
HAL Id: hal-03511737
https://hal.science/hal-03511737

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Noisy neighbor detection and avoidance for network
slicing in 5G

Hanane Biallach, Marouen Mechtri, Chaima Ghribi

To cite this version:
Hanane Biallach, Marouen Mechtri, Chaima Ghribi. Noisy neighbor detection and avoidance for net-
work slicing in 5G. 17th IEEE Annual Consumer Communications & Networking Conference (CCNC
2020), Jan 2020, Las Vegas, United States. �hal-03511737�

https://hal.science/hal-03511737
https://hal.archives-ouvertes.fr


HAL Id: hal-03511737
https://hal.archives-ouvertes.fr/hal-03511737

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Noisy neighbor detection and avoidance for network
slicing in 5G

Hanane Biallach, Marouen Mechtri, Chaima Ghribi

To cite this version:
Hanane Biallach, Marouen Mechtri, Chaima Ghribi. Noisy neighbor detection and avoidance for
network slicing in 5G. IEEE Consumer Communications & Networking Conference (CCNC), Jan
2020, Las Vegas, United States. �hal-03511737�

https://hal.archives-ouvertes.fr/hal-03511737
https://hal.archives-ouvertes.fr


Noisy neighbor detection and avoidance for network
slicing in 5G

Hanane Biallach, Marouen Mechtri and Chaima Ghribi
Orange Labs, Paris, France

{hanane.biallach, marouane.mechteri, chaima.ghribi}@orange.com

Abstract—This paper addresses the problem of noisy neighbor in the
context of network slicing in 5G networks. Noisy neighbor is considered
as an important issue since VNFs or VMs running on the same physical
machine compete for resources, such as CPU, memory or bandwidth,
which can degrade their performance. In this paper, we present a new
approach based on supervised learning and optimization that detects
and avoids bad neighboring VNFs through intelligent VNFs placement
and migration.

Index Terms—NFV, Machine learning, Noisy Neighbor, Integer Linear
Program, Network Slicing

I. ARCHITECTURE FOR NOISY NEIGHBOR DETECTION AND
AVOIDANCE IN NFV ENVIRONMENT

Figure1 depicts our proposed framework to detect and solve the
noisy neighbor problem. The architecture is composed of two main
modules: Noisy neighbor detection module: monitors the VNFs
using Prometheus [1] to detect noise by applying Machine Learning
methods. Placement and migration module: embeds our Integer
linear Program (ILP) model for VNF placement and migration
and interacts with the Cloud manager (OpenStack controller) to
instantiate or migrate VNFs.

Fig. 1: Noisy neighbour detection and avoidance framework

A. ML process for noisy neighbor detection

To detect the noise, we need firstly enough data. As we monitored
the virtualized infrastructure, the following metrics were collected:
CPU utilization, Usage of Memory, Inbound network traffic and
Outbound network traffic. After collecting data through Prometheus
API, data cleaning is needed, it is the process of standardizing the
data to make it ready for analysis. Once data are cleaned, we labeled
each instance to one of these following statuses: 1) Noise: present

the situation where the collocated VMs, running in the same server,
compete for the available resources which lead to a degradation of
performance. 2) Normal: present the absence of noisy neighbor
phenomenon. 3) Overload: define the situation where the VNF
is stressed by applications running on it. 4) overprovisioning:
describes the situation where a VM is allocated in an overloaded
server (a server that runs out of resources). The overprovisioning
issue is another definition of noisy neighbor which have been
observed during our experimentations. It’s an important observation
for the related work since it’s the first time that overprovisioning
is cited as a noisy neighbor problem.
As Machine learning methods, we applied K-Nearest Neighbor,
Desicion Tree and Random Forest. After that, the corresponding
action can be taken according to the VNF status; a scale-up in case
of overload, and a migration to the non-noisy server in case of
noise/overprovisioning using our optimisation model.

B. Joined VNF placement and migration model

For our VNF placement and migration problem which is NP-Hard
[2], we considered a virtualized data center that is composed of
n servers, m VMs to be placed and Vj VMs to be migrated
from server j that is in a noisy state. Our objective is to perform
placement and migration jointly in order to minimize the noise in
the infrastructure.

min(

m∑
i=1

n∑
j=1

qjxij) (1)

Equations 2 and 3 indicate that in a given server l; the sum of the
resource requirements (CPU and memory respectively) of the VMs
placed in server l and the VMs migrated to server l, subtracting the
resource requirements of VMs in server l which migrated to another
server l′ must be less than the server l′s requirements capacity.

m∑
i=1

cpupixil +
n∑

j=1
j 6=l

Vj∑
k=1

cpumkzjlk−

n∑
l′=1
l′ 6=l

Vl∑
k′=1

cpum′
k′zll′k′ ≤ CPUl,∀l ∈ [1, n]

(2)

m∑
i=1

mempixil +
n∑

j=1
j 6=l

Vj∑
k=1

memmkzjlk−

n∑
l′=1
l′ 6=l

Vl∑
k′=1

memm′
k′zll′k′ ≤MEMl,∀l ∈ [1, n]

(3)

2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)



Equation 4 ensures that each VM is placed in one server.
n∑

j=1

xij = 1,∀i ∈ [1,m] (4)

Equation 5 shows that a VM can only be migrated to one server
n∑

l=1
l 6=j

zjlk = 1,∀j ∈ [1, n],∀k ∈ [1, Vj ] (5)

Equation 6 ensures that VMk is migrated to a server where there
is no noise; this equation prevents migration to noisy servers.

(ql + 1− qj)zjlk = 0,∀j ∈ [1, n],∀l ∈ [1, n],∀k ∈ [1, Vj ], j 6= l
(6)

To sum up, the machine learning algorithms were used to identify
the reason behind the performance degradation, whether it is due to
overload or noisy neighbor problem. For the case of noisy problem,
our ILP is invoked to propose a solution for migrating the impacted
VNFs to non-noisy servers.

II. PERFORMANCE EVALUATION

In this section we present the experimental evaluation of our
approach, for both machine learning and ILP models.

A. Machine Learning

To evaluate the machine learning algorithms, we used Scikit-
learn python’s library. The dataset contains 48112 instances and
4 features with categorical and equitable outputs. We chose to use
K-Nearest Neighbor (KNN) since we only have four features and
dataset with medium size. As illustrated in table I, KNN performs
well with an accuracy equal to 99.8%. However, in case of real
virtualized infrastructure with bigger volume of data, KNN risks to
be slow in terms of execution time. In our experiment, the Decision
Tree (DT) model generates a lot of false positives that degrade the
model performance. One of the reasons creating this problem could
be the overfitting which is much encountered problem when dealing
with decision trees. To solve this problem, we used Random Forest
(RF) classifier that is known by its robustness to overfitting and
especially its efficiency in case of big sized data [3]. As illustrated in
table I, the Random Forest corrected the problem of false positives
and it proves its high performances in terms of accuracy, precision
and recall with a low classification errors.

TABLE I: Evaluation metrics for each Model

DT RF KNN
Accuracy 77.9 99.9 99.8
Classification Error 22.1 0.02 0.15
Recall 77.9 99.9 99.8
Specificity 65.9 99.9 99.8
False positive rate 22.3 0.02 0.2
precision 77.7 99.9 99.7

B. ILP

We adopted an existing simulator used in [2] to evaluate our ILP.
When a request arrives, we run our model using IBM CPLEX [4]
Optimizer engine to solve the proposed problem. The metrics used

in our evaluation are Rejection rate which is the percentage of
requests that have not been accepted and the Convergence time
which represents the time needed to find a solution for one request.

The rejection rate measured in our experimental results increases
according to different variations of lambda (the arrival rate) and
noise rate (the percentage given to estimate the number of noisy
servers in the infrastructure). The system reject exponentially as
much as we increase the noise rate (table III). 98% requests are
rejected while just 19% requests are rejected when we variate
lambda parameter (as shown in table II) which means that our ILP
is sensitive more to noise.

TABLE II: Rejection rate when varying the arrival rate λ

λ 5 10 15 20
Rejection rate (%) 8 13 18 19

TABLE III: Rejection rate when varying the number of noisy server

Percentage of noisy servers 0.2 0.4 0.6 0.8
Rejection rate (%) 4 10 52 98

To further extend the evaluation of scalability, we evaluate the
convergence time. The table IV and table V show clearly that the
convergence time depends strongly on the substrate graph sizes
comparing with request graphs. The model spends more time to
find solution in case of large infrastructure due to the np-hardness
of the problem.

TABLE IV: Execution time when varying request sizes

Request size 5 20 50 100
Execution time (s) 17.067 24.997 27.056 28.448

TABLE V: Execution time when varying substrate graph sizes

Substrate graph size 100 500 1000
Execution time (s) 0.185 16.768 262.078

III. CONCLUSION

This paper deals with the noisy neighbor problem for network
slicing NFV infrastructures. Results show an accuracy of 90% for
noise detection and reveal some strengths of our ILP model. To
the best of our knowledge, our approach is the first that address
the noisy neighbor issue while identifying and solving the problem
jointly. As future work, we are improving the proposed ILP to
achieve better convergence time.

REFERENCES

[1] Prometheus: ”Monitoring system & time series database”, https://prometheus.io/
[Accessed on: April 09, 2019].

[2] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient vm scheduling for
cloud data centers: Exact allocation and migration algorithms,” in 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
May 2013, pp. 671–678.

[3] M. Zakariah, “Classification of large datasets using random forest algorithm
in various applications: Survey,” International Journal of Engineering and
Innovative Technology (IJEIT), vol. 4, pp. 189–198, 09 2014.

[4] IBM ILOG CPLEX Optimization Studio. [Online]. Available: https://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/

2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)


