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ABSTRACT

We perform simulations of the Kelvin-Helmholtz cooling phase of proto-neutron stars with a new numerical code in

spherical symmetry and using the quasi-static approximation. We use for the first time the full set of charged-current

neutrino-nucleon reactions, including neutron decay and modified Urca processes, together with the energy-dependent

numerical representation for the inclusion of nuclear correlations with random-phase approximation. Moreover, con-

vective motions are taken into account within the mixing-length theory. As we vary the assumptions for computing

neutrino-nucleon reaction rates, we show that the dominant effect on the cooling timescale, neutrino signal and

composition of the neutrino-driven wind comes from the inclusion of convective motion. Computation of nuclear

correlations within the random phase approximation, as compared to mean field approach, has a relatively small

impact.
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1 INTRODUCTION

Neutrons stars are formed during the core-collapse of mas-
sive stars at the end of their evolution. During this collapse
the core reaches supra-nuclear densities and bounces, gener-
ating a shock that can trigger a supernova explosion. The
central object left after the bounce is called a proto-neutron
star (PNS). The PNS has a much larger radius and is still an
extremely hot and lepton rich object compared with cold neu-
tron stars in weak (β-)equilibrium. During its evolution, this
object will accrete infalling material and slowly deleptonize,
contract and cool down by the Kelvin-Helmholtz mechanism
to become either a stellar black hole or a neutron star (see
e.g. Prakash et al. 2001).

In the last few decades the sensitivity of neutrino detec-
tors has greatly improved, and a detailed modelling of the
emission of neutrinos associated to core-collapse and subse-
quent PNS evolution is needed in order to interpret the data
that shall be obtained from the next galactic supernova (see
e.g. Nakazato et al. 2021). This could lead to a better un-
derstanding of the central engine of core-collapse supernovae
(CCSN) and of supernova nucleosynthesis. In addition, ther-
modynamic conditions, i.e. temperatures and densities, in
PNS are similar to hypermassive neutron stars formed dur-
ing mergers of neutron star binaries (see e.g. Paschalidis et al.
2012; Iosif & Stergioulas 2021), therefore the study of PNS
evolution can lead to a better understanding of matter prop-
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erties and neutrino interactions involved in binary mergers,
too.

Long-term multi-dimensional CCSN simulations are, how-
ever, still beyond our reach due to the very different
timescales involved: typical hydrodynamic timescales are or-
ders of magnitude below the typical deleptonization and cool-
ing time. Therefore we have to make some compromise to
study late-time CCSN and PNS evolution. Work on this sub-
ject exists for more than 25 years. There are two types of
approaches to tackle this problem:

(i) stick with 1D CCSN simulations and either artificially en-
hance the neutrino heating to trigger the explosion (see e.g.
Fischer et al. 2010), use a low mass O-Ne-Mg core, which are
known to explode even in 1D simulations (see e.g. Hüdepohl
et al. 2010), or switch from multi-D to 1D by angle averaging
after the explosion (see e.g. Suwa 2014)

(ii) use the fact that the PNS has a very long evolution timescale
compared with the neutrino emission and use a quasi-static
model of its Kelvin-Helmholtz contraction. There are numer-
ous works which have used this method, among others we can
mention Burrows & Lattimer (1986); Keil & Janka (1995);
Sumiyoshi et al. (1995); Pons et al. (1999) and Roberts
(2012). We have chosen this kind of approach within our
work.

Although state-of-the-art multi-dimensional simulations
are still bound to about 1 s of evolution, they are very useful
for calibrating simpler models describing evolution at longer
timescales. In particular, they tend to show that the convec-
tive motions in the PNS are extremely significant and change
quantitatively the behaviour of the PNS, see e.g. Nagakura
et al. (2020). A very simple method to implement convective

© 2021 The Authors



2 A. Pascal,J. Novak, and M. Oertel

effects in quasi-static models of PNS is the use of the mix-
ing length theory (MLT), see e.g. Roberts et al. (2012b) and
Mirizzi et al. (2016). This method does not cover all features
of convection, for instance convective overshooting cannot be
described, but it mimics in a computationally very efficient
way the main effects of convection. We have therefore adopted
the MLT scheme to include convective effects in our work.

Obviously, PNS evolution and the resulting neutrino emis-
sion is not only sensitive to hydrodynamics and matter prop-
erties via an equation of state (EoS), but the interaction of
neutrinos with the dense and hot matter is an extremely im-
portant ingredient, too, see e.g. the discussions in Pons et al.
(1999); Roberts et al. (2012a); Mart́ınez-Pinedo et al. (2012).
Since the different simulations are computationally expen-
sive, many authors prefer to employ analytical expressions
for the corresponding interaction rates which imply often very
crude approximations. Here, we will focus the discussion on
charged-current neutrino-nucleon interactions and use stan-
dard rates for all other processes. Analytic expressions for
the former can be obtained in limiting cases: assuming non-
interacting nucleons for computing the matrix element and
either neglecting the momentum transfer between the nucle-
ons (Bruenn 1985) or taking the nucleon momenta on the
Fermi surface (Yakovlev et al. 2001). The former is valid
at low densities . 10−4fm−3, conditions typically found in
the early CCSN neutrinosphere, and the latter in degenerate
matter, typically for the cooling of older neutron stars with
temperatures � 1 MeV. During PNS evolution, the neutri-
nosphere moves inwards to higher densities and temperatures
vary between a few tens of MeV in the early times and a
few MeV at the later stages. Thus matter in the relevant re-
gions is neither degenerate nor at sufficiently low densities
and corrections to the above analytical expressions have to
be considered.

In this context, Roberts et al. (2012a) and Mart́ınez-Pinedo
et al. (2012) have pointed out the importance of mean field
corrections for nucleon masses and chemical potentials in-
cluded in a way consistent with the underlying EoS for PNS
evolution. Roberts et al. (2012a,b) additionally include the
full phase space integration (Reddy et al. 1998), i.e. con-
sider arbitrary momentum transfer between the nucleons. In
Fischer et al. (2020a) it is shown that taking into account
inverse neutron decay in addition to the standard electron
and positron capture reactions (and their inverse) influences
in particular the opacity of low energy electron antineutri-
nos and consequently the composition of the neutrino-driven
wind. In addition, several authors have pointed out since
decades that in dense matter nuclear correlations beyond
mean field can considerably modify the neutrino opacities:
Burrows & Sawyer (1998, 1999); Reddy et al. (1999); Navarro
et al. (1999); Margueron et al. (2004); Horowitz & Schwenk
(2006); Horowitz et al. (2017). Nuclear correlations treated
within the “Random Phase Approximation”(RPA) have been
considered for PNS evolution by Pons et al. (1999); Roberts
et al. (2012b); Roberts & Reddy (2017) suggesting a poten-
tial influence on the neutrino spectra after several seconds of
evolution when matter starts to become transparent to neu-
trinos. However, following Reddy et al. (1999) only grey, i.e.
(anti-)neutrino energy independent, correction factors to the
mean field expressions have been implemented. As discussed
in Oertel et al. (2020), the importance of RPA correlations is
energy dependent and a density and temperature dependent

shift in reaction thresholds is induced. The full physics can
thus not be included into a grey factor.

Some of these improvements are modifying the analytical
rates by several orders of magnitude, such that it became
a priority to perform CCSN and PNS evolution simulations
with state of the art neutrino interactions in order to test
them against previous simulations and predict the emitted
neutrino signal. In Oertel et al. (2020) a first step has been
made in this direction, electron (anti)-neutrino opacities from
charged current neutrino nucleon interactions are computed
including mean field corrections, optionally RPA correlations
and include the full phase space integration. As reactions,
electron and positron capture, neutron and proton decay as
well as their inverse processes have been considered. An in-
terpolation scheme has been developed which allows to pro-
vide the obtained opacity data with the full dependence on
neutrino energy Eν , baryon number density nB , tempera-
ture T and electron fraction Ye, with tables of interpola-
tion coefficients publicly available via the ComPOSE data
base 1 (Typel et al. 2015). The feasibility of CCSN simula-
tions employing these opacities with only a minor excess in
computation time compared with analytical rates has been
demonstrated in Oertel et al. (2020). In the present work we
perform a step further by using those rates in a simulation of
PNS evolution. Please note that at later times of PNS evo-
lution reactions can become important which are usually not
included in the simulations. In particular, it should be noted
that neutron decay is one of the main reactions establishing
weak equilibrium in cold stars as well as the so-called modi-
fied Urca processes, depending on the kinematic conditions.
Here, we will thus study the impact of RPA correlations with
the full energy dependence and the role of different reactions
for the PNS evolution and the transition to neutrino trans-
parency. We also provide for the first time simulations with
the most complete set of neutrino charged-current reactions
and at the same time an effective model for convection. This
enables us to compare quantitatively the different effects po-
tentially influencing the PNS evolution.

This paper is organised as follows: in Section 2 we present
the code and the numerical model used in our simulations
and Section 3 is focused on the presentation of the various
prescriptions for the computation of charged current reaction
rates. The results of our study are discussed in Section 4, we
start with a comparison between models including convec-
tive motions in PNS evolution using MLT and models with-
out MLT in Section 4.1 and we then discuss the impact of
the different charged-current neutrino nucleon interactions in
Section 4.2. Our conclusions are presented in Section 5.

2 A CODE FOR QUASI-STATIC
PROTO-NEUTRON STAR EVOLUTION IN
SPHERICAL SYMMETRY

This section is devoted to the presentation of the code used
in our PNS simulations. It is based on a quasi-static approach
with a Lagrangian grid and a stationary neutrino transport
scheme. Evolution of entropy and lepton number (Sec. 2.3) is
obtained through neutrino transport (Sec. 2.4), and at each

1 https://compose.obspm.fr/
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time-step equations for hydrostatic equilibrium are solved
(Sec. 2.2), assuming thus that the hydrodynamics time scale
is much shorter than the neutrino cooling one.

2.1 Initial models

Starting with the progenitor model s15 from Woosley et al.
(2002), we run the spherically-symmetric version of the
CCSN code CoCoNuT (Dimmelmeier et al. 2005), using the
“Fast Multigroup Transport” (FMT) scheme for neutrino
transport (Müller & Janka 2015), with the same method as
in Oertel et al. (2020). Each model has been computed such
that the EoS and the neutrino interactions are consistent
with the PNS cooling simulation. To emulate the departure
of the shock and obtain an isolated PNS, we simply discard
all the matter behind the stalled shock, at about 500 ms af-
ter bounce. We thus obtain a PNS with a baryon mass of
MB = 1.6M�.

2.2 Stellar structure

From the quasi-static assumption, gravitational field is static
and therefore we consider a static, spherically-symmetric
spacetime. The metric is written in Schwarzschild gauge,
so that we obtain the usual Tolman–Oppenheimer–Volkoff
(TOV) set of equations for the hydrostatic equilibrium:

ds2 = −α2(r)c2dt2 + ψ2(r)dr2 + r2 (dθ2 + sin2 θdϕ2) (1)

where c is the speed of light in vacuum, α is called the lapse
function (from 3+1 formalism) and ψ is a radial metric po-
tential. The system of coordinates is such that t is the time
measured at infinity, r is the areal radius, and θ and ϕ are
standard angular coordinates. The metric is computed by
solving the TOV equations, assuming that the star is com-
posed of a perfect fluid :

1

ψ
=

√
1− 2Gm

rc2
(2)

dm

dr
= 4πr2 E

c2
(3)

g(r) = c2
d lnα

dr
= ψ2G

(
m

r2
+ 4πr

P

c2

)
, (4)

where G is the gravitational constant, m is a metric poten-
tial that is equal to the system’s ADM mass when taken at
the star’s surface, g is the local gravitational acceleration, E
the fluid energy density and P its pressure. The hydrostatic
equilibrium equation is given by

dP

dr
= −(E + P )g(r) . (5)

The boundary conditions are given by m(0) = 0, α(R)ψ(R) =
1 and P (R) = Ps where R is the radius of the star and Ps is
a surface pressure, whose value is chosen to have a negligible
effect on the solution while ensuring the numerical stability
of the algorithm. In the simulations presented in this work
we took Ps = 10−6 MeV fm−3.

As we consider a Lagrangian evolution scheme, the radial
coordinate r is an unknown, too, and an additional equation
is solved together with the previous system :

dr

da
=

1

4πr2nBψ
, (6)

where a is the enclosed baryon number (fixed during the evo-
lution and used as a Lagrangian coordinate), and nB is the
baryon number density.

Finally, in order to close the system of equations, we need
an EoS relating thermodynamic variables. In our case it shall
be a 3-parameter one, depending namely on temperature T ,
baryon density nB and electron fraction Ye. In this work we
have used three different EoS models: (i) the nuclear sta-
tistical equilibrium (NSE) model by Gulminelli & Raduta
(2015) (“RG(SLy4)”), employing the SLy4 effective inter-
action for nucleons (Chabanat et al. 1997); (ii) the NSE
model by Hempel & Schaffner-Bielich (2010), employing the
DD2 effective interaction for nucleons (Typel et al. 2010)
(“HS(DD2)”); (iii) the “SRO(APR)” model (Constantinou
et al. 2014; Schneider et al. 2019). The latter is based on the
APR EoS (Akmal et al. 1998), which itself is partly adjusted
to the variational calculation of Akmal & Pandharipande
(1997). For all three models. EoS data have been obtained
from the CompOSE database (Typel et al. 2015).

2.3 Evolution equations

The time evolution from one quasi-static configuration (com-
puted using the TOV system given above) to the next is done
by considering the effects of neutrino interactions on the stel-
lar matter via lepton number and energy conservation. These
are given by

∇µ(uµnBYe) = Γν̄e − Γνe (7)

uν∇µ(Tµν) = −(Qνe +Qν̄e + 4Qνx) , (8)

where uµ is the fluid four-velocity, Tµν the fluid’s energy-
momentum tensor, Γν the neutrino production rate per vol-
ume unit, andQν the neutrino heat function for each neutrino
or anti-neutrino flavor νi. For a perfect fluid these equations
can easily be recast as

uµ∇µ(Ye) =
1

α

DYe
Dt

=
Γν̄e − Γνe

nB
(9)

uµ∇µ(s) =
1

α

Ds

Dt
=
Qνe +Qν̄e + 4Qνx

nBT
− µe(Γν̄e − Γνe)

nBT
(10)

where s is the entropy per baryon, µe the electron chemical
potential and D/Dt is the Lagrangian derivative. Both source
terms, Γν and Qν , are obtained from a neutrino transport
scheme, by using Eqs. (12) and (13), see the Sec. 2.4 below.

2.4 Neutrino transport

In order to model neutrino transport, we use the FMT scheme
(see Müller & Janka 2015), which relies on a stationary ap-
proximation of the transport equation,

pi
∂f

∂xi
− Γiµνp

µpν
∂f

∂pi
= uµp

µB[f ] . (11)

f denotes here the neutrino distribution function, pµ the
neutrino four-momentum and B[f ] the collision integral com-
puted in the fluid rest frame.

The solution at high optical depth is obtained with a two-
stream approximation and the solution at low optical depth
is obtained with a two-moment closure. The procedure is
detailed in appendix A, whereas the treatment of the col-
lision integral is detailed in Section 3 for charged current
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reactions on nucleons and in appendix B for all other pro-
cesses. It should be stressed in this context that we model
neutrino-nucleon scattering with full inelastic rates, as given
by Thompson et al. (2000).

In this kind of stationary approximation, the source terms
are obtained via the divergence of neutrino fluxes:

Γν =
1

r2ψα

d

dr

(
r2αFν,n

)
(12)

Qν =
1

r2ψα2

d

dr

(
r2α2Fν,e

)
, (13)

where Fν,n is the outgoing number flux of neutrino ν and Fν,e
is the outgoing energy flux carried by neutrinos ν. The total
luminosities are then given by

Lν,n = 4πR2α(R)Fν,n(R)

Lν,e = 4πR2α(R)2Fν,e(R) ,

where Lν,n is the neutrino number luminosity (in s−1) and
Lν,e is the energy luminosity (in erg s−1).

2.5 Convection using the mixing length theory

We study the effect of convection on PNS evolution within the
MLT, which models convection in spherical symmetry as a
diffusive effect occurring in zones with unstable stratification.
The stability criterion for the stratified structure of a PNS is
given by the Ledoux criterion (see e.g. Roberts et al. 2012b):

CL(r) =
1

ΓnB

(
Γs
∂ ln s

∂r
+ ΓYe

∂ lnYe
∂r

)
≥ 0 , (14)

where r is the radial coordinate and ΓnB =

(
d lnP

d lnnB

)
s,Ye

,

Γs =

(
d lnP

d ln s

)
nB ,Ye

, ΓYe =

(
d lnP

d lnYe

)
nB ,s

.

The quantity CL(r)dr can be interpreted as the relative
variation of density ∆nB/nB occurring during the small ver-
tical adiabatic displacement of a mass element over a dis-
tance dr. Several authors (e.g. Epstein 1979; Keil et al. 1996;
Roberts et al. 2012b) have argued that, because the neutrinos
are trapped and in equilibrium with the fluid in large regions
of the PNS, one should consider the lepton fraction instead
of the electron fraction to compute the Ledoux criterion. We
think however, that as convection is a purely hydrodynamic
feature appearing when considering multi-dimensional ver-
sions of Eqs. (7)–(8), one should use only electron fraction,
to be consistent with the hydrodynamic model.

The distinction is then made between

• areas where CL(r) > 0, where buoyancy acts as a restoring
force. They can be subject to gravity waves ;

• areas where CL(r) < 0, which are unstable and can be sub-
ject to convective motion ;

• areas where CL(r) = 0, which are in a state of neutral buoy-
ancy. Convective motions tend to bring unstable areas to-
wards this state.

In the MLT, the convective motion in Ledoux-unstable ar-
eas is modelled with diffusion equations for the entropy and

the electron number,

1

α

DYe
Dt

=
1

r2αψ

∂

∂r

(
αr2DMLTnB

∂Ye
∂r

)
(15)

1

α

Ds

Dt
=

1

r2αψ

∂

∂r

(
αr2DMLTnB

∂s

∂r

)
(16)

where DMLT is the MLT diffusion coefficient. We estimate it
by using the same procedure as in Mirizzi et al. (2016): we
have DMLT = vcλP , where vc is the convection velocity and
λP is the length scale over which convective turnover occurs,
or the so-called mixing length. This length scale is assumed
to be of the same order of magnitude as that of pressure
variation,

λP = ξ

(
∂ lnP

∂r

)−1

(17)

where ξ is a coefficient of order unity. The exact value of ξ
does not have a strong influence on the results, and we use
ξ = 1 as the standard value. We have checked that varying its
value by ±20% does not change the results of our simulations
within the overall accuracy of the model.

The convection velocity vc is estimated using energy con-
servation during a vertical displacement of λP :

vc =

{
λP
√

2g|CL| if CL(r) ≤ 0

0 if CL(r) ≥ 0 ,
(18)

where g is the local gravitational acceleration introduced in
Eq. (4).

The PNS evolution equations are then solved with a semi-
implicit scheme: the neutrino part (namely Eqs. (9) and (10))
is solved with an explicit scheme whereas the MLT part (Eqs.
(15) and (16)) is solved implicitly. The timestep is limited
by the relative change in s and Ye induced by the neutrino
sources. The explicit integration scheme for the neutrino part
has the advantage of allowing to perform larger and larger
timesteps as the neutrino emissivity decreases while not hav-
ing to deal with the heavy computational cost of an implicit
scheme for neutrino transport.

3 TREATMENT OF CHARGED CURRENT
INTERACTIONS WITH NUCLEONS

In this section we present the treatment of charged current
neutrino-nucleon interactions. For such processes the collision
integral in the neutrino transport equation (11) is linear in
fν and can be written in the form:

B[f ] = j(1− f)− 1

λ
f = κ∗(f (eq) − f) , (19)

where j is the emissivity, λ the absorption mean free path
and κ∗ = j+ 1

λ
is the opacity corrected for stimulated absorp-

tion. It should be stressed that in our work we consider only
charged-current processes involving electrons, and we neglect
the effect of muonic processes. Such processes have long been
thought to have a negligible influence on CCSN because of
the relatively low abundance of muons compared with elec-
trons due to their much higher mass. The recent work of
Bollig et al. (2017) has, however, shown that the appearance
of muons has a significant effect on the CCSN evolution by
softening the EoS and muonic processes have gained interest.

MNRAS 000, 1–16 (2021)
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Thus, the recent study by Fischer et al. (2020b) has quan-
tified the effect of muonic charged-current processes on the
neutrino luminosities. We will consider the impact of muonic
processes on PNS evolution in a future work.

3.1 Direct Urca processes

Direct Urca processes are the dominant and simplest charged
current neutrino-nucleon interactions involving electron neu-
trinos and antineutrinos. The processes for electron neutrinos
are

p+ e− � n+ νe p� n+ e+ + νe , (20)

and the corresponding processes for antineutrinos are

n+ e+ � p+ ν̄e n� p+ e− + ν̄e . (21)

In this work we employ three different approximations for
computing the rates for the above processes. The first one
is the elastic approximation (“elastic MF”) in which the
momentum transfer between the nucleons is neglected (see
Bruenn 1985). Mean field effects are added as effective masses
and single particle potentials for the nucleons (Reddy et al.
1998). In addition we use the Mean Field (“MF”) approxima-
tion with full phase space integration, and a scheme including
nuclear correlations within the Random Phase Approximation
(RPA). In particular, we used the so-called “RPA t′3” approx-
imation, which considers an additional repulsive term in the
residual interaction in the axial channel to prevent instabili-
ties at high densities. For details about the different approxi-
mation schemes and the practical implementation, we refer to
Oertel et al. (2020). In particular, “MF” and “RPA t′3” rates
are provided via tabulated interpolation coefficients for fully
energy dependent precomputed opacities in order to avoid
the heavy additional computational cost of the integration of
opacities with full space or in RPA.

The elastic approximation is still very commonly used in
many recent simulations of PNS evolution (see e.g. Li et al.
2021; Nakazato & Suzuki 2020), as it is quite accurate at high
temperatures and neutrino energies and relatively low densi-
ties, i.e. for the typical conditions close to the neutrinosphere
in CCSN. We should, however, point out again that the elas-
tic approximation looses accuracy during PNS evolution with
the neutrinosphere moving to higher densities and the subse-
quent cooling of the PNS. At higher densities, the elastic rates
can differ from the full ones by orders of magnitude and in ad-
dition, β-equilibrium is displaced towards more neutron rich
conditions. Both effects are illustrated in Fig. 1, where elec-
tron neutrino and antineutrino production rates are shown
as functions of the electron fraction for two different tem-
peratures and a baryon number density of nB = 0.1fm−3,
employing either the elastic approximation or the full phase
space integration, including mean field effects in both cases.
For the shown conditions, matter can be considered as trans-
parent to (anti)-neutrinos and β-equilibrium is obtained if
neutrino and antineutrino rates are equal, i.e. at the inter-
sections of the νe and ν̄e curves. It is obvious that with the
elastic rates, β-equilibrium occurs at lower values of Ye.

It can be seen in addition that, as noticed previously by
Alford & Harris (2018); Alford et al. (2021), β-equilibrium
in neutrino transparent matter at non zero temperature

does not occur at the point where chemical potentials ful-
fil the usual β-equilibrium condition for cold neutron stars
(µn = µp + µe which stems from the Fermi surface approx-
imation, indicated by the red dashed line in Fig. 1) but de-
pends explicitly on the neutrino production rates instead. Let
us stress that, following Fig. 1, only the rates including full
kinematics allow to recover the Fermi surface approximation
at low temperatures and thus the correct β-equilibrium con-
ditions upon evolving from a PNS to a neutron star.

3.2 Modified Urca processes

From neutron star cooling, it is well known that under de-
generate conditions in cold neutron star matter the direct
Urca processes, see Eq. (20), are kinematically forbidden un-
less the proton fraction exceeds roughly 10%. In the same
way, during the late stages of PNS evolution they can be-
come strongly suppressed for some neutrino energies. In this
case, the so-called modified Urca (mUrca) processes become
relevant, see also the discussion of β-equilibrium in the hot
merger remnant in Alford & Harris (2018) and Alford et al.
(2021). They involve a spectator nucleon N allowing to lift
the kinematic restrictions of the direct processes :

p+ e− +N � n+ νe +N p+N � n+ e+ + νe +N

n+ e+ +N � p+ ν̄e +N n+N � p+ e− + ν̄e +N
(22)

The relevant reactions rates have been studied extensively
for degenerate conditions in cold neutron stars following the
seminal work by Friman & Maxwell (1979), whereas much
less effort has been dedicated to hot matter. Due to their
importance for CCSN neutrino spectra, the corresponding
neutral current reaction rates have, however, been studied
in more detail (see e.g. Hannestad & Raffelt 1998). Here we
will follow the phenomenological approach of Roberts et al.
(2012a), who have adapted the general framework for neu-
tral current reactions in Lykasov et al. (2008) to the above
charged current reactions.

The idea is that the excitation of two-particle states, as
required to describe the reactions in Eq. (22), leads to a col-
lisional broadening which can be incorporated as finite quasi-
particle lifetime τ in the nuclear response function entering
the rate calculation (see Roberts et al. 2012a, for details).
Because of vector current conservation, the vector current
contribution to the neutral current rate vanishes in the limit
of zero-momentum transfer, so that it is generally assumed
that the axial current contribution dominates. In order to
take mUrca reactions into account, we have therefore imple-
mented a finite width for the quasi-particles only in the axial
channel with numerical values for the lifetime taken from
Bacca et al. (2012), see appendix C for more details.

Let us stress that modelling mUrca processes in this way
should not be considered as quantitatively reliable. Among
others, the momentum transfer for the charged-current pro-
cesses in dense matter is not negligible, so that the contribu-
tion of the vector channel merits further investigation. The
values for the quasi-particle lifetime in Bacca et al. (2012)
have been obtained in the limit of vanishing momentum
transfer and for neutron matter for some selected temper-
atures and baryon number densities. They can thus only be
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Figure 1. Electron neutrino and antineutrino production rates per unit volume, at the density nB = 0.1 fm−3, for two different tem-

peratures as functions of the electron fraction. Both temperature values are low enough for matter to be considered as transparent. The

RG(SLy4) EoS has been used. β-equilibrium is obtained if neutrino and antineutrino rates are equal, i.e. at the intersections of the νe
and ν̄e curves. The vertical red dashed line represents the equilibrium electron fraction predicted by the Fermi surface approximation.

t T nB Ye EoS xn xp Un Up ∆U m∗n m∗p
(s) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

0 15.0 0.250 0.30 RG(SLy4) 0.704 0.296 345.8 258.7 6.03 519.7 599.5
26.9 0.017 0.22 RG(SLy4) 0.702 0.155 39.05 7.586 12.16 893.7 911.7
11.2 6.58 ·10−3 0.12 RG(SLy4) 0.751 0.051 16.24 -1.079 7.30 921.1 929.9

4.46 9.35 ·10−6 0.34 RG(SLy4) 0.655 0.339 5.772·10−3 -8.918·10−3 8.025·10−3 939.5 938.3

0.7 20.1 0.319 0.29 RG(SLy4) 0.710 0.289 399.9 321.9 -8.237 462.2 547.1

35.7 0.083 0.12 RG(SLy4) 0.868 0.108 188.7 54.25 39.57 723.5 817.2
18.8 0.033 0.12 RG(SLy4) 0.751 0.055 75.20 6.480 24.31 854.3 897.4
4.18 7.86 ·10−4 0.06 RG(SLy4) 0.848 0.015 2.229 -0.615 1.384 937.1 937.3

5.1 48.6 0.439 0.07 RG(SLy4) 0.931 0.069 475.9 375.4 -80.93 353.5 533.6

27.6 0.256 0.07 RG(SLy4) 0.931 0.069 379.3 193.8 11.48 477.8 650.6
16.3 0.150 0.07 RG(SLy4) 0.932 0.068 284.1 97.58 39.46 599.7 745.5
3.54 8.58 ·10−3 0.06 RG(SLy4) 0.637 5.01 ·10−5 17.82 -2.541 8.494 919.7 930.3

13.1 9.70 0.514 0.06 RG(SLy4) 0.939 0.061 487.4 443.8 -138.9 319.3 500.5
5.71 0.314 0.06 RG(SLy4) 0.941 0.059 407.8 239.8 -16.09 429.2 612.0

3.75 0.196 0.05 RG(SLy4) 0.946 0.054 329.0 130.8 29.96 537.6 704.5
1.98 0.016 0.05 RG(SLy4) 0.657 1.422·10−8 33.62 -2.997 14.20 901.8 923.0

Table 1. Effective masses, interaction potentials and fractions of protons xp and neutrons xn under the thermodynamic conditions for

which the opacities are shown in Figs. 2 and 3. For each given time, the first line corresponds to the smallest radius and the last one to
the largest radius. ∆U = m∗n −m∗p + Un − Up − (mn −mp) is the shift in reaction threshold due to mean field effects, see Oertel et al.
(2020).

considered as a guideline when applied to the entire temper-
ature, electron fraction and density domain needed for sim-
ulating PNS cooling. The main physical effect should, how-
ever, be covered: as mentioned above, in regions where direct
Urca reactions are allowed, they give the dominant contri-
bution to (anti-)neutrino opacities and the collisional broad-
ening only marginally influences the opacities. The essential
effect of the mUrca processes as implemented here is thus
to increase opacities above/below thresholds for the direct
processes.

As an example, we show opacities within the different ap-
proximation schemes in Figs. 2 (neutrino) and 3 (antineutri-
nos) employing the RG(SLy4) EoS. The thermodynamic con-
ditions for each panel correspond thereby to different times
and different radii inside the star as obtained from PNS pro-

files with the fiducial simulation employing MF rates and the
RG(SLy4) EoS including MLT, see Sec. 4. The values for
temperature, baryon number density and electron fraction
are listed in Table 1. In many cases, the antineutrino opac-
ities exhibit a pronounced threshold, where the increase in
the opacity due to the collisional broadening in this region is
clearly visible.

4 SIMULATION RESULTS

All simulations presented in this section are using the pro-
cedure described in Section 2, and include –unless other-
wise stated– convective effects modelled by MLT. We have
first checked our results with respect to the choice of the
EoS, which has already been discussed by several authors
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Figure 2. Neutrino (νe) opacities with the RG(SLy4) EoS using different approximation schemes for calculating the reaction rates. The

different thermodynamic conditions, see Table 1 for the exact values, have been obtained from our fiducial simulation with the RG(SLy4)
EoS and MF rates including MLT effects at different timesteps (increasing from left to right) and different locations (radius is increasing
from bottom to top) in the star as indicated in the different panels. The uppermost panels correspond to conditions close to the surface

of the star for that fiducial simulation.

(see e.g. Keil & Janka 1995; Sumiyoshi et al. 1995; Pons
et al. 1999). Among others, the influence of the symmetry
energy on the PNS cooling timescale has been largely dis-
cussed (Sumiyoshi et al. 1995; Roberts et al. 2012b; Nakazato
& Suzuki 2019). We have performed simulations using the MF
prescription and three different EoS models, RG(SLy4) (Gul-
minelli & Raduta 2015), HS(DD2) (Hempel & Schaffner-
Bielich 2010) and SRO(APR) (Schneider et al. 2019). All
three of them have very similar symmetry energies at sat-
uration, J = 32; 31.7; 32.6 MeV, respectively, and different
slopes, L = 46; 55; 58 MeV.

We clearly confirm previous results in the literature and,
in particular by Roberts et al. (2012b), according to which
the time until the convection stops and the luminosity drops
decreases with the symmetry energy slope of the equation of
state. This indicates that the faster contraction of the PNS
and in particular the convective effects outweigh the larger

difference in neutrino and antineutrino opacities. Let us stress
here, too, that although for the usually considered electron
and proton capture reactions smaller symmetry energies in-
deed lead to larger difference in νe and ν̄e opacities (see e.g.
the comparison for RG(SLy4) and HS(DD2) in Oertel et al.
(2020)), this is no longer true for the neutron decay reaction
and its inverse, whose importance for the low energy antineu-
trino opacity has been pointed out in Fischer et al. (2020a).

Finally, let us mention that in contrast to previous works
we have used the same EoS, both in the PNS evolution simu-
lations and for computing the initial model. As expected (see
for instance the discussion in Pons et al. 1999), this has only
little influence on the results for the long term PNS evolution.
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Figure 3. Same as Fig. 2 for antineutrino (ν̄e) opacities.
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a function of time, in our fiducial simulation, with and without
MLT.

4.1 Influence of convection on proto-neutron star
evolution

In order to show the importance of convective effects during
PNS evolution, we compare two simulations, with and with-
out MLT. The EoS used for both the CCSN evolution and
the quasi-static PNS modelling is RG(SLy4) (Gulminelli &
Raduta 2015) and the MF prescription for charged-current
neutrino reaction rates has been employed, as described in
Section 3 and in Oertel et al. (2020).

Fig. 4 shows the radial profiles of temperature T , entropy
per baryon s and electron fraction Ye, as functions of the
enclosed baryon mass mB at different times in our fiducial
simulation which does not include convective effects. Fig. 5
shows the same profiles, but this time including convective
effects via the MLT. The profiles at t = 0 s correspond to our
initial data, which are taken at about 500 ms after bounce.

It is obvious that convection in the mantle of the PNS is
extremely efficient: even by taking the same initial model as
in our fiducial simulation (obtained with a spherically sym-
metric hydrodynamic simulation, thus without any convec-
tive effects) it takes less than about 100 ms to obtain a uni-
form profile of entropy per baryon s and electron fraction Ye

in the convectively unstable zone, which is then maintained
in a state close to neutral buoyancy. These observations are
qualitatively similar to what is obtained in full hydrodynamic
studies, as for example in the Figs. 7 and 18 of Nagakura et al.
(2020).

Another striking effect of including convective motions in
the simulations is the difference in the evolution timescales:
the non-convective model takes about four times longer than
the convective one to fully deleptonize. Indeed, convective
motions in the PNS are carrying leptons and heat from the
inner boundary of the convective layer to its outer part, much
closer to the neutrinospheres. As a consequence of the higher
temperatures in the outer layers, the neutrino luminosity is
about 1.5 times higher with MLT than without, as shown
in Fig. 6. A sudden drop in the luminosity in observed after
about 4−5 s, when the star becomes homogeneous in entropy
and electron fraction and the convective motions stop.

The emitted neutrino spectrum is also significantly mod-
ified by convection. Fig. 7 represents the mean energy of
emitted neutrinos (as measured by a distant observer). We
see that the mean energy of all neutrino flavors is globally
enhanced during the early evolution with MLT, and then
quickly drops when the star reaches neutral buoyancy and
convection stops.

It should be stressed that we do not recover the results
of Fig. 20 of Nagakura et al. (2020), where the authors ob-
served that at early times the convective effects decrease the
mean energy of emitted neutrinos. We do not believe our
simulation to be accurate enough at that early epoch, as we
neglected a lot of important physical ingredients such as the
accretion onto the PNS, which is known to significantly alter
the neutrino signal in particular by causing a time variation
(see Nagakura et al. 2021). Instead, we focus on the long term
evolution after the shock departure, for which our observa-
tions seem to be robust and confirm previous findings on the
flattening of s and Ye profiles as well as the luminosity, see
e.g. Roberts et al. (2012b) and Roberts & Reddy (2017).

In addition to the potentially observable drop in neutrino
luminosities (Roberts et al. 2012b), the modifications in the
neutrino spectra due to convective effects are quite important
in the study of the neutrino driven wind (NDW). We estimate
the electron fraction using the approximation developed in
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Figure 7. Mean energy of emitted neutrinos as a function of time,

for each neutrino flavor, in our fiducial simulation, with and with-
out MLT.

Qian & Woosley (1996),

Y NDW
e =

[
1 +

Lν̄e,e(εν̄e − 2∆ + 1.2∆2/εν̄e)

Lνe,e(ενe + 2∆ + 1.2∆2/ενe)

]−1

(23)

where Lνe,e and Lν̄e,e are the electron neutrino and antineu-
trino energy luminosities, ∆ = mnc

2 −mpc
2 is the neutron-

proton mass difference, and εν is defined as εν = 〈ε2ν〉/〈εν〉
where εν is the energy of a given neutrino flavor ν. This ap-
proximation considers only the processes n + νe � p + e−

and p+ ν̄e � n+ e+, in the elastic approximation neglecting
the mass of the electron me and the Pauli blocking effect of
leptons on the final state.

It should be stressed that the formula (23) is obtained by
considering that the NDW is composed of free neutrons and
protons only. By doing so the so-called alpha effect is ne-
glected, which results from the formation of α particles and
can introduce significant changes in the electron fraction (see
e.g. Meyer et al. 1998). But as our goal is only to estimate
the global effect of modified neutrino spectra due to convec-
tive effects on the NDW, the formula (23) should nevertheless
give us the global trend.

The evolution of the electron fraction in the NDW is rep-
resented in Fig. 8. We see that in our simulations convec-
tive effects push the composition of the NDW to higher elec-
tron fractions and that it is always proton-rich. The structure
which can be observed in the simulation with MLT at about
4−5 s results from convection ceasing. Most recent CCSN
simulations indicate a proton-rich NDW and under such con-
ditions the most probable nucleosynthesis processes occurring
in the wind are the weak r-process and the νp-process (see
e.g. Arcones & Thielemann 2013).

4.2 Influence of neutrino interaction rates on the
PNS evolution

We study the influence of the various prescriptions for
charged currents presented in Section 3 by performing simu-
lations using either

• the elastic approximation with Mean Field corrections, with-
out mUrca effects, denoted Elastic MF

0.1 1 10
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0.65
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Y
e
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Figure 8. Electron fraction in the neutrino driven wind, computed
using Eq. (23), in our fiducial simulation, with and without MLT.

• the Mean Field prescription without mUrca effects, denoted
MF

• the Mean Field prescription with mUrca effects, denoted
MF+mUrca

• the RPA t′3 prescription without mUrca effects, denoted
RPA t′3 ,

employing again the RG(SLy4) EoS (Gulminelli & Raduta
2015).

We see little impact from these different prescriptions on
the early PNS evolution during the convective phase. Some
differences start to appear when convection stops and the
luminosity starts to drop, as shown in Fig. 9, which shows the
evolution of electron (anti-)neutrino luminosities as functions
of time.

The differences caused by the elastic approximation start
to be significant at this point, and the electron neutrino lumi-
nosity is much higher. This is explained by two factors: since
the rates are lower the transport of energy and leptons in the
PNS is more efficient, and the displacement of β-equilibrium
towards more neutron rich matter leads to a more important
deleptonization.

Regarding the effect of collisional broadening, the neutrino
luminosities in simulations including mUrca are always lower
than in those which do not. This can easily be understood.
Since the opacities are globally enhanced by collisional broad-
ening, the diffusion of heat and leptons inside the PNS is less
efficient and the neutrinosphere is located at a lower temper-
ature. This difference becomes more and more pronounced
after about 10 s of evolution, when the temperature starts to
drop, enhancing the differences between the prescriptions.

We can note here that, when comparing MF and MF with
mUrca simulations, there are little differences in the energy
luminosity (Fig. 9) and in the mean energy of emitted neu-
trinos (Fig. 10), whereas opacities are quite different, as seen
from Figs. 2 and 3. This can be explained from the fact
that the large differences in the rates occur in regions which
are finally not so relevant for the neutrino emission and the
overall evolution is dominated by other effects. In particular,
the cooling of the central region is dominated by convective
mixing whose dynamics are essentially independent of the
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Figure 9. Energy luminosity of emitted electron neutrinos as function of time, for the four different prescriptions to compute charged
current neutrino-nucleon interactions

charged currents. The exact location of the neutrinospheres
is also not only determined by charged-current opacities but
probably dominated by the scattering opacity which does
not change between the different simulations. In addition,
close to the neutrinospheres, relevant for neutrino emission,
the differences in charged-current opacities are much smaller
than in the centre or well above the neutrinospheres. We have
checked this in our simulations, comparing the opacities for
relevant thermodynamic conditions obtained from our fidu-
cial run with MF rates in different regions of the PNS, see
Figs 2 and 3. Close to the neutrinospheres, the difference in
opacities with or without taking into account mUrca are not
so large.

Finally, simulations which include RPA effects have a
slightly higher luminosity during the first phase of the evo-
lution. This can be understood because the reduced opaci-
ties due to nuclear correlations improves the diffusion of heat
in the PNS. At later times this trend is inverted, since the
model with RPA is colder and the neutrino mean free path
becomes of the order of the size of the star. This behaviour
is similar to the observations made in Fig. 5 of Roberts &
Reddy (2017), but some important differences can be noticed.
Among others, in Roberts et al. (2012b); Roberts & Reddy
(2017) differences between RPA and MF start to appear only
after convection has stopped, and become significant at late
times, whereas our simulations show only small differences
at late times. These discrepancies might have several origins.
Differences coming from the initial model – we recall that
we compute the initial model consistently with the same EoS
and reaction rates as the simulation – could explain these dif-
ferent behaviours, as our RPA and MF results might differ at
early times in contrast to those in Roberts & Reddy (2017).
As discussed in Oertel et al. (2020), the importance of RPA
correlations is energy dependent and for some (anti)-neutrino
energies almost no difference is observed with the MF opac-
ities. Therefore, the inclusion of this energy dependence in
our work in contrast to Roberts et al. (2012b); Roberts &
Reddy (2017) is another possible explanation for the discrep-
ancies. We expect the average difference between RPA and
MF to be reduced for the full rates compared with a grey fac-

tor, which seems indeed to be the case. We also include the
full inelasticity of neutrino-nucleon scattering, which leads to
faster equilibration of neutrino spectra and thus reduces the
differences between the different prescriptions for the charged
current rates. The treatment of neutrino transport or the EoS
certainly play a role, too.

Let us now have a look at the emitted neutrino spectrum.
Fig. 10 represents the mean energy of emitted electron (anti-
)neutrinos (as measured by a distant observer). The find-
ings are similar to those discussed above, the differences in-
troduced by the elastic approximation are the most signifi-
cant at late times, especially for electron neutrinos with en-
hanced mean energies. mUrca processes systematically lower
the mean energy with increasing differences again appearing
around 10 s of evolution. Globally, as for the luminosities, the
inclusion of mUrca processes has a stronger impact on the
mean energies than nuclear correlations included via RPA.
The latter produces a stronger enhancement of neutrino mean
energy and, to a lower extent, that of anti-neutrinos at early
times. Here again, the trend is inverted at later times with
mean energies of both electron neutrinos and antineutrinos
slightly smaller with the RPA approach than in MF.

As far as the impact on the NDW is concerned, Fig. 11
(left panel) shows the evolution of the electron fraction in
the NDW comparing the different prescriptions for comput-
ing charged current rates. It can be seen that the stronger en-
hancement within RPA at early times of the electron neutrino
average energy, with respect to antineutrinos, (see Fig. 10)
has some noticeable consequences on the electron fraction in
the NDW, which is about 4 % higher at early times than in
MF. mUrca processes which essentially affect neutrinos and
antineutrinos in the same way, show only little influence on
the composition of the NDW at early times. The prediction of
simulations including mUrca start to be different after about
8 s, increasing the electron fraction. Note, however, that when
determining Ye in the NDW with Eq. (23), we have used sev-
eral approximations. In particular we have assumed only free
nucleons, which should be considered with caution over such
a long timescale.

Although in this paper we focus on the impact on charged
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Figure 10. Mean energy of emitted electron (anti-)neutrinos as
functions of time for the four different prescriptions for charged

currents.
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Figure 11. Electron fraction in the neutrino driven wind, com-
puted with (23), as a function of time, for the four different pre-

scriptions for charged currents.

current rates, it should be noted that in most parts of the
PNS, neutrino-nucleon scattering is the dominant source of
opacity and different ways of computing the corresponding
rates are expected as for the charged current rates to change
the opacities and thus the PNS evolution. We will not perform
here a detailed study, but as indication of the impact different
scattering rates can have, we compare a simulation employ-
ing the elastic rates from Bruenn (1985) with our fiducial
simulation using fully inelastic rates from Thompson et al.
(2000), see appendix B. The overall evolution is again rather
similar, see Fig. 12 where as an example we show the total
neutrino energy luminosity and the electron fraction in the
neutrino driven wind. At early times the elastic rates predict
a slightly lower neutrino luminosity and a slightly more pro-
ton rich matter matter in the neutrino driven wind, but the
evolution is again dominated by convection effects.

5 SUMMARY AND DISCUSSION

In this study we have performed simulations of the Kelvin-
Helmholtz cooling phase of PNSs with a new code relying on
the quasi-static approximation. Our code is modelling neu-
trino transport with the Fast Multigroup Transport (FMT)
radiation scheme and includes convective effects within the
mixing length theory (MLT).

We motivated the use of the mixing length theory by per-
forming simulations with and without MLT, and conclude
that simulations with convection yield results qualitatively
different from simulations without. The PNS contracts much
faster because of an efficient heat and lepton transport from
inner regions to the neutrinospheres, the energy of emitted
neutrinos is higher and the NDW is more proton-rich. As al-
ready discussed earlier, when convection stops there is a clear
break in the neutrino luminosity, potentially observable.

In the continuation of our previous work on the influ-
ence of charged-current neutrino-nucleon interactions in core-
collapse simulations (Oertel et al. 2020) we studied the influ-
ence of nuclear correlations and collisional broadening due
to modified Urca processes in the evolution of PNSs. We re-
call that commonly used approximations in CCSN (the elas-
tic approximation) and in NS cooling simulations (the Fermi
surface approximation) are not compatible and that PNS evo-
lution simulations should rely on charged current rates com-
puted with full kinematics.

From our simulations we conclude that the addition of
mUrca has a certain, though limited effect on the neutrino
emission, by reducing both the mean energy and the luminos-
ity of emitted electron (anti-)neutrinos. Moreover, the mUrca
processes become dominant at low temperatures. This can be
seen from Figs. 2 and 3, where we have taken the thermody-
namic conditions from PNS profiles obtained with the fiducial
simulation employing MF rates and the RG(SLy4) EoS at dif-
ferent times and at different radii inside the star. The highest
radius at each given time is located close to the surface. It
is obvious from that figure that at later times and closer to
the surface, opacities from mUrca reactions dominate. A sim-
ilar effect is observed for neutrinos. Thus although neutrino
transparency has not been reached (the neutrino mean free
path is still smaller than the size of the star) at the end of the
simulation, we can confirm that mUrca processes dominate
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(23), as functions of time, comparing the elastic approximation (Bruenn 1985) for ν-N scattering with the inelastic rates from (Thompson
et al. 2000). The RG(SLy4) EoS and MF charged current rates have been employed.

the late evolution when direct processes become kinemati-
cally strongly suppressed.

The inclusion of nuclear correlations via RPA mostly has
an effect at the beginning of the simulation, by enhancing the
mean energy of emitted electron neutrinos, which indirectly
increase the electron fraction in the NDW. At later times our
simulations with RPA show little difference in the results,
with respect to mean field rates. Thus although qualitatively
in agreement with previous works (see e.g. Roberts & Reddy
2017), there are some important quantitative discrepancies.
As discussed in Sec. 4.2, there are several possible reasons for
that: differences in the initial model, the energy dependence
of the RPA rates included in our work, the faster equilibration
of neutrino spectra due to inelastic scattering off nucleons,
the neutrino treatment or the EoS. These different effects
should be investigated further before any generic conclusion
on the impact of nuclear correlations on PNS evolution and
the resulting neutrino emission can be drawn.

Of course our study has several limitations. The simula-
tions investigating the different prescriptions for charged cur-
rent neutrino-nucleon interactions have been performed with
only one EoS, thus we cannot exclude that other EoS show
different effects. In addition, although we do not see much
difference in the results from different progenitors, it should
be mentioned that only a few have been used and that some
particular progenitors might show different behaviour. The
numerical method used could be improved, too. The neutrino
transport scheme is an approximation to the full Boltzmann
transport. It has the advantage of being computationally not
very expensive and at the same time being more elaborate
than standard equilibrium flux limited diffusion methods. In
particular in the semi-transparent regime it behaves as well
as some recently employed more sophisticated, but computa-
tionally more expensive methods (as e.g. variable Eddington
transport methods in Roberts 2012). The transition between
the CCSN evolution code with full-hydrodynamics and our
quasi-static PNS evolution code induces a small discontinuity
in some quantities, which, however, should only impact the
very early evolution. As again shown here, convection plays
a very important role for PNS evolution. The MLT scheme
should govern the main qualitative features, but only a more

detailed multi-dimensional study can fully account for con-
vective effects. In addition, we have completely neglected the
accretion process, therefore the first few hundreds of millisec-
onds in the evolution of our models should not be considered
as reproducing accurately the conditions in CCSN.

We nevertheless demonstrated the feasibility of PNS stud-
ies including mixing length theory and state-of-the-art micro-
physics for the computation of neutrino interactions with a
new computationally low-cost numerical algorithm. This kind
of method allows to study a wide parameter space in a rea-
sonable time and will certainly prove useful as uncertainties
in PNSs evolution are still numerous.
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Typel S., Oertel M., Klähn T., 2015, Physics of Particles and Nu-

clei, 46, 633

Woosley S. E., Heger A., Weaver T. A., 2002, Reviews of Modern

Physics, 74, 1015

Yakovlev D. G., Kaminker A. D., Gnedin O. Y., Haensel P., 2001,

Phys. Rep., 354, 1

Yueh W. R., Buchler J. R., 1977, ApJ, 217, 565

APPENDIX A: FAST MULTIGROUP
TRANSPORT

In a spherically-symmetric spacetime described by the metric
(1), the stationary Boltzmann equation can be written as

µ

ψ

∂f

∂r
+
µ ε

ψ
(∂r lnα)

∂f

∂ε

+

(
1

r
− (∂r lnα)

)
1− µ2

ψ

∂f

∂µ
= B[f ]

where f(r, ε, µ) is the distribution function, ε = p0 is the
energy of neutrinos and µ = cos Θ = pr/p0 is the cosine of
the propagation angle. In the stationary case we can treat
the redshift by a simple change of variable : we introduce
the redshifted energy ε̂ = αε. For the function f(r, ε̂, µ) the
Boltzmann equation now simply becomes

µ

ψ

∂f

∂r
+

(
1

r
− (∂r lnα)

)
1− µ2

ψ

∂f

∂µ
= B[f ] (A1)

Let us now introduce the three first angular moments of the
distribution function : J = 1

2

∫
fdµ, H = 1

2

∫
fµdµ and K =

1
2

∫
fµ2dµ and write the collision integral as B[f ] = j − χf ,

which is possible if we consider only isotropic processes (see
appendix B). The first two moment equations are then

α2

r2ψ

∂

∂r

(
r2

α2
H

)
= j − χJ (A2)

1

ψ

∂K

∂r
+

(
1

r
− (∂r lnα)

)
3K − J
ψ

= −χH (A3)

The solution of this system is computed by using the fast

MNRAS 000, 1–16 (2021)

http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.98.065806
https://ui.adsabs.harvard.edu/abs/2021arXiv210803324A
http://dx.doi.org/10.1088/0954-3899/40/1/013201
http://dx.doi.org/10.1088/0954-3899/40/1/013201
https://ui.adsabs.harvard.edu/abs/2013JPhG...40a3201A
http://dx.doi.org/10.1088/0004-637X/758/1/34
http://dx.doi.org/10.1103/PhysRevLett.119.242702
https://ui.adsabs.harvard.edu/abs/2017PhRvL.119x2702B
http://dx.doi.org/10.1086/191056
https://ui.adsabs.harvard.edu/abs/1985ApJS...58..771B
http://dx.doi.org/10.1086/164405
https://ui.adsabs.harvard.edu/abs/1986ApJ...307..178B
http://dx.doi.org/10.1103/PhysRevC.58.554
http://dx.doi.org/10.1103/PhysRevC.59.510
http://dx.doi.org/10.1016/S0375-9474(97)00596-4
https://ui.adsabs.harvard.edu/abs/1997NuPhA.627..710C
http://dx.doi.org/10.1086/174639
https://ui.adsabs.harvard.edu/abs/1994ApJ...433..247C
http://dx.doi.org/10.1103/PhysRevC.89.065802
http://dx.doi.org/10.1103/PhysRevD.71.064023
https://ui.adsabs.harvard.edu/abs/2005PhRvD..71f4023D
http://dx.doi.org/10.1093/mnras/188.2.305
https://ui.adsabs.harvard.edu/abs/1979MNRAS.188..305E
http://dx.doi.org/10.1051/0004-6361/200913106
https://ui.adsabs.harvard.edu/abs/2010A&A...517A..80F
http://dx.doi.org/10.1103/PhysRevC.101.025804
https://ui.adsabs.harvard.edu/abs/2020PhRvC.101b5804F
http://dx.doi.org/10.1103/PhysRevD.102.123001
http://dx.doi.org/10.1086/157313
http://dx.doi.org/10.1103/PhysRevC.92.055803
https://ui.adsabs.harvard.edu/abs/2015PhRvC..92e5803G
http://dx.doi.org/10.1086/306303
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.010
http://dx.doi.org/10.1016/j.physletb.2006.09.042
http://dx.doi.org/10.1103/PhysRevC.95.025801
http://dx.doi.org/10.1103/PhysRevLett.104.251101
https://ui.adsabs.harvard.edu/abs/2010PhRvL.104y1101H
http://dx.doi.org/10.1093/mnras/stab392
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503..850I
https://ui.adsabs.harvard.edu/abs/1995A&A...296..145K
http://dx.doi.org/10.1086/310404
http://dx.doi.org/10.1103/PhysRevD.103.023016
http://dx.doi.org/10.1103/PhysRevC.78.045803
http://dx.doi.org/10.1103/PhysRevC.70.028801
http://dx.doi.org/10.1103/PhysRevLett.109.251104
https://ui.adsabs.harvard.edu/abs/2012PhRvL.109y1104M
http://dx.doi.org/10.1103/PhysRevC.58.3696
https://ui.adsabs.harvard.edu/abs/1998PhRvC..58.3696M
http://dx.doi.org/10.1393/ncr/i2016-10120-8
http://dx.doi.org/10.1393/ncr/i2016-10120-8
https://ui.adsabs.harvard.edu/abs/2016NCimR..39....1M
http://dx.doi.org/10.1093/mnras/stv101
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.2141M
http://dx.doi.org/10.1093/mnras/staa261
http://dx.doi.org/10.1093/mnras/staa261
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.5764N
http://dx.doi.org/10.3847/1538-4357/ab1d4b
http://dx.doi.org/10.3847/1538-4357/ab7456
https://ui.adsabs.harvard.edu/abs/2021arXiv210803009N
http://dx.doi.org/10.1103/PhysRevC.60.045801
http://dx.doi.org/10.1103/PhysRevC.102.035802
https://ui.adsabs.harvard.edu/abs/2020PhRvC.102c5802O
http://dx.doi.org/10.1103/PhysRevD.86.064032
https://ui.adsabs.harvard.edu/abs/2012PhRvD..86f4032P
http://dx.doi.org/10.1086/306889
https://ui.adsabs.harvard.edu/abs/1999ApJ...513..780P
http://dx.doi.org/10.1086/177973
https://ui.adsabs.harvard.edu/abs/1996ApJ...471..331Q
http://dx.doi.org/10.1103/PhysRevD.58.013009
https://ui.adsabs.harvard.edu/abs/1998PhRvD..58a3009R
https://ui.adsabs.harvard.edu/abs/1998PhRvD..58a3009R
http://dx.doi.org/10.1103/PhysRevC.59.2888
http://dx.doi.org/10.1103/PhysRevC.59.2888
http://dx.doi.org/10.1088/0004-637X/755/2/126
https://ui.adsabs.harvard.edu/abs/2012ApJ...755..126R
http://dx.doi.org/10.1007/978-3-319-21846-5_5
http://dx.doi.org/10.1007/978-3-319-21846-5_5
http://dx.doi.org/10.1103/PhysRevC.86.065803
https://ui.adsabs.harvard.edu/abs/2012PhRvC..86f5803R
http://dx.doi.org/10.1103/PhysRevLett.108.061103
https://ui.adsabs.harvard.edu/abs/2012PhRvL.108f1103R
http://dx.doi.org/10.1103/PhysRevC.100.025803
https://ui.adsabs.harvard.edu/abs/1995A&A...303..475S
http://dx.doi.org/10.1093/pasj/pst030
https://ui.adsabs.harvard.edu/abs/2014PASJ...66L...1S
http://dx.doi.org/10.1103/PhysRevC.62.035802
https://ui.adsabs.harvard.edu/abs/2000PhRvC..62c5802T
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1134/S1063779615040061
http://dx.doi.org/10.1134/S1063779615040061
https://ui.adsabs.harvard.edu/abs/2015PPN....46..633T
http://dx.doi.org/10.1103/RevModPhys.74.1015
http://dx.doi.org/10.1103/RevModPhys.74.1015
https://ui.adsabs.harvard.edu/abs/2002RvMP...74.1015W
http://dx.doi.org/10.1016/S0370-1573(00)00131-9
https://ui.adsabs.harvard.edu/abs/2001PhR...354....1Y
http://dx.doi.org/10.1086/155605
https://ui.adsabs.harvard.edu/abs/1977ApJ...217..565Y


15

neutrinos transport scheme by Müller & Janka (2015). In the
high optical depth area the solution is obtained using a two-
stream approximation,

1

ψ

∂fout
∂r

= j − χfout −
1

ψ

∂fin
∂r

= j − χfin .

It should be stressed that these two equations are usually cou-
pled because the coefficients j and χ depend of the neutrino
distribution function, though in our case we use the neutrino
distribution of the previous timestep to compute them (see
appendix B). The flux factor h = H/J is obtained by assum-
ing a continuous distribution f(ε, µ) ∝ eaµ

h = 1 +
2 fin/fout

1− fin/fout
+

2

ln(fin/fout)
(A4)

and we can then solve the flux-divergence equation A2.
The solution at low optical depth is obtained with a two-

moment closure:

k(h) =
K

J
=

1− 2h+ 4h2

3
(A5)

which can be used to transform the equation A3 into an or-
dinary differential equation for the flux factor

dh

dr
=

1

k − hk′(h)

{(
1

r
− ∂r lnα

)
(k − 1)h−

ψ

(
χh2 − k j

J
+ kχ

)}
. (A6)

These two solutions are matched at the point h = 0.51, to
avoid the singular point h = 0.5 .

Finally, the neutrino fluxes used in equations (12) and (13)
are computed as

Fν,n(r) =
4πc

(hc)3

∫
H(r, ε̂)

ε̂2dε̂

α3
(A7)

Fν,e(r) =
4πc

(hc)3

∫
H(r, ε̂)

ε̂3dε̂

α4
. (A8)

APPENDIX B: NEUTRINO COLLISION
INTEGRAL

We limit ourselves to isotropic scattering and pair production
kernels, which allows us to recast the collision integral to the
form

B[f ] = jeff − χefff , (B1)

where the coefficients jeff and χeff depend on the distribution
function f . These effective coefficients are computed using
the value of f from the previous timestep. This approxima-
tion allows us to use the FMT algorithm while having very
little influence on the result. The fact that interaction kernels
are non-isotropic is usually taken into account by including
their first Legendre moments, but this is impossible within
the FMT. These anisotropies are expected to have only an in-
fluence in the semi-transparent regime, and should not change
our results qualitatively.

B1 Scattering integral

The dominant processes for scattering of neutrinos in dense
nuclear matter are scattering off free nucleons ν+N � ν+N ,

and on a less important level the scattering off free elec-
trons/positrons ν+ e± � ν+ e±. The scattering off nucleons
is treated as if the nucleons were an ideal gas (see e.g. Thomp-
son et al. 2000) with full inelasticity, and electrons/positrons
are treated as a relativistic ideal gas (see Yueh & Buchler
1977; Chernohorsky 1994).

The scattering integral can be written as

BS [f ] =
1

2

∫
(ε′)2dε′dµ′

{
Rin0 (ε, ε′)f(ε′, µ′)[1− f(ε, µ)]

−Rout0 (ε, ε′)f(ε, µ)[1− f(ε′, µ′)]
}

(B2)

where Rin0 and Rout0 are the zeroth Legendre moment of the
ingoing and outgoing scattering kernels:

R
in/out
0 (ε, ε′) =

∫ π

0

Rin/out(ε, ε′, cos Θ) sin ΘdΘ . (B3)

They fulfil the in/out symmetry Rin0 (ε, ε′) = Rout0 (ε′, ε),
as well as the detailed balance condition Rin0 (ε, ε′) =

e(ε′−ε)/(kBT )Rout0 (ε, ε′).
The effective transport coefficients can then be written as

jeff,S(ε) =
1

2

∫
(ε′)2dε′Rin0 (ε, ε′)J(ε′) (B4)

χeff,S(ε) = jeff,S(ε) +
1

2

∫
(ε′)2dε′Rout0 (ε, ε′)[1− J(ε′)] (B5)

where J(ε) = 1
2

∫
f(ε, µ)dµ is the zeroth moment of the dis-

tribution function.

B2 Pair production integral

The dominant processes for neutrino pair production
in dense nuclear matter are mainly the nucleon-nucleon
bremsstrahlung N+N � N+N+ν+ ν̄, and on a less impor-
tant level the electron-positron annihilation e−+e+ � ν+ ν̄.
Bremsstrahlung is treated with the analytic fit of Hannes-
tad & Raffelt (1998), and electron-positron annihilation is
treated in the ultrarelativistic limit (see Bruenn 1985). The
ultrarelativistic approximation is not justified when the PNS
becomes cold enough such that the mean energy of neutrinos
gets close to the electron mass mec

2. But as this process is
subdominant a complete treatment should not generate im-
portant changes in the results. Instead we simply add a cutoff
to emulate the 2mec

2 threshold.
The pair production integral depends upon the distribution

function of the antineutrino f̄ :

BP [f, f̄ ] =
1

2

∫
(ε′)2dε′dµ′

{
Rp0(ε, ε′)[1− f(ε, µ)][1− f̄(ε′, µ′)]

−Ra0(ε, ε′)f(ε, µ)f̄(ε′, µ′)
}

(B6)

where Rp0 and Ra0 are the zeroth Legendre moment of the
production and absorption kernels for pair production,

R
p/a
0 (ε, ε′) =

∫ π

0

Rp/a(ε, ε′, cos Θ) sin ΘdΘ . (B7)

They fulfil the detailed balance condition Ra0(ε, ε′) =

e(ε+ε′)/(kBT )Rp0(ε, ε′). The effective transport coefficients can
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then be written as

jeff,P (ε) =
1

2

∫
(ε′)2dε′Rp0(ε, ε′)[1− J̄(ε′)] (B8)

χeff,P (ε) = jeff,P (ε) +
1

2

∫
(ε′)2dε′Ra0(ε, ε′)J̄(ε′) (B9)

where J̄(ε) = 1
2

∫
f̄(ε, µ)dµ is the zeroth moment of the an-

tineutrino distribution function.

APPENDIX C: PHENOMENOLOGICAL
APPROACH TO INCLUDE MODIFIED URCA
PROCESSES

The neutrino emissivity from charged current processes can
be written as (see e.g. Oertel et al. 2020, for details)

j(Eν) =− G2
FV

2
ud

8

∫
d3ke
(2π)3

1

EeEν
LλσImΠR

λσ(q)×

fF (Ee − µe)(1 + fB(q0)) + positronic contribution
(C1)

with a similar expression for antineutrinos and the mean
free path related via detailed balance. GF denotes here the
Fermi coupling constant and Vud the quark mixing matrix
element entering the charged current processes with nucle-
ons. q = (Ee − Eν − µe + µν , ~ke − ~kν) with subscripts in-
dicating electron or neutrino energy and chemical potential,
respectively, and fF/B are fermionic or bosonic distributions
functions. Assuming non-relativistic nucleons and neglecting
the momentum dependence of the nucleonic form factors, the
product of the lepton tensor Lλσ and the retarded polarisa-
tion ΠR becomes

LλσΠR
λσ = 8 (ΠV (2EeEν −Ke ·Kν)

+ΠA(2EeEν +Ke ·Kν)) , (C2)

with a vector ΠV and an axial part ΠA. In mean field ap-
proximation for the direct processes, we obtain

Im ΠV (q) = Im ΠA(q) = 2ImL(q) , (C3)

with the well-known Lindhard function L(q),

L(q) = lim
η→0

∫
d3k

(2π)3

fF (εpk − µ
∗
p)− fF (εnk+q − µ∗n)

q̃0 + iη + εpk − εnk+q

. (C4)

with q̃0 = q0 + µ∗n − µ∗p. The single particles energies are

εik =
~k2

2m∗i
+ m∗i with effective masses m∗i , and µ∗n/p denote

proton and neutron effective chemical potentials. Values for
the effective masses and chemical potentials for the condi-
tions of Figs. 2 and 3 are listed in Table 1. The approach
by Roberts et al. (2012a) to describe modified URCA pro-
cesses consists in considering a finite lifetime τ for the quasi-
particles entering the Lindhard function in the axial channel
leading to

ΠA(q) = 2

∫
d3k

(2π)3

fF (εpk − µ
∗
p)− fF (εnk+q − µ∗n)

q̃0 + iτ + εpk − εnk+q

×

(
1− i

τ

1

εnk+q − ε
p
k

)
(C5)

The values for τ have been taken from Bacca et al. (2012).

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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