

Diversity and activities of fungal communities associated with decaying leaves in acidified headwater streams

<u>Clivot H.</u>^{1@}, Cornut J.^{2,3}, Gierlinski P.¹, Danger M.¹, Pagnout C.¹,

Poupin P.¹, Elger A.^{2,3}, Chauvet E.^{2,3} and Guérold F.¹

¹Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes; CNRS; Université Paul Verlaine; F-57070 Metz, France. ²Université de Toulouse; INP; UPS; EcoLab; F-31062 Toulouse, France. ³CNRS; EcoLab; F-31062 Toulouse, France.

[@]hugues.clivot@umail.univ-metz.fr

SAME12 Rostock 2011

Introduction

Acid depositions \rightarrow forested headwater streams in the Vosges Mountains (North-eastern France)

Heterotrophic ecosystem ← leaf-litter

Leaf-litter breakdown = key ecosystem process \rightarrow assessing functional alterations

Low pH and **elevated aluminium concentrations** \rightarrow reduce sporulating aquatic hyphomycete diversity

(Baudoin et al., 2008, Microbial Ecology)

→ impair leaf litter breakdown

(Dangles et al., 2004, Journal of Applied Ecology)

I. Would a study combining traditional and molecular methods confirm a loss of fungal diversity?

I. Methods

I. Water characteristics

Dissolved oxygen

Streams were classified along the Al gradient Dissolved 0₂ decreased in hyporheic zone

I. Fungal diversity

Species richness of sporulating aquatic hyphomycetes **decreased** along the aluminium gradient (Benthic > Hyporheic)

I. Fungal diversity

Total richness of sporulating aquatic hyphomycetes VS total number of fungal (rRNA 18S) ribotypes in PCR-DGGE during the 4experiment week in 5 along AI streams an gradient.

Species richness of sporulating aquatic hyphomycetes **decreased** along the Al gradient (Benthic > Hyporheic)

Fungal ribotype richness investigated by PCR-DGGE was comparatively higher and was **unaffected** by the AI gradient (Benthic ≈ Hyporheic)

I. Discussion

Molecular method

 \rightarrow traditional method underestimates fungal diversity

 \rightarrow aquatic hyphomycete species not in good conditions for reproductive activity under elevated aluminium concentrations?

Conidial identification

 \rightarrow Relevant method to assess environmental pollutions

Total richness of sporulating species:

- Correlated to total AI concentration (benthic *r*=-0.95, *p*=0.01; hyporheic *r*=-0.97, *p*=0.005)
- Lower in the hyporheic zone ← Oxygen concentration?

Low oxygen concentration inhibits sporulation (Medeiros et al., 2009, *Freshwater Biology*) and affects species richness of aquatic hyphomycetes (Rajashekhar & Kaveriappa, 2003, *Hydrobiologia*).

II. What shift(s) in microbial activities could explain reduced leaf litter breakdown?

II. Methods

Litter bag experiment in 6 streams along an AI gradient Nov 2009 \rightarrow Jan 2010

\bigtriangledown

6 sampling dates (4 replicate bags) 7, 13, 21, 28, 49 and 70 days

Mass loss

Potential Extracellular Enzyme Activities

N and P content

II.1. Water characteristics

Sites

II.1. Leaf litter breakdown

12

II.2. Lignocellulolytic enzyme activities

II.2. Phenol oxidase

II.2. Exocellulase

II.2. Hemicellulase

Important potential activities in acidified streams \rightarrow enzyme production not reduced

II.3. Microbial nutrient acquisition

II.3. Nitrogen uptake

II.3. Phosporus uptake

Potential extracellular enzyme activities

 \rightarrow Enzyme production was not reduced in acidified streams

Nutrient uptake

- \rightarrow N uptake unaltered
- \rightarrow Increasing enzymatic effort for P acquisiton
- \rightarrow P uptake reduced with increasing aluminium concentration

Aluminium affects

- \rightarrow Litter decomposition (*r*=-0.94, *p*=0.006)
- \rightarrow Phosphorus immobilized (*r*=-0.96, *p*=0.002)

Conclusion

Leaf breakdown not related to enzymatic effort

Enzymatic efficiency controlled by abiotic and biotic factors Microbial activity constrained by nutrient availability

Phosphorus limitation

P correlated to litter decomposition (*r*=0.97, *p*=0.001)

Impact on aquatic hyphomycete diversity?

« Nutrient addition stimulates the reproductive activity of aquatic hyphomycetes, their colonization success and fungal-mediated leaf-litter decomposition. » (Gulis & Suberkropp, 2004, Mycologia)

Direct and indirect effects of Aluminium

Toxicity under acidic conditions

Interactions with P cycle

Perspectives

- More in-depth analysis of fungal diversity (clone libraries)
- Why is leaf decomposition not related to enzymatic production?
- Investigations on effects and interactions between Al and P during leaf processing

Poster SAME 12 Charmasson et al.

Diversity and activities of fungal communities associated with decaying leaves in acidified headwater streams

<u>Clivot H.</u>^{1@}, Cornut J.^{2,3}, Gierlinski P.¹, Danger M.¹, Pagnout C.¹,

Poupin P.¹, Elger A.^{2,3}, Chauvet E.^{2,3} and Guérold F.¹

¹Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes; CNRS; Université Paul Verlaine; F-57070 Metz, France. ²Université de Toulouse; INP; UPS; EcoLab; F-31062 Toulouse, France.

³CNRS; EcoLab; F-31062 Toulouse, France.

<u>@hugues.clivot@umail.univ-metz.fr</u>

