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A correct-by-construction model for asynchronously

communicating systems

Zoubeyr Farah1
· Yamine Ait-Ameur2

· Meriem Ouederni2 · Kamel Tari1

Abstract The design and verification of distributed soft-

ware systems is often hindered by their ever-increasing 
com-plexity and their asynchronous operational semantics. 
This article considers choreography specifications for 
distributed systems to reduce that complexity. We use 
labelled state-transitions systems as ground model for both 
choreographies and the corresponding distributed systems. 
Based on Event-B method, we propose a stepwise correct-

by-construction model to build asynchronous distributed 
systems which a pri-ori realise their choreographies. We 
rely on a sufficient and necessary realisability condition and 
we apply several refine-ment steps w.r.t. that condition to 
generate the distributed peers. The first refinement returns 
peer behaviours obtained by synchronous projection. The 
previously computed system is then refined into its 
asynchronous version using unbounded FIFO buffers. We 
prove, thanks to invariant preservation, that a sequence of 
exchanged messages is preserved at each refinement step. 
We provide a formalised proof of a realis-ability algorithm 
for deterministic choreographies. Besides that, our 
contribution is twofold: the approach is a priori and the 
problackposed solution scales up to any number of peers 
communicating with each other.
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1 Introduction

Context In software engineering, choreographies are orig-

inally inspired from “Bob and Alice” notation [29] and

they describe, from a global point of view, the interac-

tion among endpoint distributed peers1 running concurrently.

The choreography paradigm is well advocated as a support

which alleviates the complexity when designing, verifying

and implementing distributed but potentially complex sys-

tems. Here, the interaction often consists in the set exchanged

messages (i.e., sent and received) between interacting peers.

Then, the choreography specifies the set of conversations, i.e.

conversation protocol or CP for short, that is the allowable

order of messages exchanged between the peers. Examples

of such conversation-based languages [10] are collabora-

tion diagrams of UML notation and message sequence chart

(MSC) graphs, business process languages like BPMN or

the choreography description languages such as CDL in

service-oriented architectures or multi-party session types or

global types. Given a choreography specification, the local

behaviours of endpoint peers can be computed by projec-

tion of global conversations into local ones. However, it

is required that the distributed peers must behave exactly

as specified in their CP. This problem is known as the

realisability problem [7,10]. It requires checking that the

sequences of messages defined at the conversation level are

1 The generic term peer is used in our article. It refers to a set of dis-

tributed software components or services that can be composed and

communicating together in a complex system.



approach that builds a distributed system from a given CP

where the realisability condition introduced in [10] is strictly

satisfied. We use the Event-B method to develop our approach

as follows: First a CP is formalised; then two refinement steps

describing, respectively, a synchronous and an asynchronous

realisation are given. We prove, thanks to invariant preserva-

tion, that the sequence of exchanged messages is preserved

at each refinement step. These refinements ensure the cor-

rectness of our approach, particularly synchronisability and

well-formedness. From a foundational and theoretical view-

point, we provide a correctness proof for the realisability

algorithm given in [10]. Moreover, the refinement and proof-

based approach is supported by Event-B and developed in the

RODIN platform. Besides advocating a solution for enforc-

ing realisability which is not a new contribution in itself, we

suggest a scalable verification method thanks to the ability

of handling arbitrary sets and values, i.e. an arbitrary set of

communicating peers and exchanged messages in our case.

Thus, we avoid the state-explosion issue and better handle

the complexity of distributed systems.

Main contribution To sum up, the main contributions of our

article are as follows:

• We suggest an a priori method for realising choreogra-

phies where peers are communicating asynchronously

via (possibly) unbounded FIFO buffers.

• Distributed peers are computed from a choreography

specification by refinement w.r.t. a sufficient and nec-

essary realisability condition identified in [10].

• Our proposal gives a proof of correctness of the realis-

ability algorithm proposed in [10].

• Our approach is scalable without restriction on the num-

ber of communicating peers, i.e., any number of peers

and messages can be considered.

• Using our refinement-based approach, several asynchro-

nous systems can be built from their synchronous version.

Our approach brings many advantages for today’s dis-

tributed systems such as “web-based applications”, e.g.,

e-government, e-commerce, e-learning, online health care

systems, “cloud computing” and even “cyber-physical sys-

tems”. Asynchronous communication is often adopted as

operational semantics. The use of our techniques would

considerably alleviate the ever-increasing complexity when

designing and checking such systems.

The remainder of this article is structured as follows: The

next section presents all the formal notations on which our

approach relies. Section 3 presents a case study, borrowed

from [20]. It is used to illustrate our approach throughout this

article. Section 4 presents the main features of the Event-B

method used in our contribution. Section 5 overviews our

application of Event-B to the realisability problem. The for-

mal development is then detailed in Sect. 6. We discuss

equal to those produced by the different peers interactions, 
i.e., the peer behaviours conform to the CP. Notice that sev-

eral message-passing systems interact asynchronously such 
that sent messages are stored in FIFO buffers at receiver 
side. Later, once being ready, the receiver consumes mes-

sages available at the head position of its reception buffer. 
Although peer state space can be finite, their interaction can 
result in an infinite state space system since buffers can grow 
infinitely. Thus, CP realisability can be undecidable in the 
most general case.

CPs realisability has been studied for different previ-

ously mentioned formalisms, e.g., MSC [7], collaboration 
diagrams [12], BPMN 2.0 choreographies [31], Erlang con-

tracts [8], Singularity channels [10], session types [16]. In 
particular, the work stated in [10] defines a sufficient and 
necessary condition under which CPs realisability can be 
checked even if systems interact asynchronously through 
unbounded FIFO buffers. Such a condition relies on equiva-

lence checking between CP and its distributed version. This 
check is possible for a class of distributed systems, called 
synchronisable, meaning that the order of the exchanged 
messages in the system is independent of the fact that oper-

ational semantics is asynchronous or synchronous. This is 
recognised as synchronisability checking and it is used to 
verify well-formedness which means that any sent message 
will be eventually received in asynchronous communication. 
Model checking techniques have been set up to handle the 
verification in the proposed formal approaches. However, as 
done in [10] most of existing work follows a posteriori real-

isability checking where local peer behaviours are projected 
first and then using model checking techniques their compo-

sition is checked against the global behaviour described by 
the choreography, i.e. equivalence checking. Last, following 
model checking spirit, state explosion is a major issue for 
verifying systems with reasonable state space.

Verifying and enforcing choreography realisability is an 
active research area with a lot of recent results, e.g. [13,15,16, 
20,24,27,30,32,34]. However, most of existing techniques 
are constrained by the limit of model checking techniques 
which is state-explosion. As a result, the number of commu-

nicating peers is also limited and the complex behaviour of 
distributed systems is seldom faced.

Our approach In this article, we address the realisability 
problem based on a priori verification techniques, using 
refinement and proof-based formal methods. We formally 
describe the choreographies and peers behaviours, i.e. order 
of message exchanges, using labelled state-transition sys-

tems. These systems suit well for various formal modelling 
and verification approaches like model checking or proof 
and refinement-based formal techniques. We assume that 
peers communicate asynchronously such that messages 
are exchanged over (possibly) unbounded FIFO buffers. 
We suggest a stepwise correct-by-construction development



in Sect. 7 some criteria related to our approach. Section

8 presents a positioning of our approach related to other

approaches. Last, we sum up this work and present some

challenging perspectives in Sect. 9.

2 Formal notations

In this section, we introduce the formal definitions of peer

specification, conversation protocols, synchronous and asyn-

chronous systems including the realisability conditions.

2.1 Basic definitions

Definition 1 (Peer) A peer is a LTS P = 〈S, s0,Σ, T 〉

where S is a finite set of states, s0 ∈ S is the initial state,

Σ = Σ ! ∪ Σ? is a finite alphabet partitioned into a set of

send and receive messages, and T ⊆ S×Σ×S is a transition

relation. We denote a send message action as m! for a message

m ∈ Σ ! and a receive message action as m? for m ∈ Σ?.

Definition 2 (Conversation protocol). A conversation pro-

tocol CP for a set of peers, {P1, . . . ,Pn} with n ≥ 2, is a

LTS

CP = 〈SCP, s0
CP, LCP, TCP〉

where

• SCP is a finite set of states and

• s0
CP ∈ SCP is the initial state,

• LCP is a set of labels where a label l ∈ LCP is a tuple

(Pi , m,P j ) such that Pi and P j are the sending and

receiving peers, respectively; Pi �= P j , and m is a mes-

sage on which those peers interact;

• finally, TCP ⊆ SCP × LCP × SCP is the transition relation.

We require that

• each message has a unique sender and receiver:

∀(Pi , m,P j ), (P
′
i , m′,P ′

j ) ∈ LCP : m = m′

�⇒ Pi = P
′
i ∧ P j = P

′
j

• peers cannot exchange reflexive messages:

∀(Pi , m,P j ) ∈ LCP : Pi �= P j

Example 1 (A conversation protocol (CP)). We illustrate on

Fig. 1 a simple CP using three services {S1, S2, S3} inter-

acting with each other by exchanging four messages {a, b,

c, d}.

S1,a,S2

S2,d,S3

S2,b,S3 S3,c,S1

Fig. 1 An illustrative CP

a!

c?

a?

d!

b!

d?

b?

c!

S1 S2 S3

Fig. 2 The set of Peers projected from the CP of Example 1

The reflexive transition S2, d, S3 on the second state

describes the possibility of exchanging 0 or more d messages

between the sending peer S2 and the receiving one S3.

Definition 3 (Projection) Peer LTSs Pi = 〈Si , s0
i ,Σi , Ti 〉

are obtained by replacing in CP = 〈SCP, s0
CP, LCP, TCP〉 each

label (P j , m,Pk) ∈ LCP with m! if j = i with m? if k = i

and with τ (internal action) otherwise, and finally removing

the τ -transitions by applying standard minimisation algo-

rithms [23].

Example 1 (Continued) (Projected Peers of the previous CP)

Considering the CP depicted on Figs. 1 and 2 shows the

corresponding projected peers.

Definition 4 (Synchronous system) Given a set of peers

{P1, . . . ,Pn} with Pi = 〈Si , s0
i ,Σi , Ti 〉, the synchronous

system

(P1 | · · · | Pn)

is the

LT Ss = 〈Ss, s0
s ,Σs, Ts〉,

where

• Ss = S1 × · · · × Sn defines the set of global states of

the described synchronous system. Each global state is

defined as a tuple of states of each peer Pi involved in the

synchronous system.

• s0
s ∈ Ss such that s0 = (s0

1 , . . . , s0
n )

• Σs = ∪iΣi



(S1,a!,S2)(S2,a?,S1) (S2,d!,S3)(S3,d?,S2)

(S2,b!,S3)(S3,b?,S2)

(S3,c!,S1)(S1,c?,S3)

S GS0
S GS1

S GS2

S GS3S GS4

Fig. 3 A trace of the synchronous system on the projected peers of

Fig. 2 conforms to the CP of Fig. 1

• Ts ⊆ Ss × Σ × Ss , and for ss = (s1, . . . , sn) ∈ Ss and

s′
s = (s′

1, . . . , s′
n) ∈ Ss , where

– (interaction) expresses the instantaneous send–

receive actions of a message ss
m
−→ s′

s ∈ Ts if ∃i, j ∈

{1, . . . , n} : m ∈ Σ !
i ∩ Σ?

j where ∃ si
m!
−→ s′

i ∈ Ti ,

and s j
m?
−→ s′

j ∈ T j such that ∀k ∈ {1, . . . , n}, k �=

i ∧ k �= j ⇒ s′
k = sk

Example 1 (Continued) (A trace of the synchronous system

on the obtained projected peers) Figure 3 illustrates a trace

of the synchronous system (S1 | S2 | S3) composed of the

peers shown on Fig. 1. Notice that each arrow is labelled

with an interaction, i.e. send and receive message, between

sending and receiving peers, respectively, referred to as Si

and S j where i, j ∈ {1, 2, 3} and i �= j . For instance, the

interaction (S1, a!, S2)(S2, a?, S1) stands for the sending of

a! from peer S1 to S2 and also the reception of a? by S2 from

S1.

Definition 5 (Asynchronous system) Given a set of peers

{P1, . . . ,Pn} with Pi = 〈Si , s0
i ,Σi , Ti 〉, and Qi being

its associated FIFO buffers, the asynchronous system

((P1, Q1) || · · · || (Pn, Qn))

is the

LTSa = 〈Sa, s0
a ,Σ, Ta〉

defined as follows:

• Sa ⊆ S1× Q1×· · ·×Sn × Qn where ∀i ∈ {1, . . . , n}, Qi

⊆ (Σ?
i )∗ defines the set of global states of the described

asynchronous system LTSa . Each global state is defined

as a tuple of pairs made of a state and the current value of

the messages queue associated to each peer Pi involved

in the projection.

• s0
a ∈ Sa such that s0

a = (s0
1 , ∅, . . . , s0

n , ∅)

• Σa = ∪iΣi

((S1,∅),a!,(S2,a)) ((S2,∅),a?,(S1,∅)) ((S1,∅),d!,(S3,d))

((S2,∅),b!,(S3,b d))

((S3,b),d?,(S1,∅))

((S3,∅),b?,(S2,∅))((S3,∅),c!,(S1,c))((S1,∅),c?,(S3,∅))

A GS0
A GS1

A GS2
A GS3

A GS4

A GS5A GS6A GS7A GS8

Fig. 4 A trace of the asynchronous system on the projected peers of

Fig. 2 conforms to the CP of Fig. 1

• Ta ⊆ Sa × Σa × Sa , and for sa = (s1, Q1, . . . , sn, Qn) ∈

Sa and s′
a = (s′

1, Q′
1, . . . s′

n, Q′
n) ∈ Sa where:

– (send) sa
m!
−→ s′

a ∈ Ta if ∃i, j ∈ {1, . . . , n} : m ∈

Σ !
i ∩ Σ?

j ,

(i) si
m!
−→ s′

i ∈ Ti ,

(ii) Q′
j = Q j m,

(iii) ∀k ∈ {1, . . . , n} : k �= j ⇒ Q′
k = Qk , and

(iv) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′
k = sk

– (receive) sa
m?
−→ s′

a ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈

Σ?
i ,

(i) si
m?
−→ s′

i ∈ Ti ,

(ii) m Q′
i = Qi ,

(iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ Q′
k = Qk , and

(iv) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′
k = sk

Example 1 (Continued) (A trace of the asynchronous sys-

tem on obtained projected peers) Figure 4 gives a trace of

the asynchronous system ((S1, Q1) || (S2, Q2) || (S3, Q3))

composed of the peers on Fig. 1.

Notice that the graphical traces that are shown on all fig-

ures are denoted as follows for simplification purposes: The

trace records the messages exchange (m! and m? for sending

and receiving a message m, respectively), the sending and

receiving peers, and the local queues associated with each

peer. We use the notation (Si , Qi ), l, (S j , Q j ) where Si and

S j are the sending and receiving peers, respectively, if l = m!.

Si and S j are the receiving and sending peers, respectively,

if l = m?. We denote by Qi and Q j the local queues.

Last, the traces of messages stored in the local queue fol-

low the FIFO order from right (first message) to left (last

message). For instance, for (S3, bd) the queue messages b

and d are ordered as shown from right to left:

Definition 6 (Trace) For any LTS P =< S, s0,Σ, T >,

states p, q ∈ S and action sequence σ ∈ Σ∗, with σ =

a1 . . . an for some n ≥ 0, we denote by p
σ
−→ q the fact

that there exist s0 . . . sn ∈ S such that p = s0, q = sn , and

(si , ai+1, si+1) ∈ T for all 0 ≤ i < n. Note that for all states

s it holds that s
τ
−→ s.



Definition 7 (Trace equivalence [28]) Given two LTSs,

P1 = 〈S1, s0
1 ,Σ1, T1〉 and P2 = 〈S2, s0

2 ,Σ2, T2〉, two

states p ∈ S1 and q ∈ S2 are related modulo trace equiv-

alence (p ≡tr q) if and only if

• for each trace p
σ
−→ p′ in LTS P1 there is a trace q

σ
−→ q ′

in LTS P2

• for each trace q
σ
−→ q ′ in LTS P2 there is a trace p

σ
−→ p′

in LTS P1

Two LTSs P1 = 〈S1, s0
1 ,Σ1, T1〉 and P2 = 〈S2, s0

2 ,Σ2,

T2〉 are equivalent if and only if their initial states are related

modulo trace equivalence, i.e. s0
1 ≡tr s0

2 .

2.2 Relevant properties for realisability

We now define the synchronisability which consists in an

equivalence relation between LT Ss (synchronous system)

and LT Sa (asynchronous system) where peers queues can be

unbounded. In [10], it is proved that if the equivalence holds

between 1-bounded system (for every peer Pi its queue size

is equal to 1 and it is denoted Q1
i ) and its synchronous version,

then the result holds for all bounds.

Property 1 (Synchronisability) Let us consider a set of peers

{P1, . . . ,Pn}, the synchronous system (P1 | . . . | Pn) =

(Ss, s0
s , Ls, Ts), and the 1-bounded asynchronous system

((P1, Q1
1) || . . . || (Pn, Q1

n)) = (Sa, s0
a , La, Ta).

Two states r ∈ Ss and s ∈ Sa are synchronisable if there

exists a relation R such that R(r, s) and

• for each r
m
−→ r ′ ∈ Ts , there exists s

m!
−→ s′ ∈ Ta , such

that R(r ′, s′);

• for each s
m!
−→ s′ ∈ Ta , there exists r

m
−→ r ′ ∈ Ts , such

that R(r ′, s′);

• for each s
m?
−→ s′ ∈ Ta , R(r, s′).

The set of peers is synchronisable if R(s0
s , s0

a ) holds i.e. the

initial states s0
s and s0

a are synchronisable.

Intuitively, the synchronisability property ensures that the

synchronous system and the corresponding asynchronous

system obtained after projection are trace equivalent, i.e. the

asynchronous system does not introduce extra behaviours.

In the work presented in this paper, refinement is used to

guarantee this property.

We use well-formedness as a criterion to check that every

message m sent by one peer and stored in a receiving queue

Qi must be eventually consumed from that queue. Well-

formedness states that whenever the i-th peer buffer Qi is

non-empty, the asynchronous system can eventually move

to a global state where Qi is empty. Given an asynchronous

Table 1 Correspondence between A_GS, S_GS and global queue in

the traces of Figs. 3 and 4

A_GS Global queue S_GS

A_GS0 ∅ S_GS0

A_GS1 a S_GS0

A_GS2 ∅ S_GS1

A_GS3 d S_GS1

A_GS4 b d S_GS1

A_GS5 d S_GS2

A_GS6 ∅ S_GS3

A_GS7 c S_GS3

A_GS8 ∅ S_GS4

system LT Sa built over a set of deterministic peers, well-

formedness holds for this system if LT Sa is synchronisable.

Property 2 (Well-formedness) Let (Sa, s0
a , La, Ta) = ((P1,

Q1
1) || . . . || (Pn, Q1

n)) be an asynchronous system defined

over a set of peers {P1, . . . ,Pn}. (Sa, s0
a , La, Ta) is well-

formed, if and only if

∀sa = (s1, Q1, . . . , sn, Qn) ∈ Sa,∀Qi , | Qi |> 0, there

exists a state s′
a = (s′

1, ∅, . . . , s′
n, ∅) ∈ Sa and a trace σ ∈

L∗
a such that sa

σ
−→ s′

a .

The defined property expresses that, at any global state sa

with non-empty local queues, another global state s′
a with

empty local queues is reached. The notation s
σ
−→ t defines a

finite trace as introduced in Definition 6 in the asynchronous

system to reach the destination global state.

Example 1 (Continued) (State correspondence and global

queue) Table 1 shows the correspondence between global

states (A_GSi and S_GSj) in both synchronous and asyn-

chronous traces presented previously in Figs. 3 and 4.

The middle column of Table 1 shows the evolution of

the global FIFO queue, i.e. the queue corresponding to the

sent messages at the conversation protocol level. The order

defined by this queue shall be preserved by the projection to

ensure trace equivalence.

Property 3 (Realisability) A conversation protocol C P is

realisable if and only if

(i) the peers {P1 . . . Pn} computed by projection from

C P are synchronisable,

(ii) LT Sa = ((P1, Q1) || . . . || (Pn, Qn)) is well-

formed such that all Qi are unbounded, and

(iii) LT Sa is equivalent to C P .

The reader interested in detailed definitions, theorems and

proofs of this section may refer to [10].



S1, a, S2

S1, d, S3

S3, b, S2 S3, c, S1

Fig. 5 A non-realisable CP

a!

d!

c?

a?

b?

b!

d?

c!

S1 S2 S3

Fig. 6 The set of Peers projected from CP of Fig. 5

2.3 An example of a non-realisable conversation

protocol

(S1,a!,S2)(S2,a?,S1) (S1,d!,S3)(S3,d?,S1)

(S2,b!,S3)(S3,b?,S2)

(S3,c!,S1)(S1,c?,S3)

S GS0
S GS1

S GS2

S GS3S GS4

Fig. 7 A synchronous trace on the projected peers of Fig. 5 conforms

to the CP of Fig. 5

((S1,∅),a!,(S2,a)) ((S2,∅),a?,(S1,∅)) ((S3,∅),b!,(S2,b))

((S1,∅),d!,(S3,d))

((S2,∅),b?,(S3,d))

((S3,∅),d?,(S1,∅))(S3,∅),c!,(S1,c))((S3,∅),c?,(S1,∅))

A GS0
A GS1

A GS2
A GS3

A GS4

A GS5A GS6A GS7A GS8

Fig. 8 An asynchronous trace on the projected peers of Fig. 5 conforms

to the CP of Fig. 5

ability property is violated. The traces shown in Figs. 7 and

8 below illustrate this problem:

Example 2 (Continued) (A synchronous trace on the obtain-

ed projected peers) Figure 7 shows a trace of message

exchanges on the synchronous system. Although the projec-

tion is not realisable, this trace respects the messaging order

of the CP. The messages sending and receiving order does

not appear explicitly on the synchronous system since sent

messages are received instantaneously.

Example 2 (Continued) (An asynchronous trace on the

obtained projected peers) Although all traces in the synchro-

nous system (Fig. 7) respect the same messaging order as in

the CP, the asynchronous system can hold the trace of Fig. 8

which violates this order. Such an issue is detected thanks

to the synchronisability condition, i.e. both synchronous and

asynchronous systems are not equivalent in that case.

Example 2 (Continued) [State correspondence and global

queue].

Table 2 shows the correspondence between states (A_GSi

and S_GSj) in both synchronous and asynchronous traces

shown previously on Figs. 7 and 8. It also shows the evolu-

tions of the global FIFO queue for the asynchronous system

where we notice that message b appears before d while the

CP requires the reverse order. Moreover, this table also shows

that the trace of synchronous states (S_GS states of the right

column from top to bottom) does not respect the correct syn-

chronous trace depicted in Fig. 7. The states in S_GS3∗ and

The CP presented in Example 1 illustrates a realisable CP 
where both synchronous and asynchronous systems are syn-

chronisable. The traces on Figs. 3 and 4 are equivalent 
considering the order of sending messages. More generally, 
all traces that can be generated from synchronous and asyn-

chronous systems can be shown as equivalent for that CP. 
We develop below another example which illustrates a non-

realisable conversation protocol.

Example 2 (A non-realisable conversation protocol (CP)) 
Figure 5 depicts a non-realisable conversation protocol where 
S1 and S3 can send messages in the second state.

Example 2 (Continued) (Projected Peers of the CP) Figure 6 
describes the LT S corresponding to the behaviours resulting 
from projection of the CP presented on Fig. 5. This projec-

tion shows that , when S1 sends message a! at initial state, 
both S1 and S3 peers can send messages, i.e. either d! at S1 
intermediate state or b! at S3 initial state. However, on Fig. 5, 
we observe that these sendings of messages are not allowed 
due to the choice that must be taken between both sending 
actions b! and d! at the second state on Fig. 5. In the case 
if d! actions can be fired, the CP specification requires that 
those actions must be sent before firing any b! action.

When two peers are involved in parallel (the sendings is 
possible if only one peer is involved).

Old The CP specifies that d! messages must be sent before 
sending any b! message.

So, the messages sending order of the projection differs 
from the messages sending order of the CP. The synchronis-



Table 2 Correspondence between A_GS, S_GS and queue in the

traces of Figs. 7 and 8

A_GS Global queue S_GS

A_GS0 ∅ S_GS0

A_GS1 a S_GS0

A_GS2 ∅ S_GS1

A_GS3 b S_GS1

A_GS4 d b S_GS1

A_GS5 d S_GS3∗

A_GS6 ∅ S_GS2∗

A_GS7 c S_GS3

A_GS8 ∅ S_GS4

S_GS2∗ do not appear in the right order of exchanged mes-

sages and must not correspond to any asynchronous state

A_GS of the asynchronous trace. Hence, trace equivalence

is not preserved.

3 Case study

To illustrate our work, we use an example (see Fig. 9) bor-

rowed from [20]. The system involves four peers: a client

(cl), a Web interface (int), a software application (appli),

and a database (db). We consider a CP example (cf. upper-

side of Fig. 9) representing the designer expectation to be

respected by composed peers. Each transition triple (s, m, t)

describes the exchange of a message m between source and

destination peers s and t , respectively. The client logs on

via (connect) interaction between the client and the inter-

face. It is followed by setting up the application triggered by

the interface (setup). Then, the client may access and use

the application zero or many times via access interaction.

Finally, the client logs out from the interface (logout) and

the application stores relevant log information in the database

(log). The lower-side of Fig. 9 shows one possible imple-

mentation for the peer behaviour, i.e. cl, int, appli, and db

corresponding to CP. Each transition is labelled either by a

send (m!) or receive (m?) of a message m.

Although the peers realise CP considering synchronous

communication, realisability does not hold if they commu-

nicate asynchronously through FIFO buffers. Here, synchro-

nous communication returns the sequence of messages con−

nect , setup, access, whereas asynchronous communication

may give rise to the sequence connect !, access!, setup!, . . . .

Since, the sequence connect , access, . . . is not allowed by

CP, we conclude that the peers are not a correct implemen-

tation (realisation) of CP.

As a consequence, more constraints on message ordering

are required to realise CPs correctly. In order to get a real-

cl,connect,int int,setup,appli

cl,access,appli

cl,logout,intappli,log,db

CP (Choreography)

cl appli

int db

connect!

access!

logout! setup?

access?

log!

log?
connect? setup!

logout?

Fig. 9 Interacting Peers: global (CP) and local views (projections)

isable implementation in an asynchronous and distributed

setting, the approach given in [20] proposes a mediation-

based solution. Every peer is augmented by a monitor

which controls the conversation and ensures the coordina-

tion between the peers to meet the initial conversation model.

The monitor delays the sendings and thus the receptions so

as correct message sequencing is obtained. The monitors are

computed iteratively to incrementally add a new synchro-

nisation message each time the realisability check fails, i.e.

using returned counter-example.

Figure 10 shows the results of two main steps of computing

the monitors which are themselves peers added to the system.

Guided by realizability counter-example analysis, the first

step consists in performing many iterations to extend CP with

a synchronisation message in each iteration. The iteration

process ends up when the CP becomes realisable, e.g. the

upper side of Fig. 10 shows the CP extended with the first

synchronisation message. Then, the second step consists in

projecting CP into peers and their monitors2. For illustration,

the bottom side of Fig. 10 shows the monitor of int peer

obtained by projection and which ensures CP realisability.

The upper part of Fig. 10 shows an intermediate step in

computing the monitor for the int peer displayed on the bot-

tom part of the same figure.

2 The projection algorithm is given in [20].



, ,

, ,

,
,

, ,, ,

, ,

( , ) ( , , )
( , ) ( , , )

( , , )
< >

Fig. 11 The structure of an Event-B development

Moreover, a Machine can see one or several Contexts.

A Context is defined by a set of clauses (left side of Fig. 
11) as follows:

• CONTEXT represents the name of the component that

should be unique in a model.

• EXTENDS declares the Context(s) extended by the

described Context.

• SETS describes a set of abstract and enumerated types.

• CONSTANTS represents the constants used by a model.

• AXIOMS describes, in first-order logic expressions, the

properties of the elements defined in the CONSTANTS

and SETS clauses. Types and constraints are described in

this clause as well.

• THEOREMS are logical expressions that can be deduced

from the axioms.

Similarly to Contexts, Machines are defined by a set of

clauses (Right side of Fig. 11):

• MACHINE represents the unique name of the component

in an event-B model.

• REFINES declares the Machine refined by the described

Machine.

• SEES declares the list of Contexts imported by the

described Machine.

• VARIABLES represents the state variables of the model.

Refinement may introduce new variables in order to enrich

the described system.

• INVARIANTS describes, using first-order logic expres-

sions, the properties of the variables defined in the VARI-

ABLES clause. Typing information, functional and safety

properties are usually described in this clause. These prop-

erties shall remain true in the whole model. Invariants need

to be preserved by events. It also expresses the gluing

invariant required by each refinement.

• THEOREMS defines a set of logical expressions that can

be deduced from the invariants.

• VARIANT introduces a natural number or finite set that the

“convergent” events must strictly make smaller at every

execution.

Fig. 10 Extended CP (upper side), and Monitor of int Peer (bottom 
side)

With the computing of the monitor for the int peer, the 
authors show that several synchronisation messages shall be 
added when communications violating realisability are 
iden-tified during equivalence checking.

An iterative approach allowing a designer to discover the 
synchronisation messages to add is proposed. This approach 
may require the modification of the conversation proto-col. 
This iterative process ends when the realisability with 
asynchronous communication is reached. As a 
consequence, equivalence has to be checked whenever 
synchronisation is added.

4 Event-B: a correct-by-construction method

The Event-B method [2] is a recent evolution of the B 
method [1]. This method is based on the notions of pre-

conditions and post-conditions of Hoare [22], the weakest 
pre-condition of Dijkstra [17] and the substitution calculus 
[1]. It is a formal method based on mathematical 
foundations: first-order logic and set theory.

4.1 Event-B model

An Event-B model is characterised by a set of variables, 
defined in the VARIABLES clause that evolve thanks to 
events defined in the EVENTS clause. It encodes a state-
transitions system where the variables represent the state 
and the events represent the transitions from one state to 
another. An Event-Bmodel consists of components of two 
kinds : Machines and Contexts. The Machines contain the 
dynamic parts (states and transitions) of a model whereas 
the Con-texts contain the static parts (axiomatisation and 
theories) of a model. AMachine can be refined by another 
one, and a context can be extended by another one. 
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Fig. 13 The three kinds of actions for defining an event

• EVENTS defines a list of events (transitions) that can

occur in a given model. Each event is characterised by

its guard and is described by a set of actions (substitu-

tions). Each Machine must contain the “Initialisation”

event. The events occurring in an Event-B model affect

the state described in VARIABLES clause. An event con-

sists of the following clauses (Fig. 12):

– Refines declares a list of events refined by the

described event.

– Any lists a set of parameters of the event.

– Where expresses a set of guards for the event. An

event can be fired when its guard becomes to true. If

several guards of events become true, only a single

event is fired with a non-deterministic choice.

– Then contains a set of actions of the event that are

used to modify variables.

Event-B offers three kinds of actions that can be deter-

ministic or non-deterministic (Fig. 13). For the first case, the

deterministic action is represented by the “assignment” oper-

ator := that modifies the value of a variable. This operator is

illustrated by the action (1). The non-deterministic action (2)

represents the “before-after” operator (also named before–

after predicate) acting on a set of variables whose effect

is represented by a predicate, expressing the relationship

between the contents of variables before and after triggering

the action. Finally, action (3) represents the non-deterministic

choice operator, acting on a variable, by modifying its content

with an undetermined value in a set of values.

The Rodin3 platform [3,33] developed in the context of

the Rodin project provides a set of tools to support Event-

Bdevelopment.

4.2 Proof obligation rules

Proof obligations (PO) are associated with any Event-

B model. They are automatically generated. The proof

obligation generator plugin in the Rodin platform [3,33]

generates them. These POs need to be proved to ensure the

3 http://www.event-b.org/.

correctness of developments and refinements. The obtained

PO can be proved automatically or interactively using the

prover plugin in the Rodin platform.

The rules for generating proof obligations follow the sub-

stitution calculus [1,2] close to the weakest precondition

calculus [17]. In order to define some proof obligation rules,

we use the notations defined in Figs. 11 and 12 where s

denotes the sets, c the constants, and v denotes the variables

of the Machine. Seen axioms are denoted by A(s, c) and theo-

rems by T (s, c), whereas invariants are denoted by I (s, c, v)

and local theorems by T (s, c, v). For an event evt , the guard

is denoted by G(s, c, v, x) and the action is denoted by the

before–after predicate B A(s, c, v, x, v′) (the action (2) of

Fig. 13).

Definition 8 (The theorem proof obligation rule) This rule

ensures that a proposed context or machine theorem is indeed

correct.

A(s, c) ⇒ T (s, c)

A(s, c) ∧ I (s, c, v) ⇒ T (s, c, v)

Definition 9 (Invariant preservation proof obligation rule)

This rule ensures that each invariant in a machine is preserved

by each event.

A(s, c) ∧ I (s, c, v) ∧ G(s, c, v, x) ∧ B A(s, c, v, x, v′)

⇒ I (s, c, v′)

Definition 10 (Feasibility proof obligation rule) The pur-

pose of this proof obligation is to ensure that a non-

deterministic action is feasible.

A(s, c) ∧ I (s, c, v) ∧ G(s, c, v, x)

⇒ ∃v′.B A(s, c, v, x, v′)

Definition 11 (The numeric variant proof obligation rule)

This rule ensures that under the guards of each convergent

or anticipated event, a proposed numeric variant is indeed a

natural number.

A(s, c) ∧ I (s, c, v) ∧ G(s, c, v, x) ⇒ V (s, c, v) ∈ N

Definition 12 (The variant proof obligation rule) This rule

ensures that each event decreases the proposed numeric vari-

ant.

A(s, c) ∧ I (s, c, v) ∧ G(s, c, v, x) ∧ B A(s, c, v, x, v′)

⇒ V (s, c, v′) < V (s, c, v)

There are other rules for generating proof obligations to

prove the correctness of refinement. These rules are given

in [2].



order as required by the CP. Particularly, this iterative com-

putation ends up once the final system composed by peers

and their respective monitors are checked to be equivalent to

its CP. This approach is implemented using model checking

techniques.

Our proposal is different since it considers a priori

approach based on a correct-by-construction development,

using Event-B method. It relies on three pillars: (i) given a CP,

peer projections are correct by construction. Refinement guar-

antees that the resulting peers a priori realise the CP. There is

no need to augment the system by monitors; (ii) then, our pro-

jection obtained by refinement preserves relevant invariants

(and particularly gluing invariants) that carry the conditions

to preserve realisability in the asynchronous communication;

(iii) last, based on proof-based techniques, we are able to

handle arbitrary sets and values, i.e. any number of peers and

exchanged messages, ensuring thus scalability.

We implemented our solution on the Rodin platform [3]

which supports Event-B modelling and reasoning. Finally,

we applied our proposal to the case study used in [20]. The

model checking of such a case showed that this is not realis-

able due to violation of messaging order in the asynchronous

system w.r.t. to its CP. In [20], the authors computed a set

of monitors to enforce system realisability. We show in the

following sections how our solution is applied to the same

case study where realisability is enforced by refinement with

no need for explicit monitors.4

5.1 The Event-B contexts

The different resources needed to define our Event-B models

are specified in a context which is referenced via SEES clause

in these models. Notice that a context can be extended with

additional elements.

As shown in Sect. 4.2, the proved theorems, together

with the sets, constants and axioms of a context are used

as hypotheses to prove the proof obligations of the machine

and its refinements.

Table 3 gives an excerpt of the LT S_C O N T E XT . This

context formalises the concepts together with their properties

needed to describe the different LTSs dealt with in the models

developed in next sections:

• STATES, MESSAGES and SET_LTS are deferred sets

representing states, messages and LTSs. These sets are

defined at abstract level. Their extension is given for each

particular case. An example of such set extensions for the

considered case study is given in Table 5.

4 The detailed Event-B models can be downloaded from http://yamine.

perso.enseeiht.fr/RealisabilityEventBModels.pdf.

4.3 Semantics of Event-B models

The new aspect of the Event-B method [2], in comparison 
with classical B [1], is related to the semantics. Indeed, the 
events of a model are atomic events of a state-transition 
system. The semantics of an Event-Bmodel is trace-based 
semantics with interleaving. A system is characterised by 
the set of licit traces corresponding to the fired events of 
the model which respect the described properties. The traces 
define a sequence of states that may be observed by proper-

ties. All the properties will be expressed on these traces.

4.4 Refinement of Event-B models

The refinement operation [4] offered by Event-B enables 
stepwise model development. A transition system is refined 
into another transition system with more and more design 
decisions while moving from an abstract level to a less 
abstract one. A refined Machine is defined by adding new 
events, new state variables and a gluing invariant. Each event 
of the abstract model is refined in the concrete model by 
adding new information expressing how the new set of vari-

ables and the new events evolve. All the new events appearing 
in the refinement refine the skip event of the refined Machine. 
Refinement preserves the proved properties and, therefore, it 
is not necessary to prove them again in the refined transi-

tion system, usually more complex. The preservation of the 
properties results from the proof of the gluing invariant in 
the refined machine.

Observe that different refinements may refine a given 
abstract machine. Each refinement machine corresponds to a 
possible behaviour, implementation or concretisation of the 
abstract machine. Thus, several candidate refinements are 
offered for a given abstract machine. This observation will 
be used next to characterise the set of correct web services 
compositions that behaves as described by an abstract web 
service composition.

The Event-Bmethod proved its capability to represent 
event-based systems like railway systems, embedded sys-

tems or web services. Moreover, complex systems can be 
gradually built in an incremental manner by preserving the 
initial properties (invariant preservation).

5 Overview of our refinement-based realisability

The approach developed in [20] enforces choreography real-

isability using counter-example guided analysis. However, 
this is an a posteriori method since equivalence between 
the distributed system and its CP is checked once the pro-

jection is performed. Realisability enforcement consists in 
iterative computation of distributed monitors which ensure 
that peers communication do respect the same messaging



Table 3 An excerpt of the LTS_CONTEXT for defining peers and their

properties

• The ACTIONS set contains the constant actions {Send,

Receive, Internal } used for the labels of LTSs transitions.

Internal stands for the τ action.

• The LTS_STATES is a relation associating with each LTS,

its set of states. The notation lts �→ s ∈ LTS_STATES

means that s is state of the LTS lts. This relation is used

in next sections to model the synchronous system S_GS

and asynchronous system A_GS global states.

• Labels of LTS are defined by the LABEL set. We note

(a �→ m �→ lts) ∈ LABEL to describe a label composed

of an action a, a message m and a LTS lts. They are used

to label the transitions of the transition relation.

• The TRANSITIONS ∈ (STATES × LABEL) �→ STATES

partial function models the transition relation. It is

defined for both synchronous and asynchronous systems.

It takes a state and a label as parameters and returns a

state. For a label l of the form a �→ m �→ lts, the term

s �→ l �→ s ′ denotes the transition from state s to state

s′ with label l (s and s′ being states of the LTS lts of the

label l).

• The S_Next_States and A_Next_States are two par-

tial functions P(TRANSITIONS) × LTS_STATES �→

LTS_STA TES defined for both synchronous and asyn-

chronous systems. These functions take a transition and a

global state as parameters and return the next global state.

For example, the term S_Next_States({tr} �→ gs))

returns the next global state gs′ ∈ LTS_STATES.

5.2 The refinement strategy

We present in this section our refinement-based method for

enforcing CP realisability. Our work applies for all non-faulty

choreographies (an example of a non-faulty choreography

is given by Examples 1 and 2 where realisability can be

enforced) meaning that their correspondent specifications do

not present design errors. For instance, choreography speci-

fications which involve divergent choices are considered as

faulty [35]. Realisability cannot be enforced in that case, as it

is impossible to control divergent choices in a distributed sys-

tem without changing the local behaviour of the peers. Faulty

choreographies can be identified beforehand by detecting

non-confluent diamonds of interactions in the conversation

protocol using the executable temporal logic (XTL) [26].

We first discard faulty choreographies5 using the axioms

of the LTS_CONTEXT context which characterise only

choreographies that fulfil the realisability property 3. Our

realisability solution is then developed following several

steps. First, the CP is described by an LTS encoded into an

Event-B machine as an initial specification.

5 Detection of faulty choreographies is considered out of scope of this

article.



Then a stepwise approach is used. We consider a CP

described by a labelled transition system (LTS) as the ini-

tial specification. Then, the LTS is refined into a distributed

system that realises CP. The first refinement defines a projec-

tion onto a set of peers. It produces a synchronous distributed

system as a first realisation. At this level, the interaction is

synchronous w.r.t. Definition 4.

A second refinement results in an asynchronous realisa-

tion that overcomes message order limitation, i.e. the order

problem identified in Sect. 3. This refinement strengthens

the conditions and the invariants through a causal order of

messages fitting with the realisability conditions as given in

Property 3 defined in Sect. 2.2 (see Sect. 6.3 for order preser-

vation).

Notice that at each refinement step, thanks to invariant

preservation, we also prove that the sequence of exchanged

messages is preserved from one refinement to another.

The Event-B machines presented in the remainder of

the article follow the same method to encode a transition

system. Starting from the conversation, four main events

compose the communication: initialisation of the communi-

cation, progress, internal(τ ) and reset (see Table 4). As stated

before, at the specification level, a first machine describes the

CP.

The first refinement is a projection on peers for a synchro-

nous communication.

A second refinement returns the asynchronous communi-

cation that realises the initial conversation defined at the top

specification machine level.

To show how the different models work, the case study of

Sect. 3 illustrates each refinement.

6 Realising conversation protocols

In the following, we give an outline of the formal develop-

ment leading from a CP definition to a realisable projection.

The Event-B models for the application to the case study

can be downloaded from http://yamine.perso.enseeiht.fr/

RealisabilityEventBModels.pdf.

6.1 Conversation protocols

An initial Event-B model is defined according to Definition 2.

This model is characterised by two model variables:

(1) Conversation that records the sequence of (indexed by

natural numbers) messages exchanged in the conversa-

tion and

(2) Index that records the message exchange order.

This model also contains four events: ini tialisation,

I nteract_ Event , I nternal_Event and Reset_Event

Table 4 Definition of the Interact_Event Event for Conversation

Progress

(See Table 4). ini t− ialisation sets the conversation to the

empty set. The I nteract_ Event represents the progress

due to the send and receive actions. It is triggered when

two guards grd1 and grd2 formalising the conditions of

Definition 2 are fulfilled. The Conversation and I ndex

variables are updated accordingly (act1 and act2). In order

to have a complete description, I nternal_Event events

(τ -transitions) are present throughout the whole Event-B

models. Finally, the Reset_Event event resets the conversa-

tion.

Example 3 Table 5 presents an excerpt of the LTS_

CONTEXT_I nstantiation Event-B context which

encodes the CP LTS depicted on Fig. 9.

LTS_CONTEXT context defining SET_LTS, STATES, MESS−

AGES, TRANSITIONS, etc. is extended by LTS_CONTEXT_

I nstantiation. Other contexts for the case study are defined

for further refinements. Figure 14 gives a graphical represen-

tation of an example of a valid trace with indexed transitions.

Remark Note that the notation for the transitions of Fig.

14 has been enriched by the index variable of the Event-

B models (· · · �→ index) used to register the global order of

messaging. This index is used in the next refinement to build

a global queue.
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Table 5 An excerpt of the Event-B context encoding the CP of the case

study

CONTEXT

LTS_CONTEXT_Instanciation

EXTENDS

LTS_CONTEXT

…

Peers: parti tion(SET _LT S,

{cl}, {appli}, {int}, {db})

States: parti tion(ST AT E S,

{cl_state1}, {cl_state2},

{appli_state1}, {appli_state2},

{int_state1}, {int_state2},

{int_state3}, {db_state1})

Conversation alphabet: parti tion(M E SS AG E S,

{connect}, {access},

{logout}, {log}, {setup})

Exchanged messages : E XC H AN G E D_M E SS AG E S

= {cl �→ connect, cl �→ access,

cl �→ logout, appli �→ setup,

appli �→ access, appli �→ log,

int �→ connect, int �→ setup,

int �→ logout, db �→ log}

Process states: LT S_ST AT E S = {

cl �→ cl_state1, cl �→ cl_state2,

appli �→ appli_state1,

appli �→ appli_state2,

int �→ int_state1, int �→ int_state2,

int �→ int_state3, db �→ db_state1}

…

END

Fig. 14 Abstract level of interaction

6.2 Synchronous realisation

Our first refinement produces the synchronous projection on

peers LTSs introduced in Definition 3. The transition s
m
−→ s′

in CP is split into a pair of actions (Send, Receive) of the form

(si
m!
−→ s′

i , s j
m?
−→ s′

j ) of a source state i and a destination

state j . The communication semantics considered here is

synchronous where the peers composition results in a system

Table 6 Invariants of the synchronous model

INVARIANTS

inv1: S_GS ∈ SET _LT S ↔ ST AT E S

inv2: S_trace ∈ T R AN SI T I O N S ↔ N

inv3: S_index ∈ N

inv4: S_index = I ndex

as introduced in Definition 4. Therefore, from the results of

[10,20], we get that the projected system is well-formed.

Regarding the refined model (excerpts are shown in Tables

6, 7), some new variables are introduced. Namely

• S_GS describes the global state of synchronous system

• S_trace holds the synchronous sequences of interactions

(synchronisations) split into Send and Receive actions

(corresponding to S_Send_T rans and S_Receive_

T rans transitions) in the projected peers. For each syn-

chronised interaction, this is referred to by S_msg in

Conversation

• Lastly, S_index stands for the size of S_trace.

Moreover, the Event-B event Send_Receive_Event int-

roduced in the refined model refines the I nteract_Event . It

encodes the projection and includes

• four parameters, namely S_Send_Trans and S_Receive_

Trans transitions, the message (S_msg) which consists in

the synchronisation over both send and receive actions,

and peers (source S_lts_s and destination S_lts_d)

involved in the interaction.

• Two guards grd1 and grd2 ensure that the Send and

Receive actions can be synchronised.

• When the guards are satisfied, act1 updates the Conver−

sation, act2 increases the index, act3 sets the new

synchronous global state after consuming the message

msg and act4 updates the synchronous conversation

sequence.

According to Definition 4, the witnesses (With clause for

event feasibility) ensure the correct projection. These wit-

nesses correspond to correct expressions for the parameters

of the I nteract_Event event of the refined model.

6.2.1 Invariants for synchronous projection

The invariants defined at the synchronous projection level

(see Table 6) consist of the definition of S_GS and S_trace

variables and their properties. Invariant inv4 stands for a glu-

ing invariant that ensures that the projected behaviours are

the same ones as described in the original CP. This gluing



Table 7 Send_Receive_Event event of the Synchronous Model

S GS0 S GS1

S GS2

S GS3S GS4

S GS5

((cl,access!,appli),(cl,access?,appli)) → 2

((cl, logout!, int),(int, logout?,cl)) → 3

((appli, log!,db),(db, log?,appli)) → 4

((int,setup!,appli),(appli,setup?, int)) → 1

((cl,connect!, int),(int,connect?,cl)) → 0

Fig. 15 A valid trace of the synchronous model

Receive and Send actions, respectively, are described in

the Send_Receive_ Event event by S_Send_T rans and

S_Receive_T rans transitions.

The guards grd1 and grd2 require that there are source

and destination LTSs (S_ltss, S_ltsd ) synchronising on a

message and that synchronisation exists in the transitions set

TRANSITIONS. Then, guards grd3 and grd4 express that a

pair of S_Send_T rans and S_Receive_T rans transitions

can be synchronised from the current S_GS state. The effect

of the Send_Receive_Event event is to switch the system

to the next state (act3), adding the pairs of actions to the

S_trace (act4) and gluing with the variables of the conver-

sation level using witnesses (With clause).

Example 4 Going back to our case study, we show on Fig. 15

the trace resulting from the synchronous projection and corre-

sponding to the example of Fig. 14. Here, pairs of consecutive

send and receive actions illustrate the synchronous transition.

This figure shows also the evolution of the index variable

by applying “act4” in Table 7. It is worth noticing that we

simplify the notation on this figure for readability purposes.

Remark Here again, the notation for the transitions of Fig. 15

has been enriched by the S_index variable of the Event-B

models (· · · �→ S_index) used to record the global order of

messaging at the synchronous level. S_index is linked to the

I ndex variable of the abstraction by equality with the gluing

invariant inv4 : S_index = I ndex of Table 6. It preserves

the right ordering of messages when building a global queue.

6.3 Asynchronous realisation

The asynchronous realisation introduces FIFO queues to sup-

port asynchronous behaviours. According to Definition 5,

the second refinement produces the final model of asynchro-

nous realisation (see Tables 8, 9, 10, 11). New variables are

introduced, namely A_GS for the global state in the asyn-

chronous system; queue is a FIFO queue of indexed (by the

sending order) messages corresponding to sent messages not

yet consumed; natural numbers f ront and back that encode

the indexes of messages available in queue; and Queue_si ze

corresponding to an arbitrary (unbounded) queue size. The

Boolean variable I nteraction_Completed is equal to 0

invariant ensures that the modification of index variable in 
the I nteract_Event of the abstract machine is preserved 
in the refinement. In other terms, S_index records, at the 
refined machine level, the same index as the index variable 
of the conversation described in Table 4.

6.2.2 Events of the synchronous projection

The Send_Receive_Event event (see Table 7) refines the 
I nter act_Event , it encodes the synchronous communi-

cation as described in Definition 4. The msg? and msg!



Table 8 Invariants of the asynchronous model

INVARIANTS

inv1: queue ⊆ SET _LT S × M E SS AG E S × N

inv2: back ∈ N

inv3: f ront ∈ N

inv4: A_GS ∈ SET _LT S ↔ ST AT E S

inv5: A_Send_T rans ∈ T R AN SI T I O N S

inv6: A_Receive_T rans ∈ T R AN SI T I O N S

inv7: A_lts_s ∈ SET _LT S

inv8: A_lts_d ∈ SET _LT S

inv9: A_msg ∈ M E SS AG E S

inv10: I nteraction_Completed ∈ {0, 1}

inv11: Queue_Size ∈ N1

inv12: queue = ∅ ⇒ f ront = back

gluing_1 : I nteraction_Completed = 0 ⇒ f ront = S_index

gluing_2 : I nteraction_Completed = 1 ⇒ f ront = S_index + 1

gluing_3 : queue = ∅∧

I nteraction_Completed = 0

⇒

A_GS = S_GS

gluing_4 : queue = ∅∧

I nteraction_Completed = 1

⇒

A_GS = S_Next_States(

{A_Receive_T rans} �→

(S_Next_States({A_Send_T rans} �→ S_GS))

)

. . .

when a pair of send and receive of a given message is syn-

chronised.

6.3.1 Invariants for asynchronous realisation

The invariant is made of two parts (see an excerpt in Table 8).

One relates to the definitions of the asynchronous commu-

nications (inv1−12) while the second is devoted to gluing

the synchronous model variables with the asynchronous

ones (gluing1−4). It is worth noticing that these invariants

describe Properties 1 and 2 defined in Sect. 2.2.

The gluing invariants are fundamental to preserve the well-

formedness as well as the equivalence between asynchro-

nous projection and CP, thus ensuring CP realisability. For

instance, gluing_1 and gluing_2 connect the S_index of the

synchronous projection with the f ront and back indexes for

each send–receive pair of transitions. The global asynchro-

nous state A_GS of the asynchronous realisation and the

S_GS global state of the synchronous projection are equiv-

alent when the queue is empty by gluing_3. When a send–

receive pair is synchronised (I nteraction_Completed) and

Table 9 Send_Event Event of the Asynchronous Model

the queue is empty, gluing_4 says that the next global syn-

chronous state S_GS will be the current global asynchronous

state A_GS.

Remark Note that first, the two invariants gluing_3 and

gluing_4 guarantee the well-formedness property since the

defined behaviour of synchronous projection is preserved in

the asynchronous projection. Second, the gluing invariants 1,

2, 3 and 4 ensure the synchronisability condition expressed in

Property 1. Indeed, they define the relation R(r, s) that links

any state r in the synchronous projection with a state s of the

asynchronous realisation. Formally, the invariant describing

equality between synchronous and asynchronous states cor-

responds to equivalence checking.

6.3.2 Events for asynchronous realisation

Following the refinement strategy for asynchronous realisa-

tion, the Send_Event and Receive_Event Event-B events

are introduced. According to Definition 5, they make an

explicit separation between the sending and receiving actions

(allowing an interleaving satisfying the causal order defined

in the refined machines).

The Send_Event event (see Table 9) sets up the next asyn-

chronous global state A_GS in act1, enqueues a message in

the queue, and updates the back index (act2). The guards



Table 10 Receive_Event Event of the Synchronous Model

allow this event to be triggered several times before a receive

event is triggered.

The Receive_Event event (see Table 10) consumes

(act8) the message from queue according to the sending

order ( f ront message is consumed). The event is triggered

when the queue is not empty (grd1), the message is avail-

able in queue of the considered peer (grd2 and grd36) and

the corresponding receiving state is in the next asynchronous

global state (grd4). Guards grd10, grd11 and grd12 guar-

6 The operator ⊳ stands for domain restriction.

Table 11 Refined Send_Receive_Event Event of the asynchronous

model

antee that the receiving action lead to a state equivalent to a

state of the synchronous projection.

Finally, the Send_Receive_Event event (see Table 11)

refines the previous event defined in the refined machine

of the synchronous projection. It gives witnesses (With

clause) to glue the synchronous and asynchronous transi-

tions, messages and peers. Actions act1 and act2 update,

respectively, the conversation and the index. The next syn-

chronous state (act3) is refined using the asynchronous

A_Send_T rans and A_Receive_ T rans transitions. The

synchronous trace is updated in act4 and 0 is assigned to

I nterac tion_Completed to allow other receptions (act5).

Regarding the realisability property, the sequencing of

the events Receive_Event and Send_Receive_Event is

important. Indeed, Send_Receive_Event delays the next

conversation transition until the received messages are con-

sumed from queue and the action act9 of Receive event

which sets up I nteraction_Completed to 1 is fundamen-

tal to avoid wrong realisation similar to the one identi-

fied on the case study of Sect. 3. After act9, the event

Send_receive_Event is triggered permitting progress of the

conversation respecting the order of sent messages.

It is worth noticing that

• the refined Send_Receive_ Event event preserves all the

properties issued from the previous refinement (synchro-



((cl,∅),connect!,(int,connect))

((int,∅),connect?,(cl,∅)) ((int,∅),setup!,(appli,setup))

((appli,access),setup?,(int,∅))

((cl,∅),access!,(appli,access setup))

((appli,∅),access?,(cl,∅))

((cl,∅), logout!,(int, logout))

((int,∅), logout?,(cl,∅))

((appli,∅), log!,(db, log))

((db,∅), log?,(appli,∅))

A GS0

A A1SG A2SG GS3

A GS4

A GS5

A GS6A GS7A GS8

A GS9

A GS10

Fig. 16 Valid trace in the asynchronous realisation conform to the one

of Fig. 15

nous system) and the specification (conversation proto-

col),

• the I ndex and S_index for messaging order, the synchro-

nous trace S_trace, the conversation Conversation vari-

ables are preserved in the last refinement. The invariants

ensure that each time a Send_Receive_Event is trig-

gered, then the asynchronous and the synchronous global

states are equivalent.

Remark It is straightforward to build a local queue for each

peer from the global queue. The ordering of messages in

the global queue is provided by the S_index natural num-

ber associated with each message. Indeed, each element of

the queue is represented as lts �→ m �→ n to mean that the

queue of the peer lts contains a message m indexed by the

natural number n. Each local queue associated with each peer

is obtained by projection of the global queue for each consid-

ered peer. Enqueueing and dequeueing the global queue can

be implemented on local queues using classical distributed

election algorithm (for example a token ring algorithm).

Example 5 Figure 16 shows a trace of the asynchronous real-

isation which refines the synchronous projection (shown on

Fig. 15).

Table 12 shows the correspondence between the asynchro-

nous trace and the messaging order recorded by the S_index

((cl,∅),connect!,(int,connect))

((cl,∅),access!,(appli,access)) ((int,∅),connect?,(cl,∅))

((int,∅),setup!,(appli,setup access))

A GS0

A A1SG A2SG GS3

A GS4

???

Fig. 17 A wrong trace in the asynchronous realisation

column. The ordering defined at the synchronous projection

is preserved thanks to the queue variable (global queue

column in Table 12). The S_index column shows that the

value of this index changes each time a received message is

dequeued, i.e. a Send_Receive_Event is triggered.

6.4 A counter example

The trace of Fig. 17, instead, is not a correct sequence of the

obtained asynchronous realisation.

When the trace (cl, connect !, int) �→ 0, (cl, access!,

appli) �→ 1, (cl, connect?, int) �→ 2, (int, setup!, appli)

�→ 3 reaches A_GS4, the guard of the next (Receive) event

to be triggered is not true. Indeed, (cl, setup?, appli) �→ 1

is required when the queue set contains a setup mes-

sage with an index 2. Thus, it cannot satisfy the guard

grd2 of this Receive event, the next A_GS state is not

reached using action act1 of the same event, and finally

the Send_Receive_Event event is never triggered since

Receive_Event is never triggered. Therefore, S_GS2 is

never reached (See Table 13).

7 Learned lessons

7.1 Proof statistics

All the models presented above have been encoded within

the Rodin platform [3]. The main machine and the refine-

Table 12 Correspondence

between A_GS, S_GS and

queue for the trace of Figs. 15

and 16

A_GS Global queue S_GS S_index

A_GS0 ∅ S_GS0 0

A_GS1 {int �→ connect �→ 0} S_GS0 0

A_GS2 ∅ S_GS1 1

A_GS3 {appli �→ setup �→ 1 } S_GS1 1

A_GS4 {appli �→ access �→ 2, appli �→ setup �→ 1} S_GS1 1

A_GS5 {appli �→ access �→ 2} S_GS2 2

A_GS6 ∅ S_GS3 3

A_GS7 {int �→ logout �→ 3} S_GS3 3

A_GS8 {db �→ log �→ 4, int �→ logout �→ 3} S_GS3 3

A_GS9 {db �→ log �→ 4} S_GS4 4

A_GS10 ∅ S_GS5 4



Table 13 Correspondence

between A_GS, S_GS and

queue for the trace of Figs. 15

and 17

A_GS Global queue S_GS S_index

A_GS0 ∅ S_GS0 0

A_GS1 {int �→ connect �→ 0} S_GS0 0

A_GS2 {appli �→ access �→ 1, int �→ connect �→ 0} S_GS0 0

A_GS3 {appli �→ access �→ 1} S_GS1 1

A_GS4 {appli �→ setup �→ 2, appli �→ access �→ 1 } S_GS1 1

… … … …

Table 14 RODIN proofs’ statistics

Event-B model Proof

obligations

Automatic

proofs

Interactive

proofs

Abstract 6 6 0

Synchronous 17 13 4

Asynchronous 74 66 8

Total 97 85 12

dled by the developer on the RODIN platform as well. The

key-point related to scalability concerns the instantiation

of specific choreography cases of the models presented in

this article. Indeed, the development presented above is a

generic one, defined at a meta-level, where the realisabil-

ity and well-formedness properties of Sect. 2 act as meta-

theorems.

The use of the ANY generalised substitution shows that

the development considers any peers satisfying the guards

and the invariants expressed in the corresponding Event-B,

i.e. ANY peers that fulfil the guards and invariants can be

considered. To prove the correctness of this event, among

the proof obligations (as defined in Sect. 4.2), we need to

prove the event feasibility of proof obligation rule of Defin-

ition 10. This proof obligation states that all the events shall

be feasible. The feasibility of proof obligation expressed as

A(s, c) ∧ I (s, c, v) ∧ G(s, c, v, x) ⇒ ∃v′.B A(s, c, v, x, v′)

requires the proof of an existential first-order logic formula. It

is well known that one of the proof rules to give a demonstra-

tion of this kind of formula consists in providing an explicit

witness (a specific value or expression for the quantified vari-

ables v).

The witness can be produced by either automatic tools

like model checkers, or interactive provers with the assis-

tance of the developer (interactive proof). The first option

is fully automatic. The second option does not suffer from

state explosion. It can be set up when model checkers fail

to produce witnesses in case of state explosion problems or

infinite systems, but it requires interactive proof steps. In the

case of the Event-B method, the second option consists in

defining another model, which refines the one to be proved,

where each event with an ANY generalised substitution is

refined by an event where a witness is built by the devel-

oper for each parameter. The event refinement strategy is

shown in Table 15. Once the refinement is produced, the

model shall be proved using the same process as for classi-

cal Event-B models. The witnesses can be any set of peers

whatever is its cardinality and such that the peers in this

set may also be of any size, i.e. state and transition num-

ber.

In this article, two proof techniques, experimented in this

article, have been developed:

ment led to 97 proof obligations. We noticed that 85 were 
proved automatically and 12 needed few interactive proof 
steps. Table 14 gives the details of these results. The ProB 
model checker [11] has been used to instantiate the Event-

B models. All the models together with their instantiations 
can be downloaded from http://yamine.perso.enseeiht.fr/

RealisabilityEventBModels.pdf.

7.2 Model properties

The models developed in this article offer interesting results. 
First, the correct-by-construction approach overcomes the 
state explosion problem thanks to the definition of deferred 
sets and variables (for peers). Second, thanks to the refine-

ment relationship that preserves the properties established 
at the abstraction level, we have been able to guarantee the 
well-formedness property entailed from the refinement and 
to describe the relationship between synchronous and asyn-

chronous states that guarantees synchronisability. Finally, 
instantiation of the model on specific case studies has been 
checked by supplying witnesses for the sets, variables and 
constants that fulfil the conditions expressed in both Event-

B Machines and Contexts.

7.3 About scalability

The developments presented in this article are conducted 
within a proof- and refinement-based method. As shown 
in Table 14 all the proof obligations associated with the 
formal Event-B development presented in this article have 
been proved either within the automatic provers associated 
with the RODIN platform or using interactive proofs han-



Table 15 Proof-based instantiation

Event of the model Instantiation by a witness

Event evt � Event Ref _of _evt �

Refines evt

Any where

x grd1 : G(s, c, v, x)

Where With

grd1 : G(s, c, v, x) x = Witness For_x

Then Then

act1 : v : |B A(s, c, v, x, v′) act1 : v : |B A(s, c, v, x, v′)

End End

• The first one uses model checking with the ProB [11]

model checker. In this case, the model checker verifies

the instances (set partitions i.e. set extensions defining

conversation protocols and projection peers) similar to

the one of Table 5 given by the user to instantiate the

model.7 This approach has been followed for the case

study of Sect. 3 presented in this article as a validation

case.

• The second technique relies on a proof-based approach.

It is used if the model checker fails to verify the instance

given by the user. This instance corresponding to the

described system is given, in a refinement, as a witness

for all the parameters involved in a ANY Event-B substi-

tution. Note that this substitution produces an existential

proof obligation that shall be proved interactively using

the provided witness (the instance). Such an approach

defines another model which refines the one presented

in Sect. 6.3. It follows the refinement strategy shown in

Table 15. This approach has been followed in [9].

8 State-of-the-art and discussion

Determining whether a CP is realisable is an active research

area for which several solutions, e.g., [7,10,12,18,19,25,34],

have been advocated in the literature. These approaches con-

sider a CP as a formalism to describe, e.g. collaboration

diagrams [12], BPMN 2.0 choreographies [31], Singu-

larity channel Contracts [35], Message Sequence Charts

(MSC) [7], Erlang contracts [8], etc.

In the following, we focus on related approaches which

propose solutions for realising CPs, i.e. computation of a

distributed system where the order of messages exchanged

among interacting peers is equal to what is specified in a

given realisable CP. Distributed peers are usually generated

7 The contexts giving the partitioning for the case study can be found

in http://yamine.perso.enseeiht.fr/RealisabilityEventBModels.pdf.

by projection of their behaviour from CP into their local spec-

ifications.

For example, in [13], the authors identify three principles

for global descriptions under which they define a sound and

complete end-point projection from a given choreography.

If these rules are respected, the distributed system obtained

by projection will behave exactly as specified in the chore-

ography. Realisability of BPMN2.0 choreographies follows

the same approach in [30]. In [32], the authors enable mod-

ification of choreography specifications by including two

operators, namely dominated choice and loop, into their lan-

guage.

During projection of these new operators, some commu-

nication messages are added to make the peers realise the

choreography specification. However, these solutions pre-

vent the designer from specifying what (s)he wants to and

complicate the design by enforcing the designer to define

explicit extra-constraints in the specification, e.g., by associ-

ating dominant roles with certain peers. In [15], the authors

propose a Petri Net-based formalism for choreographies and

algorithms to check realisability and local enforceability. A

choreography is locally enforceable if interacting peers are

able to satisfy a subset of the requirements of the chore-

ography. To ensure this, some message exchanges in the

distributed system are disabled.

In [34], the authors propose automated techniques to check

the realisability of collaboration diagrams for different com-

munication models. In case of non-realisability, messages are

added directly to the peers to enforce realisability. Collabo-

ration diagrams are much less expressive than conversation

protocols, as choices and loops cannot be specified, except for

repetition of the same interaction. The approach given in [20]

presents an iterative and incremental computation of distrib-

uted monitors to enforce CP realisability. Here, the peers

obtained by projection from a CP do not respect that CP inter-

action order. Hence, a monitor is computed for every peer

following a counter-example guided approach. Considering

communication over possibly unbounded FIFO buffers, this

work realises a subclass of communicating systems, called

synchronisable and well-formed. Under both conditions, CP

realisability is decidable [10].

A similar approach is proposed in [27] to automatically

enforce choreography realisability. The authors start from a

BPMN specification which they translate into a transition

system. Then, a set of coordination delegators is generated

to prevent any undesired behaviour, e.g. deadlock, among

services that can realise a choreography. The delegators are

computed based on a set of rules applied following chore-

ography analysis to detect all behaviour, e.g. concurrency

that might lead to realisability violation. To resolve that, the

delegators hold acknowledgement messages to enforce the

same message exchange order as in the choreography. Thus,

the distributed services behave exactly as described by their



and proof-based methods with Event-B have been set-up for

building correct services compositions expressed in business

process execution language (BPEL). We compute a distrib-

uted system from a correct-by-construction realisable CPs.

Following refinement steps, we ensure that the asynchronous

system computed from a CP is synchronisable and well-

formed.

By doing so, we avoid the iterative approach to compute

monitors, if necessary, as done in [20]. Based on refinement,

we also guarantee that distributed peers exchange messages

in same order as specified by their CP, and this is considering

unbounded FIFO buffers.

9 Conclusion and future work

In this article, we addressed CP realisability using refine-

ment and proof-based techniques using the Event-B method.8

A CP is a low-level formal model which can be computed

from other existing specification formalisms. In our work,

we described a CP using a transition system which speci-

fies the behaviours of all communicating peers, i.e., order of

message exchange from a global viewpoint.

Distributed peer behaviours are then obtained through a

first refinement step, by projection from a given CP, such that

their synchronous composition realises CP. We, then, refine

the distributed system into its asynchronous version where

every peer is augmented by possibly unbounded FIFO queue.

Based on refinement, we ensure that both systems are equiv-

alent so that the asynchronous composition realises its CP

specification. More precisely, two main Event-B refinements

describing a synchronous and an asynchronous realisation,

were necessary. The correctness of these refinements ensures

synchronisability and well-formedness which are a sufficient

and necessary condition for CP realisability. An illustration

was given using our case study.

Moreover, our approach proved scalable enabling us to

define and efficiently handle arbitrary number of interacting

peers specified in a CP with no restriction on buffers sizes.

Last, our solution can be applied to several real-world

applications such as service choreographies, singularity

channels contracts and Erlang contracts. More generally, this

can be of particular interest to implement in an efficient way

distributed but complex systems where communication holds

asynchronously with no restriction on buffer size.

As future work, we aim at addressing the CP realisabil-

ity problem in presence of divergent choices together with

multi-cast message exchanges. We also plan to study par-

tial realisability for dynamic choreographies at run-time and

hierarchical conversation protocols [36]. Finally, studying

8 The complete Event-B models developed for this work can

be downloaded from http://yamine.perso.enseeiht.fr/Realisability

EventBModels.pdf.

choreography. In this work, it is not clear whether the authors 
do handle asynchronously communicating systems.

Pistore et al. [24] propose five realisability relations 
depending on communication criteria that must be preserved 
by the distributed systems realising a choreography speci-

fication. For instance, to realise a given choreography, the 
peers obtained by projection from the specification must 
behave, through both internal actions and observable interac-

tions with other peers, in the same order as described by the 
choreography. Other criteria can be considered, e.g., for syn-

chronous realisability, two cases can be considered. When 
considering pairs of communicating peers running concur-

rently, first peers communication only preserve the order of 
observable interactions, or second they preserve a partial 
order of observable interactions. The buffer boundedness is 
a requirement for realisability checking. Unfortunately, to 
decide whether a system is buffer bounded is undecidable.

In [16], the authors use multi-party session types to 
describe CP for distributed systems communicating asyn-

chronously. The end-point projection and then realisability 
checking require the computation of an upper bound for 
buffers size. Here, unbounded buffers are left as an open 
issue and there is no solution for realisability enforcing. The 
work on session types [14] is also related to the realisability 
of conversation protocols and has been used as a formal basis 
for modelling choreography language [14]. The restrictions 
used in session types to guarantee that local implementations 
follow the global interaction protocol are similar to the suffi-

cient conditions for realisability given in [18] and they are not 
necessary conditions, i.e., there are realizable choreography 
specifications which fail the conditions given in these earlier 
results. In particular, both of these earlier approaches do not 
allow a protocol containing a state with an arbitrary initia-

tor [21], i.e., a state where more than one peer could send 
the next message and the protocol works fine for either case. 
Protocols which are of this type and are realisable appear in 
practice (for example, protocols where one of the peers can 
cancel the interaction at an arbitrary point) and cannot be 
shown to be realisable with these earlier approaches.

To sum up, the aforementioned approaches to enforce CP 
realisability can be split into groups. The first one requires 
that the CP does respect a set of constraints, the second group 
allows CP modification by adding needed synchronisation 
messages, while the third one equips the distributed system 
with monitors.

A common feature on which most existing work on 
CP realisability rely is model checking techniques. Model 
checking, due state explosion, has the limit of not being scal-

able. Therefore, to be checked efficiently, CP realisability 
can be handled only for a limited number of peers. Our 
approach relies on proof-based methodologies (Event-B); 
it overcomes this problem. It follows the same method as 
the one performed on orchestration [5,6] where refinement



adaptation and evolution aspects is one of the main exten-

sions of this work. This study can be dealt with at two levels:

i) a bottom-up approach to study the effect, on the CP, of

changes in the projected peers. These changes may result

from a degradation of the services offered by the peers; ii) a

top-down approach corresponding to CP evolution. Checking

the impact of such evolutions on realisability, synchronis-

ability, well-formedness properties and/or trace equivalence

remains an open challenge.
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