and (28), the constant d of (26) is now chosen
such that

0 < d ≤ (1− γ)(1− τ−1)− (2 + τ−1)r − 1

r
γ

!

1

‖A‖ ,

since now

0 < (1− γ)(1− τ−1)− (2 + τ−1)r − 1

r
γ ≤ Vk

Qk

.

This leads to the same bound (29) on the step size αn and the inequalities (30).
On this ground, the reductio ad absurdum leading to (31) can be done similarly,
by noticing that, thanks to (40) and (42),

〈p∗k, xk − x̄〉 ≤ −(1− (C + τ−1))Rr
k ≤ −(1− (C + τ−1))εr < 0 ,

that is, p∗k would still be a descent functional with negative slope uniformly
bounded away from zero.

The third step of the proof is to show that the sequence (xn)n has a Cauchy
subsequence. The proof is basically the same, where the convergence of the second
addendum of (32) is given by

|〈jp(xnl) − jp(xnk), xnl − x̄〉| =
˛

˛

˛

˛

˛

nl−1
X

n=nk

〈jp(xn+1)− jp(xn), xnl − x̄〉
˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn〈p∗n, xnl − x̄〉
˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn〈jr(Axn − bhn
) +

n−1
X

j=0

cj,njr(Axj − bhj
), Axnl − b〉

˛

˛

˛

˛

˛

˛

≤

˛

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn〈jr(Axn − bhn
) +

n−1
X

j=0

cj,njr(Axj − bhj
), Axnl − bhnl

〉

˛

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

˛

nl−1
X

n=nk

αn〈jr(Axn − bhn
) +

n−1
X

j=0

cj,njr(Axj − bhj
), bhnl

− b〉

˛

˛

˛

˛

˛

˛

≤
nl−1
X

n=nk

αnRr−1
n Qn(Rnl + δhnl

) ≤
nl−1
X

n=nk

αnRr−1
n Qn(Rn + δhn

)

≤ (1 + τ−1)
nl−1
X

n=nk

τn‖x∗
n‖Rn

‖A‖ → 0 as k → +∞ .

This ground, the proof can be completed as well as in the step four of the noiseless
case.



5 Practical implementation for the step size computation

As already sketched, the classical CG method in Hilbert space gives a simple and
closed form expression for the step size αn of (10), which is the same optimal
choice of the steepest descent method [2]. Indeed, in that Hilbertian case, the
corresponding minimization problem

arg min
α
‖A (xn + αpn)− b‖2

is a simple one-dimensional quadratic and differentiable minimization problem,
whose first derivative is linear. In our more general Banach settings, problem (10)



arg minα ‖Ajq (x∗
n + αp∗n)− b‖r = arg minα Φ(α)

α ∈ [0, T ]

does not allow a closed form explicit solution, according to Galois’ results on the
solution of a polynomial equation. Thus, the description of the practical imple-
mentation of the proposed algorithm leaves a practical question open.

In order to find the minimum of Φ(α), we can evaluate the first derivative of
Φ(α)

Φ′(α) = jr

`

Ajq

`

x∗
k + αp∗k

´

− b
´∗ ·

`

(q − 1) A
`

jq−1(|x∗
k + αp∗k|) ◦ p∗k

´´

(44)

where ◦ is the component-wise product, and we find the critical point by solving
the equation Φ′(α) = 0. If p 6= 2 or r 6= 2, (44) is no longer a linear equation, so
we cannot compute its solution explicitly. Iterative methods can be used, such as
the simplest secant method

αk+1 = αk − Φ′(αk)
αk − αk−1

Φ′(αk)− Φ′(αk−1)
, k = 1, 2, ...

as first basic example. However, this approach becomes very expensive in compu-
tational load in real problems with large-scale matrices.

To avoid this high computational load, we use the recent and efficient derivative-
free algorithm for bound-constrained optimization (BCDFO) developed in [11],
which is based on the iterative trust-region method. The idea behind a trust re-
gion method is very simple: the k + 1 iteration αk+1 = αk + sk is an approximate
solution of the quadratic subproblem

mk(αk + sk) = Φ(αk) + gT
k sk +

1

2
sT

k Hks, (45)

inside the trust region

B∞(αk, ∆k) = {α ∈ R|‖α− αk‖∞ ≤ ∆k} .

where gk is an approximation of the gradient of Φ at point αk , Hk is an approxi-
mation of its Hessian and ∆k is a positive scalar representing the size of the trust
region.
The point αk + sk is acceptable and ∆k is increased if

̺k =
Φ(αk)− Φ(αk + sk)

mk(αk)−mk(αk + sk)
> η ,



where η > 0 is a suitable constant. If ̺k < η1, the size of the trust region ∆k is
decreased and sk = 0. The key fact is that the function mk is evaluated not using
the true derivatives but interpolating known function’s values at a given set Yk.
The geometry of this space has to cover the space to guarantee the convergence
from an arbitrary starting point [24].
In our case, the BCDFO is a particular implementation where bounds on the vari-
ables are handled by an active set strategy (for details and convergence proofs, see
[11]). Although efficient, the algorithm BCDFO to solve the one dimensional min-
imization problem (10) cannot be considered as optimal, so that the appropriate
computation of the step size still remains an open problem.

6 Numerical results

In this section, first numerical experiments illustrate the performance of the pro-
posed conjugate gradient technique in Banach spaces. We choose a basic image
restoration problem [2] and we compare the technique with the Landweber method
in Banach spaces (2).
Consider the operator equation of the first kind

g(t1, t2) =

Z Z

G1(y1, t1)f(y1, y2)G2(y2, t2)dy1dy2 , (46)

where

G1(y1, t1) =
1√

2πσ1

e
−

(y1−t1)2

2σ2
1

and

G2(y2, t2) =
1√

2πσ2

e
−

(y2−t2)2

2σ2
2 .

The linear system Ax = b obtained by the discretization of the operator equation
(46) is considered. Fig.1(a) shows the exact solution x† for the given right-hand
side b shown in Fig.1(b).
The exact solution x† presents discontinuities characterized by different dimen-

Fig. 1 Exact solution x† of the linear system Ax = b (a), exact data b (b).



sions and different intensities. Since the solution is almost-sparse, we look for the
minimum p−norm solution with p ∈ (1, 2), in order to promote sparsity in the
restored solution. For more information about the role of the sparsity in inverse
problems, we refer to [25], [8], [15].
To simulate noisy data bδ, we add white Gaussian noise and measure the noise level
‖b − bδ‖ = δ. When the noise is Gaussian, it is well known that the least square
solution is the maximum likelihood estimate of x. For this reason, ‖ Ax − bδ ‖22
is used. In our numerical tests, the parameters of the proposed CG algorithm are
selected as follows:

γ = Cr
(2+τ−1)r−1+Cr

, with C = 0.9 and τ = 10.

d = d ≤
“

(1− γ)(1− τ−1)− (2+τ−1)r−1
r

γ
”

1
‖A‖ − 10−6,

Gq is evaluated using the estimate given in [20].

Fig. 2 shows the reconstructed solution by using the conjugate gradient method
in l2 (a), and by using the proposed approach in l1.8 (b), in l1.5 (c) and in l1.2 (d).
As stopping criterion, the discrepancy principle is used [12].
By direct visual inspection, it is clear that smaller p promotes sparsity and recon-
struction of abrupt discontinuities. The reconstructed solutions in Banach spaces
are less over-smoothed than the typical of Hilbert reconstructions, and few arti-
facts and oscillations are present, both in the spot images and in the background.

Fig. 2 Reconstructed solution using conjugate gradient in Hilbert space (a) and using the
generalization of the conjugate gradient in l1.8 (b), l1.5 (c) and l1.2 (d).



Table 1 RMSE for CG and Landweber methods in lp

Method p = 2 p = 1.8 p = 1.5 p = 1.2

CG 0.4091 0.3568 0.3246 0.2454
LW 0.3957 0.3552 0.3311 0.2452

Table 1 shows the Root Mean Square Error (RMSE):

RMSE(Xrec, Xref ) =
‖ Xrec −Xref ‖22

‖ Xref ‖22
(47)

where Xref and Xrec are the reference and the reconstructed solutions of Fig. 2,
respectively. The RMSEs of the proposed CG and the Landweber methods are
very similar, and the corresponding reconstructions look almost identical (so that,
to save space, we do not show the reconstructions of the Landweber method).
Anyway, as we can see in Fig.3, the proposed CG method considerably outper-
forms the Landweber one both in terms of iterations number and computational
time, for each value of γ (7). We recall that γ = Cr

(2+τ−1)r−1+Cr
, where c ∈ [0, 1) ,

then, in this case, γ ∈ [0, 0.4) for r = 2.
It must be pointed out that the computational cost of each iteration is completely
different for Landweber and the proposed technique. In the latter, a 1-dimensional
non-linear problem (10) must be minimized at each iteration.
The dependence on the γ and p parameters in terms of computational time is

Fig. 3 Iteration number(a) and computational time (b) against the p parameter for Conjugate
gradient and Landweber method. Note that the conjugate gradient method with γ = 0 is the
steepest descent one.

analyzed.
In fig.4, the iteration numbers and computational time against c and p are shown.
The computational time decreases for increasing p and γ values. Like in Hilbert
space, the conjugate gradient method in lp outperforms the Landweber method
and the steepest descent method. These results are confirmed by different experi-
ments (not shown here to save space) and an application of the proposed technique
to a real remote sensed data could be found in [16]. On these grounds, we can sum-
marize that the conjugate gradient method is really more efficient of the Landweber
method especially for large scale matrices . Moreover, its convergence speed can
be further improved by means of the applications of a dual preconditioner as in
[9].



Fig. 4 Iteration number (a) and computational time (b) against the c and p parameter for
Conjugate gradient method. Note that the conjugate gradient method with γ = 0 is the
steepest descent one.

7 Conclusions

An iterative method, based on a generalization of the conjugate gradient method
for the minimization in lp Banach spaces is proposed.
We demonstrate that the conjugate gradient method converges strongly to the
minimum p−norm solution and that together with the discrepancy principle as
stopping rule, the proposed method is a regularization method.
Numerical experiments, undertaken on an image restoration problem, show that
the method is robust in terms of reconstruction accuracy and it is faster than the
Landweber method and the steepest descent one.
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