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1.  Introduction
Resources and risk management for environmental and technological systems often requires information on mul-
tiple dependent and spatially distributed variables whose properties vary in time under the influence of climate 
variability and change. For instance, wildfire depends on the intensity, spatial extent, and possible co-occurrence 
of droughts, heat waves, and high winds (Barbero et al., 2014; Sharples et al., 2016). Each of these components 
may be affected by some climate-related trend (e.g., Perkins-Kirkpatrick et al., 2016, for heat waves) or multidec-
adal variability (e.g., Kiem et al., 2016, for droughts). As another example, renewable energy production depends 
on the space-time variability of multiple variables such as wind, solar radiation, and river streamflow (Engeland 
et al., 2017; François et al., 2014).

Quantitative risk assessment for such systems therefore relies on a probabilistic model for several spatially dis-
tributed variables. In particular, this model should adequately describe spatial and intervariable dependencies 
in order to obtain reliable risk estimates. It should also account for possible climate-related temporal variability 
or trend. Finally, this model should be flexible enough to accommodate the complicating factors frequently 
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this purpose. Each variable follows a distribution with parameters varying in both space and time. Temporal 
variability is modeled by means of hidden climate indices (HCIs) that are extracted from observed variables. 
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Australia aimed at modeling “hot-and-dry” summer conditions. It involves three physical variables (streamflow, 
precipitation, and temperature) measured on three distinct station networks, with varying data availability and 
representing hundreds of sites in total. The HCI model delivers reliable and sharp time-varying distributions 
for individual variables and sites. In addition, it adequately reproduces intervariable and intersite dependencies, 
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Plain Language Summary  The management of hydroclimatic hazards such as droughts and 
heatwaves relies on the estimation of probabilities of occurrence for extreme events. Standard approaches 
are available for this task when one given hazard is studied at one particular location. However, this is often 
not sufficient. For instance, the impact of droughts or heatwaves strongly depends on their spatial extent, 
which requires analyzing them over many sites. It is also useful to analyze droughts and heatwaves together 
rather than separately, because their joint occurrence creates favorable conditions for other hazards such 
as bushfires to occur. In this paper, we propose a methodological framework to analyze in a probabilistic 
way data sets describing several hazards at many sites over many years. The principle of this approach is to 
identify unobserved processes called “hidden climate indices” that are pulling the strings that make data vary. 
This is illustrated with a case study analyzing “hot-and-dry” summers in Southeast Australia (https://vimeo.
com/600898709).
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accompanying station-based data sets. Factors include varying data availability that induces a large number of 
missing values, noncolocated variables (i.e., distinct variables being measured on distinct station networks), the 
use of both discrete and continuous variables (e.g., event count and intensity) and possibly the presence of cen-
sored data. A probabilistic framework meeting all these requirements is currently lacking, and the main objective 
of this article is to propose one.

1.1.  Probabilistic Models for Resources and Risk Management

Probabilistic models are widely used for risk assessment and resources management in climate-sensitive systems. 
The most basic model assumes that for a single variable at a single site, data are independent and identically 
distributed (iid) realizations from a distribution with unknown parameters. Parameter estimation and uncertainty 
quantification can be achieved in many well-documented ways (e.g., Commonwealth of Australia, 2019; Intera-
gency Advisory Committee on Water Data, 1982; Ramachandra Rao & Hamed, 2019). Such a model focuses on 
the marginal distribution of data and is typically used to design some infrastructure (e.g., for flood protection, 
Botto et al., 2017). However, the assumption of identical distribution does not allow using external information 
from climate covariates, for instance. Alternatively, it may be unrealistic because of some trend affecting the data 
(e.g., Nogaj et al., 2006).

To address above issues, a time-varying conditional distribution can be obtained by assuming that the parameters 
vary as a function of some temporal covariates. This approach is now well established, with generic tools availa-
ble (e.g., Carpenter et al., 2017; Stasinopoulos & Rigby, 2007). Time itself can be used as a covariate, resulting in 
a nonstationary distribution (Perreault et al., 2000a, 2000b). Other typical covariates include large-scale climate 
information such as global temperature (Westra et  al., 2012) or climate indices (Steirou et  al., 2019), synop-
tic-scale information such as weather type (Garavaglia et al., 2010) or airflow descriptors (Maraun et al., 2010), 
paleoclimate information (Devineni et al., 2013; Ho et al., 2015) or even nonclimatic information (Prosdocimi 
et al., 2015). Note that such models may or may not be stationary, depending on the stationarity of the covariates 
themselves.

It is sometimes necessary to analyze the variable of interest at multiple sites. For instance, a hydroelectricity 
producer operating several dams needs to model streamflow at several sites. In this case, estimating a marginal 
or conditional distribution at a single site is not sufficient, and a multisite model is required. Two specific issues 
need to be addressed in this case. The first issue is to model intersite data dependence, which can be achieved us-
ing, e.g., a spatial copula (Bracken, Rajagopalan, Cheng et al., 2016; Ghosh & Mallick, 2011; Renard, 2011; Sang 
& Gelfand, 2010; Sun, Renard, et al., 2015; Sun et al., 2014) or a max-stable process for extremes (Le et al., 2018; 
Padoan et al., 2010; Ribatet et al., 2012; Westra & Sisson, 2011). The second issue is to describe the variability 
of parameters in space, which is typically achieved by means of a Gaussian spatial process which may include a 
regression with spatial covariates (Cooley et al., 2007; Dyrrdal et al., 2015). This approach leads to a hierarchical 
model where the first level describes the distribution of data and the second level describes the spatial hyperdis-
tribution of parameters. When some parameters in this second level control the effect of temporal covariates, the 
resulting model produces distributions varying in both space and time (Aryal et al., 2009; Gregersen et al., 2013; 
Lima & Lall, 2010b; Ossandon et al., 2021; Steinschneider & Lall, 2015; Sun, Lall, et al., 2015).

Multivariate models can similarly result from multiple types of variables (Zscheischler et al., 2018), rather than 
multiple sites. Such models have also become a well-established approach for the single-site case, with intervar-
iable dependence being typically described using copulas (Favre et al., 2004; Salvadori & De Michele, 2004) or 
extreme-specific models (De Haan & De Ronde, 1998; Heffernan & Tawn, 2004). Time-varying multivariable 
models have also been proposed (Bracken et al., 2018; Sarhadi et al., 2016).

The literature review shows that “full” space-time multivariable models are very few. We refer here to mod-
els combining all three properties discussed in the previous paragraphs, namely: (a) time-varying, (b) spatially 
varying, and (c) multivariable. Such models have been mostly derived within a geostatistical framework (De 
Iaco, 2011; Sideris et  al., 2014). Unfortunately, the underlying Gaussian assumption is restrictive as it is not 
adapted to extreme or discrete variables, for instance. A key objective of this paper is to address this limitation by 
proposing a framework that is flexible enough to accommodate such variables, while concurring with the three 
properties above.
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1.2.  Hidden Climate Indices Models

The approaches described in the previous section model temporal variability by means of known time-varying co-
variates. Standard climate indices (SCIs) such as the Southern Oscillation Index (SOI; Ropelewski & Jones, 1987), 
the North Atlantic Oscillation (NAO) index (Hurrell & Van Loon, 1997), and many others (NCAR, 2019) are 
typically chosen for this purpose. However several authors reported that identifying relevant SCIs is sometimes 
difficult (Giuntoli et al., 2013; Grantz et al., 2005; Renard & Lall, 2014; Westra & Sharma, 2009). In such cases, 
an alternative is to treat the time-varying covariates as unknown temporal latent variables that need to be inferred 
from the target data. Hidden Markov models provide an example of such an approach, in which the temporal 
latent variable takes the form of a categorical variable describing the unknown climate state, with a hyperdistri-
bution controlling the probability of transition between states (Bracken, Rajagopalan, & Woodhouse, 2016; Thyer 
& Kuczera, 2003a, 2003b). Replacing the categorical climate state with a continuous variable leads to a hidden 
climate index (HCI) model, as proposed by Renard and Lall (2014) and Ahn et al. (2017). These earlier models 
made strong assumptions (a single temporal HCI with constrained spatial effects), effectively limiting their appli-
cation to fairly small regions. Renard and Thyer (2019) addressed these limitations by enabling the use of several 
HCIs and by using a more realistic description of the spatial variability of HCI effects. They also demonstrated, 
using synthetic and real-life case studies, that estimating both hidden climate indices and their effects from a 
multisite data set is feasible and not prone to overfitting when the number of sites is large.

While HCI models have been originally motivated by the need to overcome the poor predictive ability of SCIs for 
some data sets, Renard and Thyer (2019) suggested that HCI models may also be of interest to indirectly model 
spatial dependence. Spatial dependence between data is not modeled explicitly in HCI models, but instead is 
induced indirectly by nearby sites being affected by the same temporal HCIs. In other words, spatial dependence 
arises from temporal covariability. This indirect treatment is of great practical interest for the following reasons:

1.	 �the treatment of missing values is straightforward, which is a major advantage for highly irregular sta-
tion-based data sets

2.	 �discrete variables can easily be handled, which offers advantages over copula-based approaches for which 
specific difficulties arise with discrete variables (e.g., nonuniqueness, nonidentifiability, see Genest & Nešle-
hová, 2007; Faugeras, 2017)

The potential of HCI models to represent dependence is further highlighted by some similarities with several 
approaches from the statistical literature. In particular, standard methods such as principal component analysis 
(PCA) or canonical correlation analysis (CCA) have been reinterpreted as Gaussian models with unknown latent 
variables (Bach & Jordan, 2005; Klami et al., 2013; Tipping & Bishop, 1999). In the case of a space-time data set, 
these latent variables play a similar role to the HCIs (but within a restrictive Gaussian framework). Alternatively, 
the max-stable spatial model of Reich and Shaby (2012) also uses time-varying latent variables to describe spatial 
dependence between extreme data.

This literature review highlights the potential of HCI approaches to model space-time variability for a wide range 
of data sets. However, the models proposed to date are restricted to specific distributions that may limit their 
practical use: Gaussian distribution for PCA/CCA-like models, max-stable distribution in the model of Reich and 
Shaby (2012), Bernoulli distribution in the model of Renard and Thyer (2019). There is scope to develop a more 
general framework that would enable the use of any user-specified distribution. In addition, this generalization 
should also account for the multivariable case, where several distinct distributions might be necessary to model 
several variables.

1.3.  Objectives

This paper describes a general HCI framework for modeling space-time multivariable data. It generalizes existing 
HCI models by considering several variables following any user-specified distribution. A case study illustrates its 
application for jointly modeling hydrological droughts, meteorological droughts, and heat waves at many stations 
in Southeast Australia. The key objectives are as follows:

1.	 �Develop a HCI framework that can handle a wide range of data types and data sets, including
�(a)	� continuous and discrete variables, or potentially a combination of both in the same data set
�(b)	� irregular station-based data sets, including missing values, noncolocated variables and censored data
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2.	 �Demonstrate that this HCI framework is able to
�(a)	� reliably describe temporal variability
�(b)	� reliably describe both spatial and intervariable dependence
�(c)	� improve upon SCI-based models on both points

Compared to our previous work on this topic (Renard & Thyer, 2019), the HCI framework developed in this paper 
is much more general. It moves from a single-variable to a multivariable setup, and it enables the use of: (a) any 
distribution (our previous work was restricted to a Bernoulli distribution); (b) temporal processes for HCIs; and 
(c) censoring.

The remainder of the paper is organized as follows. Section 2 describes the HCI modeling framework, including 
the specification of the model, its inference, and its use for making predictions. Section 3 describes the data and 
models used in a case study aimed at modeling hot-and-dry summer conditions in Southeast Australia, with 
Section 4 describing the results. Section 5 discusses current limitations and avenues for future work, and the 
conclusion Section 6 summarizes the main outcomes of this work.

2.  Theory
This section begins with a short example to motivate HCI modeling (Section 2.1) and introduce its main princi-
ples. The full HCI modeling framework is then described in Sections 2.2–2.4.

2.1.  Motivating Example

Consider the two time series 𝐴𝐴 (𝑌𝑌1,𝑡𝑡)𝑡𝑡=1,…,𝑛𝑛 and 𝐴𝐴 (𝑌𝑌2,𝑡𝑡)𝑡𝑡=1,…,𝑛𝑛 representing, for instance, annual streamflow anomalies 
observed at two locations. Assume that both series are linked to the same temporal covariate 𝐴𝐴 𝐴𝐴𝑡𝑡

𝑖𝑖𝑖𝑖𝑖𝑖∼  (0, 1) (e.g., 
a climate index) by the following linear relations:

⎧

⎪

⎨

⎪

⎩

𝑌𝑌1,𝑡𝑡 = 𝜆𝜆1𝜏𝜏𝑡𝑡 + 𝜀𝜀1,𝑡𝑡 with 𝜀𝜀1,𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖∼ 

(

0, 𝜎𝜎2
)

𝑌𝑌2,𝑡𝑡 = 𝜆𝜆2𝜏𝜏𝑡𝑡 + 𝜀𝜀2,𝑡𝑡 with 𝜀𝜀2,𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖∼ 

(

0, 𝜎𝜎2
)

.
� (1)

Parameters λ1 and λ2 are called the “effects of the covariate” and control the strength of its influence at each site. 
Random variables ɛ1,t and ɛ2,t, with common standard deviation σ, describe the variability unexplained by the 
covariate τt. The common temporal covariate induces dependence between the two time series. Indeed, assuming 
mutual independence between τt, ɛ1,t, and ɛ2,t, the correlation between Y1,t and Y2,t can be derived as

𝜌𝜌 = 𝜆𝜆1𝜆𝜆2
√

𝜆𝜆2
1 + 𝜎𝜎2

√

𝜆𝜆2
2 + 𝜎𝜎2

.� (2)

The assumption of independence between ɛ1,t and ɛ2,t may not always be realistic in practice, but it allows illustrat-
ing the fact that spatial dependence can arise purely from temporal covariability. Figure 1 illustrates this simple 
example for a few values of spatial effects λ1, λ2. It shows that spatial correlation is strong when the effects (λ1, 
λ2) are large compared to the standard deviation σ (top panels). In other words, spatial dependence occurs as a 
consequence of sites following the same temporal pattern. Conversely, dependence vanishes when at least one of 
the effects is negligible with respect to σ (bottom panels).

Next, consider the practical situation where the modeler wishes to derive a probabilistic model for the data shown 
in Figure 1. At least three approaches are available:

1.	 �The scatterplot representation (panels A and D) suggests modeling the joint distribution of data using a bivar-
iate Gaussian distribution, as given in Equation 3
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(�1,�, �2,�)
���∼ 

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

0

0

⎞

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎝

�2
1 ��1�2

��1�2 �2
2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

.� (3)

2.	 �The covariate representation (panels B and E) suggests modeling the distribution of data conditionally on the 
temporal covariate τt (Equation 4). This approach is more general in the sense that it leads to exactly the same 
joint distribution as in Equation 3 (with 𝐴𝐴 𝐴𝐴2

𝑖𝑖 = 𝜆𝜆2
𝑖𝑖 + 𝜎𝜎2 ) while enabling more precise time-varying predictions 

according to the covariate values. However, this approach does assume that the data-generating covariate τt is 
known perfectly, which is not the case in general

⎧

⎪

⎨

⎪

⎩

(𝑌𝑌1,𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑢𝑢) 𝑖𝑖∼ 
(

𝜆𝜆1𝑢𝑢𝑢 𝑢𝑢2
)

(𝑌𝑌2,𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑢𝑢) 𝑖𝑖∼ 
(

𝜆𝜆2𝑢𝑢𝑢 𝑢𝑢2
)

.� (4)

3.	 �Acknowledge that the data-generating temporal covariate is hidden, which is the approach proposed in this 
paper. This approach still uses Equation 4 but considers the values taken by τt as unknown quantities that 
need to be estimated from the data. For an intuitive illustration, consider panel C in Figure 1. While the time 
series τt is not shown, it is suggested by the covariability of the time series y1,t and y2,t. Compared with the first 
two approaches, treating the temporal covariate as hidden introduces many unknown quantities: with p = 2 
series of size n each, there are q = n (τ’s) + 2 (λ’s) + 1 (σ) quantities to be estimated (versus only 3 for the 
first two approaches). While such a large number of unknown parameters might be prohibitive and prone to 
overfitting given data from only two sites, it becomes more tractable as the number of sites increases because 
q = n + p + 1 becomes small relative to the number of data points (np)

Figure 1.  Data y1 (red) and y2 (blue) simulated from the model in Equation 1 with residual standard deviation σ = 0.5. The covariate effects (λ1, λ2) and the correlation 
ρ between y1 and y2 are shown in the titles. (a and d) Scatterplot representation; (b and e) covariate representation; and (c and f) time series representation.
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The HCI modeling framework derived in the next sections represents a generalization of Approach 3 above. In 
particular, it allows modeling multiple variables with non-Gaussian distributions at many sites using multiple 
HCIs.

2.2.  Model Formulation

Let Yv(s, t) denote the random variable representing variable v (=1, …, V) at time t and site s (typically, s = (lon, 
lat)). The assumptions made when building an HCI model are illustrated in Figure 2, and can be summarized as 
follows:

1.	 �Data model: For each variable v, Yv(s, t) follows a distribution with parameters θv(s, t) varying in space and 
time

2.	 �Parameter model: Parameters θv(s, t) can be retrieved from a set of hidden climate indices τ(t) which vary in 
time and their effects λ(s) which vary in space

3.	 �Space variability: The effects of HCIs λ(s) are realizations from spatial random processes
4.	 �Time variability: The HCIs τ(t) themselves are realizations from temporal random processes

These assumptions can be formalized as follows. First, the data model is (box 1 in Figure 2)

𝑌𝑌𝑣𝑣(𝒔𝒔, 𝑡𝑡) ∼ 𝑣𝑣 (𝜽𝜽𝑣𝑣(𝒔𝒔, 𝑡𝑡)) .� (5)

Figure 2.  Schematic of the hidden climate index (HCI) modeling approach.
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The distribution 𝐴𝐴 𝑣𝑣 is variable-specific. For instance if Y1 denotes an annual number of flood events and Y2 de-
notes an annual average flow, then it would be sensible to use the Poisson distribution for 𝐴𝐴 1 and the lognormal 
distribution for 𝐴𝐴 2 .

The parameter vector θv(s, t), with size Pv, is also variable-specific. Each component θv,c (c = 1, …, Pv) is allowed 
to vary in space and time as follows (box 2 in Figure 2)

𝑔𝑔𝑣𝑣𝑣𝑣𝑣 (𝜃𝜃𝑣𝑣𝑣𝑣𝑣(𝒔𝒔, 𝑡𝑡)) = 𝜆𝜆0,𝑣𝑣𝑣𝑣𝑣(𝒔𝒔) + 𝜆𝜆1,𝑣𝑣𝑣𝑣𝑣(𝒔𝒔)𝜏𝜏1(𝑡𝑡) +⋯ + 𝜆𝜆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝒔𝒔)𝜏𝜏𝐾𝐾 (𝑡𝑡).� (6)

Similar to generalized linear models (McCullagh & Nelder, 1989), the link function gv,c is used to map the range 
of parameter θv,c to (−∞, +∞). For instance the logarithm function can be used if θv,c > 0, or the logit function if 
θv,c ∈ (0, 1). The transformed parameter is then derived from a set of K time-varying HCIs τ and their space-var-
ying effects λ. The following comments can be made:

1.	 �Unlike the link function gv,c and the spatial effect λk,v,c, the temporal HCI τk is assumed to be the same for all 
variables. The motivation is that using a common set of HCIs for all variables can induce intervariable de-
pendence, as illustrated in the motivating example of Section 2.1

2.	 �A nonlinear formulation could be used in lieu of Equation 6 (see discussion Section 5.3)
3.	 �If a parameter does not vary in time, then one can set λk,v,c = 0 for all k ≥ 1

Each spatial HCI effect λk,v,c is assumed to vary according to a spatial Gaussian process (box 3 in Figure 2). By 
definition, this continuous process is characterized by its application to any finite set of sites resulting in a multi-
variate Gaussian distribution. Hence, for any set of m sites

(𝜆𝜆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝒔𝒔1),… , 𝜆𝜆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝒔𝒔𝑚𝑚)) ∼ 
(

𝝁𝝁
[

𝜷𝜷𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
]

,𝚺𝚺
[

𝜸𝜸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
])

.� (7)

The mean of this multivariate Gaussian distribution is defined through a mean function parameterized by β (k, v, 
and c subscripts have been removed to reduce cluttering). The simplest case is to use a constant mean 𝐴𝐴 𝝁𝝁 [𝛽𝛽] ≡ 𝛽𝛽 , 
but covariates such as elevation 𝐴𝐴 𝒛𝒛 = (𝑧𝑧(𝒔𝒔1),… , 𝑧𝑧(𝒔𝒔𝑚𝑚)) , for instance, can be accounted for through a regression 
such as 𝐴𝐴 𝝁𝝁 [𝜷𝜷] = 𝛽𝛽0 + 𝛽𝛽1𝒛𝒛𝑇𝑇  . A covariance function parameterized by γ is also used, with γ typically representing 
sill and range parameters. For instance, an exponential covariance function with sill γ1 and range γ2 can be written 
as a function of the intersite distance di,j as follows:

(𝚺𝚺 [𝜸𝜸])𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾21 exp(−𝑑𝑑𝑖𝑖𝑖𝑖𝑖∕𝛾𝛾2).� (8)

Similar to spatial HCI effects being modeled with a spatial Gaussian process, each temporal HCI τk is assumed to 
vary according to a temporal Gaussian process (box 4 in Figure 2)

(𝜏𝜏𝑘𝑘(𝑡𝑡1),… , 𝜏𝜏𝑘𝑘(𝑡𝑡𝑚𝑚)) ∼ 
(

𝝁𝝁 [𝜶𝜶𝑘𝑘] ,𝚺𝚺
[

𝜼𝜼𝑘𝑘
])

.� (9)

The mean of this process may be constant or it may depend on some time-varying covariate 𝐴𝐴 𝒙𝒙 = (𝑥𝑥(𝑡𝑡1),… , 𝑥𝑥(𝑡𝑡𝑚𝑚)) , 
for instance through a linear regression 𝐴𝐴 𝝁𝝁 [𝜶𝜶] = 𝛼𝛼0 + 𝛼𝛼1𝒙𝒙𝑇𝑇  . The covariance function may be specified using a 
model similar to Equation 8 (replacing intersite distance by time lag) or a standard time series model (e.g., autore-
gressive). Note that in the special case where τk's are known covariates (e.g., some predefined climate indices), 
the model defined by Equations 5–7 reduces to a standard hierarchical regression model (Congdon, 2010), also 
known as a random effect model (Longford, 1993). The originality of the HCI approach is to model time varia-
bility using (unknown) latent variables rather than (known) covariates.

The formulation of the model is completed by assuming that all Yv(s, t) are independent, conditional on the val-
ues taken by the temporal HCIs τ and their spatial effects λ. In mathematical terms, this means that for any pair 

𝐴𝐴
(

𝑌𝑌𝑣𝑣1 (𝒔𝒔1, 𝑡𝑡1), 𝑌𝑌𝑣𝑣2 (𝒔𝒔2, 𝑡𝑡2)
)

 (with v1 ≠ v2 or s1 ≠ s2 or t1 ≠ t2 so that variables are distinct), the conditional joint pdf 
evaluated at values 𝐴𝐴 (𝑦𝑦1, 𝑦𝑦2) is equal to

𝑝𝑝 (𝑦𝑦1, 𝑦𝑦2|𝝉𝝉 ,𝝀𝝀) = 𝑝𝑝 (𝑦𝑦1|𝝉𝝉 ,𝝀𝝀) 𝑝𝑝 (𝑦𝑦2|𝝉𝝉 ,𝝀𝝀) .� (10)

It is stressed that such a conditional independence assumption does not imply that Yv(s, t) are unconditionally 
independent, as illustrated in the motivating example of Section 2.1. In mathematical terms

𝑝𝑝 (𝑦𝑦1, 𝑦𝑦2) ≠ 𝑝𝑝 (𝑦𝑦1) 𝑝𝑝 (𝑦𝑦2) .� (11)
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2.3.  Inference

2.3.1.  Posterior Distribution of Inferred Parameters

Let 𝐴𝐴 𝒚𝒚 = (𝑦𝑦𝑖𝑖)𝑖𝑖=1,…,𝑁𝑁 denote the calibration data set stored in a “long vector” format, leading to a total of N data 
points. Each value yi is associated with the following three elements: (a) a variable index vi in 1, …, V; (b) a site 
si amongst the S calibration sites; and (c) a time step ti amongst the T calibration time steps. In the particular 
case where all variables are measured at all sites and all time steps, N = V × S × T. In general, N is smaller than 
this product because distinct variables may be measured on distinct measurement networks and time series may 
comprise missing values.

The posterior distribution of unknown temporal HCIs τ, their spatial effects λ, and hyperparameters 𝐴𝐴 (𝜶𝜶, 𝜼𝜼, 𝜷𝜷, 𝜸𝜸) 
can be written as

� (� ,�,�, �, �, �|�) ∝ � (�|� ,�)
⏟⏞⏟⏞⏟

likelihood

� (�|�, �) � (�|�, �)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

time/space hyperdist.

� (�, �, �, �)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

priors

.
� (12)

Due to the conditional independence assumption, the likelihood is a simple product of the contributions li of each 
data point

𝑝𝑝 (𝒚𝒚|𝝉𝝉 ,𝝀𝝀) =
𝑁𝑁
∏

𝑖𝑖=1

𝑓𝑓𝑣𝑣𝑖𝑖

(

𝑦𝑦𝑖𝑖;𝜽𝜽𝑣𝑣𝑖𝑖 (𝒔𝒔𝑖𝑖, 𝑡𝑡𝑖𝑖)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑙𝑖𝑖

,� (13a)

𝜽𝜽𝑣𝑣𝑖𝑖 (𝒔𝒔𝑖𝑖, 𝑡𝑡𝑖𝑖) =
(

𝜃𝜃𝑣𝑣𝑖𝑖,1,… , 𝜃𝜃𝑣𝑣𝑖𝑖,𝑃𝑃𝑣𝑣𝑖𝑖
)

,� (13b)

𝜃𝜃𝑣𝑣𝑖𝑖,𝑐𝑐 = 𝑔𝑔−1
𝑣𝑣𝑖𝑖,𝑐𝑐

(

𝜆𝜆0,𝑣𝑣𝑖𝑖,𝑐𝑐(𝒔𝒔𝑖𝑖) + 𝜆𝜆1,𝑣𝑣𝑖𝑖,𝑐𝑐(𝒔𝒔𝑖𝑖)𝜏𝜏1(𝑡𝑡𝑖𝑖) +⋯ + 𝜆𝜆𝐾𝐾𝐾𝐾𝐾𝑖𝑖,𝑐𝑐(𝒔𝒔𝑖𝑖)𝜏𝜏𝐾𝐾 (𝑡𝑡𝑖𝑖)
)

,� (13c)

where 𝐴𝐴 𝐴𝐴𝑣𝑣𝑖𝑖 in Equation 13a is the pdf of distribution 𝐴𝐴 𝑣𝑣𝑖𝑖 , and Equations 13b and 13c derive the associated param-
eter vector 𝐴𝐴 𝜽𝜽𝑣𝑣𝑖𝑖 (𝒔𝒔𝑖𝑖, 𝑡𝑡𝑖𝑖) using Equation 6.

Note that this likelihood can be easily modified to use censored data. If all that is known about the ith data is that 
it lies in the interval [a, b] (with possibly a = −∞ or b = +∞), then its contribution li to the likelihood uses the 
cdf, rather than the pdf, of distribution 𝐴𝐴 𝑣𝑣𝑖𝑖 , as shown in Equation 14 (e.g., Payrastre et al., 2011). This approach 
can also be used to model continuous variables with reachable bounds. Typically, for precipitation or streamflow, 
a zero value can be considered as belonging to the interval (−∞, 0]. This is similar to a “Tobit regression” ap-
proach (Chib, 1992)

𝑙𝑙𝑖𝑖 = 𝐹𝐹𝑣𝑣𝑖𝑖

(

𝑏𝑏;𝜽𝜽𝑣𝑣𝑖𝑖 (𝒔𝒔𝑖𝑖, 𝑡𝑡𝑖𝑖)
)

− 𝐹𝐹𝑣𝑣𝑖𝑖

(

𝑎𝑎;𝜽𝜽𝑣𝑣𝑖𝑖 (𝒔𝒔𝑖𝑖, 𝑡𝑡𝑖𝑖)
)

.� (14)

Following Equations 7 and 9, the terms related to the space and time hyperdistributions are computed using the 
pdf 𝐴𝐴 𝐴𝐴 (𝒛𝒛;𝝁𝝁,𝚺𝚺) of a multivariate normal distribution with mean vector μ and covariance matrix Σ

𝑝𝑝 (𝝉𝝉|𝜶𝜶, 𝜼𝜼) =
𝐾𝐾
∏

𝑘𝑘=1

𝑓𝑓
(

𝝉𝝉𝑘𝑘;𝝁𝝁 [𝜶𝜶𝑘𝑘] ,𝚺𝚺
[

𝜼𝜼𝑘𝑘
])

,� (15)

𝑝𝑝 (𝝀𝝀|𝜷𝜷, 𝜸𝜸) =
𝐾𝐾
∏

𝑘𝑘=0

𝑉𝑉
∏

𝑣𝑣=1

𝑃𝑃𝑣𝑣
∏

𝑐𝑐=1

𝑓𝑓
(

𝝀𝝀𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ;𝝁𝝁
[

𝜷𝜷𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
]

,𝚺𝚺
[

𝜸𝜸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
])

.� (16)

2.3.2.  Overcoming Nonidentifiability

In Equation 6, there are infinitely many values of HCI τk and effect λk (k > 0) that yield exactly the same value 
of parameter θ (e.g., dividing τk and multiplying λk by the same value does not change the value of θ). As a con-
sequence, the parameters in the likelihood function (Equation 13) are not identifiable, leading to an ill-posed 
posterior distribution. Renard and Thyer (2019) discuss the origin of this nonidentifiability in more depth, and 
propose a two-part practical solution to overcome it:
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1.	 �Apply identifiability constraints: For each k, the temporal HCI estimated at T calibration time steps 𝐴𝐴
(

𝑡𝑡1,… , 𝑡𝑡𝑇𝑇
)

 
is constrained to have zero mean and unit standard deviation. These two constraints imply that only the first 
T − 2 values are estimated, with 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡𝑇𝑇−1) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡𝑇𝑇 ) being computed from 𝐴𝐴

(

𝜏𝜏𝑘𝑘(𝑡𝑡1),… , 𝜏𝜏𝑘𝑘(𝑡𝑡𝑇𝑇−2)
)

 so as to meet 
the constraints (see Renard & Thyer, 2019, for precise formulae)

2.	 �Use a stepwise inference: A model with a single HCI is estimated first, leading to estimates 𝐴𝐴 𝝀̂𝝀0 , 𝐴𝐴 𝝀̂𝝀1 , and 𝐴𝐴 𝝉̂𝝉1 
(maximum-posterior estimates are used here). These estimates are then used as known, fixed values in a two-
HCI model; this leads to estimates 𝐴𝐴 𝝀̂𝝀2 and 𝐴𝐴 𝝉̂𝝉2 . This process is repeated until the chosen number of components 
is reached (see Section 2.3.4 for strategies to select this number)

2.3.3.  Markov Chain Monte Carlo Sampling

The posterior distribution of Equation 12 is explored by means of a block Metropolis sampler. The parameter 
vector is updated one component at a time (this is sometimes referred to as a Metropolis-within-Gibbs sampler). 
The sampler periodically adapts the size of the univariate Gaussian jump distributions to achieve user-specified 
acceptance rates. In addition, the sampler takes advantage of the many simplifications occurring in the Me-
tropolis ratio to reduce the computational cost. This sampler is very similar to the one described in Renard and 
Thyer (2019), generalized to account for multiple variables. A detailed description is therefore not repeated here.

2.3.4.  Selecting the Number of Components

While there is no unique optimal way to select the number of components in the HCI model, several tools exist 
to help making this decision. A first strategy is to stop adding components when the effects 𝐴𝐴 𝝀̂𝝀 become small for 
all variables. This can be quantified by computing, for each variable v and component k, the standard effect ζk,v 
across the Sv available sites (Renard & Thyer, 2019)

𝜁𝜁𝑘𝑘𝑘𝑘𝑘 =

√

√

√

√
1
𝑆𝑆𝑣𝑣

𝑆𝑆𝑣𝑣
∑

𝑖𝑖=1

(𝜆̂𝜆𝑘𝑘𝑘𝑘𝑘(𝑠𝑠𝑖𝑖))
2
.� (17)

In addition, Renard and Thyer  (2019) showed, based on a synthetic case study, that MCMC convergence tends 
to deteriorate when attempting to infer “useless” HCIs (i.e., more HCIs than used to generate the synthetic data).  
Finally, it is also possible to rely on standard model-checking procedures (e.g., comparing observed frequencies and 
estimated probabilities, setting up cross-validation experiments) to select a fit-for-purpose number of components.

An automatic model selection strategy, such as selecting the number of components that minimizes the Deviance 
Information Criterion (DIC, Spiegelhalter et al., 2002), could also be used in principle. However, the stepwise 
estimation procedure proposed in this paper makes this strategy questionable, because fixing the parameters 
estimated at the previous step may unduly favor models with many components. We therefore favor the nonau-
tomatic but more flexible approaches based on monitoring standard effects, MCMC convergence, and applying 
model-checking procedures.

2.4.  Predictions

2.4.1.  Predictions at Calibration Sites and Time Steps

Once temporal HCIs 𝐴𝐴 𝝉̂𝝉 and their spatial effects 𝐴𝐴 𝝀̂𝝀 have been estimated as described in the previous section, the HCI 
model can be used to make probabilistic predictions.

For a given variable v, a probabilistic prediction at site s* and time t* can be made by computing the parameters of 
distribution 𝐴𝐴 𝑣𝑣 using Equation 6. More precisely, the pdf associated with this probabilistic prediction is given by 
the equation below. Monte Carlo samples can be generated from this distribution to generate ensemble predictions.

𝑓𝑓𝑣𝑣
(

𝑢𝑢; 𝜽̂𝜽𝑣𝑣(𝒔𝒔∗, 𝑡𝑡∗)
)

,� (18a)

𝜽̂𝜽𝑣𝑣(𝒔𝒔∗, 𝑡𝑡∗) =
(

𝜃̂𝜃𝑣𝑣𝑣1,… , 𝜃̂𝜃𝑣𝑣𝑣𝑣𝑣𝑣𝑣
)

,� (18b)

𝜃̂𝜃𝑣𝑣𝑣𝑣𝑣 = 𝑔𝑔−1
𝑣𝑣𝑣𝑣𝑣

(

𝜆̂𝜆0,𝑣𝑣𝑣𝑣𝑣(𝒔𝒔∗) + 𝜆̂𝜆1,𝑣𝑣𝑣𝑣𝑣(𝒔𝒔∗)𝜏𝜏1(𝑡𝑡∗) +⋯ + 𝜆̂𝜆𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝒔𝒔∗)𝜏𝜏𝐾𝐾 (𝑡𝑡∗)
)

.� (18c)
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A probabilistic prediction at several time steps (but still a single variable and site) can be obtained by sampling 
from the distribution in Equation 18a independently for each time step. The time-varying nature of this predic-
tion is induced by the time-varying HCIs 𝐴𝐴 𝝉̂𝝉 , as schematized in Figure 3a. It is also possible to obtain the mixture 
marginal distribution over a period of interest by treating the Monte Carlo samples at multiple time steps as a 
single set of samples.

Thanks to the conditional independence assumption, generating multivariable and/or multisite predictions is 
equally straightforward. It simply consists of generating independent replicates for several variables and/or sites, 
conditional on the same HCI values. As illustrated in Figure 3b, spatial dependence will be present for sites where 
the HCI effects 𝐴𝐴 𝝉̂𝝉 are similar. The exact same mechanism applies to intervariable dependence.

Note that all predictions discussed above only require estimates of temporal HCIs (𝐴𝐴 𝝉̂𝝉 ) and their spatial effects 
(𝐴𝐴 𝝀̂𝝀 ) and can therefore be made for any combination of site and time step that are part of the calibration data set. 
This includes combinations that were potentially unobserved. For instance, consider a hypothetical data set with 
variable v1 being observed during the period 1951–2020, but variable v2 during the period 1961–2020 only. Pre-
dictions for variable v2 during the missing decade 1951–1960 can still be made since estimates are available for 
both the HCIs 𝐴𝐴 𝝉̂𝝉 during 1951–1960 (based on v1 data) and the HCI effects 𝐴𝐴 𝝀̂𝝀 at v2 sites. This provides a mechanism 
to transfer information from an observed variable to an unobserved one.

2.4.2.  Predictions at Ungauged Sites or Unobserved Time Steps

Prediction at an ungauged site s* requires interpolating the HCI effects estimated at calibration sites. This can be 
achieved by using the spatial process in Equation 7. More precisely, since this process is assumed to be Gaussian, 
the interpolated value for an HCI effect λ (subscripts have been dropped to simplify notation) is also Gaussian 
with mean and variance given below (Renard, 2011) and corresponding to standard Kriging formulas

𝜇𝜇∗ = 𝛀𝛀𝛀𝛀−1𝝀̂𝝀
⊤
,� (19a)

𝜎𝜎2
∗ = 𝜎𝜎2 −𝛀𝛀𝛀𝛀−1𝛀𝛀⊤,� (19b)

where Ω is the 1 × S covariance vector between the ungauged site and the calibration sites, Σ is the S × S covar-
iance matrix between calibration sites, 𝐴𝐴 𝝀̂𝝀 is the 1 × S estimated values of λ at calibration sites, σ2 is the marginal 
variance of the process and all variances/covariances are computed using the covariance function assumed for 
the process (e.g., Equation 8).

Prediction for an unobserved time step can be made in a similar way by using the temporal process in Equation 9 
to extrapolate the HCIs a few time steps ahead. However, a potentially more skillful alternative would be to pre-
dict the HCIs from large-scale climate information, as discussed in Section 5.4.

Figure 3.  Schematic illustration of probabilistic predictions. (a) Simulation conditional on the values taken by the hidden 
climate index (HCI) at three time steps. The resulting mixture marginal pdfs are shown on the right axis. (b) Bivariate 
distribution resulting from the simulations at two sites, illustrating the existence of spatial dependence.
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3.  Case Study: Data and Models
The proposed framework is demonstrated using a case study describing “hot-and-dry” summer conditions in 
Southeast Australia. An HCI model is used to describe streamflow, precipitation, and temperature variables 
measured at hundreds of sites during 100 years. The proposed HCI model is compared with a more standard 
model that uses three SCIs that have a well-documented effect on Australian summer weather. This case study has 
been selected because it allows illustrating the versatility of the HCI framework, while being connected to very 
impactful hazards in Australia: heat waves constitute the deadliest natural hazard in the country and their severity 
shows an increasing trend that is expected to continue in the future (Perkins-Kirkpatrick et al., 2016); drought is 
also a recurrent hazard, with large impacts on agricultural and other economic sectors (Kiem et al., 2016); both 
heat waves and droughts are important components of the bushfire hazard (Sharples et al., 2016), which is wide-
spread in Australia as illustrated by the 2019–2020 bushfire season (Abram et al., 2021).

3.1.  Data

3.1.1.  Surface Variables

High-quality temperature (T), precipitation (P), and streamflow (Q) daily time series are provided by the Aus-
tralian Bureau of Meteorology (Table 1). Each variable is measured on a different station network, as shown in 
the maps in Figure 4. Data availability varies strongly in time and between variables. In particular, Q stations are 
more numerous but are available for a much shorter time period than T/P stations. Moreover, the period pre-1951 
is only “partially observed” in the sense that only T and P data are available. Despite this, the analysis period is 
1918–2018, and Q predictions are possible before 1951, as will be shown subsequently.

Four variables are extracted from the daily time series to quantify summer (DJF) heat-and-drought conditions:

1.	 �Low flow duration Qd (–) is computed as the number of days with streamflow below the 10th percentile, di-
vided by the number of days during the DJF season (90 or 91 for leap years). This duration is hence expressed 
as a fraction of the season length between 0 and 1. If any daily data is missing during the season, the variable 
is considered as missing (the same applies to all four variables)

2.	 �Dry-day duration Pd (–) is computed as the number of dry days (P < 1 mm), divided by the number of days 
during the DJF season

3.	 �Heat wave intensity Tx (°C) is computed as the maximum threshold excess during a heat wave event. A heat 
wave corresponds to successive days above a high-temperature threshold taken as the 99th percentile, which is 
slightly more extreme than the standard definition proposed by Nairn et al. (2013). Successive events should 
be separated by at least 3 days and the temperature should drop 5° below the threshold, otherwise they are 
considered a single event. Note that Tx is not an absolute temperature but rather a threshold excess (i.e., the 
temperature minus the 99th percentile threshold)

Variables Data set name Time Space References

Temperature ACORN-SATa 1918–2018 49 stations Trewin (2013, 2018)

Precipitation High-quality daily rainfallb 1918–2018 76 stations Bureau of Meteorology (2020a)

Streamflow Hydrologic Reference Stationsc 1951–2019 271 stations Zhang et al. (2014) and Bureau 
of Meteorology (2020b)

ENSO NINO4 indexd 1870–2018 — NOAA (2020d)

IOD DMI indexe 1870–2019 — NOAA (2020c)

SAM SAM indexf 1851–2011 — NOAA (2020a)

SAM AAO indexg 1979–2020 — NOAA (2020b)
ahttp://www.bom.gov.au/climate/data/acorn-sat. bftp://ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR/. chttp://www.bom.gov.au/water/hrs/. dhttps://www.esrl.
noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino4.long.anom.data. ehttps://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data. fhttps://www.esrl.noaa.gov/
psd/data/20thC_Rean/timeseries/monthly/SAM/sam.20crv2c.long.data. ghttps://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/monthly.aao.
index.b79.current.ascii.table.

Table 1 
Description of the Data Sets Used in the Case Study
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4.	 �Tn (–) is computed as the number of heat wave events occurring during the season

Note that for all variables, large values are associated with dry/hot summers.

3.1.2.  Standard Climate Indices

Three DJF-averaged indices are used to characterize climate drivers that are known to influence heat waves and 
droughts in Australia (Westra et al., 2016), as described in Table 1: the El-Nino Southern Oscillation (ENSO), 
the Indian Ocean Dipole (IOD), and the Southern Annular Mode (SAM). Note that the Southern Annular Mode 
could be characterized using two alternative indices (Ho et al., 2012): the SAM index (availability: 1851–2011) 
and the AAO index (1979–2020). We use the former due to its earlier starting date and reconstructed recent years 
by means of a linear regression (r2 = 0.84) with the latter. The final SCIs are centered and scaled to unit standard 
deviation. Since HCIs also have zero mean and unit standard deviation due to the identifiability constraints (Sec-
tion 2.3.2), this preprocessing enables the comparison of SCI and HCI effects for each studied variable.

3.2.  Models and Inference

3.2.1.  HCI Model

The HCI model used to describe the four target variables is shown in Equation 20. The number of HCIs was fixed 
to three in order to enable comparisons with a model based on the three SCIs described in Section 3.1.2. The 
adequacy of this number will be discussed in the results.

Variables Qd and Pd are both derived from the number of days below a threshold. At first sight, integer-valued 
distributions such as the binomial or the negative binomial distributions may be considered as candidates, but 
they are in fact not well suited for two main reasons: (a) values from successive days can hardly be considered 
as results from independent and identically distributed trials; (b) the discrete nature of the variables is mostly 
an artifact induced by the daily time step of the original series; the actual quantity of interest is the continuous 
duration below the threshold, which would be accessible with a varying-time-step series. We therefore decided to 
use continuous Gaussian distributions for both Qd (Equation 20a) and Pd (Equation 20b), with the mean varying 
in both space and time and the standard deviation varying in space only. The Gaussian distribution is censored 

Figure 4.  Location of stations used in the case study and data availability.
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below zero and above one as described in Section 2.3 to account for the nonzero probabilities of seeing durations 
equal to zero and one. Note that a logit transformation cannot be applied to Qd or Pd because zero/one values are 
frequently observed and would be sent to ±∞.

Heat wave intensities Tx are defined as threshold excesses and are therefore modeled with a 2-parameter Gen-
eralized Pareto Distribution (Equation 20c). The scale parameter varies in both space and time and the shape 
parameter varies in space only. Note that an alternative version of this model, with a third time-varying threshold 
parameter, was tried but abandoned. Indeed, small exceedances are generally selected by the procedure, even 
during particularly hot years also containing very large exceedances. The threshold is therefore not free to vary 
much because it is constrained every year by the smallest exceedance.

Finally, the number of heat waves Tn (Equation 20d) is modeled with a Poisson distribution with the rate param-
eter varying in both space and time

⎧
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Each spatial term λk,v,c is modeled using its own Gaussian hyperdistribution as described in Equation 7, with 
a constant mean function and an exponential covariance function (Equation 8). This leads to three unknown 
hyperparameters (mean, sill, and range) for each spatial term. Likewise, each HCI τk is modeled using its own 
Gaussian hyperdistribution as described in Equation 9. Following preliminary analyses that indicated no clear 
temporal structure in the estimated HCIs, we used iid Gaussian hyperdistributions with constant mean vectors and 
covariance matrices proportional to the identity matrix. Moreover, the identifiability constraints allowed fixing 
all means and marginal standard deviations to zero and one, respectively.

Priors for the spatial hyperparameters need to be specified to complete the model. Flat priors are used for mean 
and sill hyperparameters. For range hyperparameters, we use an exponential prior with scale parameter equal to 
1,000 km.

3.2.2.  SCI Model

An SCI model is also used for comparison purposes with the HCI model. The equations for the SCI model are 
identical to those of the HCI model in Equation 20, with the key exception that the unknowns 𝐴𝐴 (𝜏𝜏1(𝑡𝑡), 𝜏𝜏2(𝑡𝑡), 𝜏𝜏3(𝑡𝑡)) 
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are replaced with the known values taken by the indices 𝐴𝐴 (NINO4(𝑡𝑡),DMI(𝑡𝑡), SAM(𝑡𝑡)) . All spatial terms λk,v,c are 
estimated and the same Gaussian hyperdistributions as described in the previous section are used. Priors for the 
spatial hyperparameters are also identical.

3.2.3.  MCMC Sampling

Four chains of size 120,000 each are run in parallel. The first half of each chain is discarded as burn-in, and 
the remaining iterations are further thinned by a factor of 60, leaving 1,000 iterations per chain to generate the 
results presented hereafter. MCMC convergence is assessed by monitoring MCMC traces and computing the 
Gelman-Rubin criterion (Gelman & Rubin, 1992).

3.3.  Results Analysis Strategy

The results of the case study are analyzed in four main steps. The first step focuses on the estimated HCIs 𝐴𝐴 𝝉̂𝝉 and 
their spatial effects 𝐴𝐴 𝝀̂𝝀 . The HCIs are described in terms of basic statistical properties such as trend or autocorrela-
tion, and cross-correlations with the three predefined SCIs are computed. The effects of HCIs and SCIs are also 
compared in terms of strength and spatial distribution.

In the second step, time-varying predictions resulting from both HCI and SCI models are analyzed and com-
pared in terms of reliability and sharpness. Reliability is assessed using the widely used PIT diagram (Laio & 
Tamea, 2007). Sharpness is characterized by a ratio representing the predictive variance explained by interannual 
variations, and computed as follows. For a single site and a single variable, let 𝐴𝐴 (𝑤𝑤𝑡𝑡𝑡𝑡𝑡)

𝑖𝑖=1…𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡=1…𝑇𝑇  denote Nrep = 1,000 

Monte Carlo replicates from the distribution estimated at time steps t = 1…T, as described in Section 2.4. The 
sharpness ratio ρ is the ratio between the variance of the predictive means wt,⋅ and the total predictive variance

𝜌𝜌 =
Var[(𝑤𝑤𝑡𝑡𝑡⋅)𝑡𝑡=1…𝑇𝑇 ]

Var[(𝑤𝑤𝑡𝑡𝑡𝑡𝑡)
𝑖𝑖=1…𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡=1…𝑇𝑇 ]

.� (21)

The sharpness ratio varies between 0 and 1. For a time-invariant climatology prediction, the temporal variance 
in the numerator of Equation 21 is null, leading to ρ = 0. A deterministic prediction would correspond to all 
replicates being identical, so that the variance in the denominator is purely temporal and is equal to the variance 
in the numerator, leading to ρ = 1.

The third step of the results analysis strategy evaluates the ability of both HCI and SCI models to represent spatial 
and intervariable dependencies. This is done by computing the probabilities of joint or conditional events accord-
ing to the models and comparing them to the corresponding observed frequencies.

Finally, the fourth step is a split-sample experiment based on a reduced calibration data set built as follows: 
(1) for each variable, 1/3 of the sites are removed; (2) for variable Pd only, all data from the period 1971–1990 
are removed. The HCI model is then used to make predictions at these left-out sites or years, as described in 
Section 2.4. Comparing these predictions with observed values assesses the ability of the HCI model to transfer 
information between sites (1) or variables (2).

4.  Case Study: Results
4.1.  Overview of MCMC Sampling

Computing time for running the MCMC simulations described in Section 3.2.3 on a standard laptop is about 
12 hr, which roughly corresponds to 1 hr per 10,000 MCMC iterations. While this is a nonnegligible compu-
tational effort, this is not a major impediment in the context of this paper given the absence of any real-time 
constraint. This computing time also needs to be interpreted in relation to the scale of the analysis: hundreds of 
sites are considered over a 100-year period, leading to ∼26, 600 data points to infer ∼1, 000 unknown quantities.

MCMC convergence is overall excellent. Values of the Gelman-Rubin criterion are well below 1.1 for nearly all 
inferred quantities. A few higher values around 1.2 are noted for values of τ1 at the beginning of the period or 
for a couple of spatial hyperparameters. The corresponding MCMC traces are shown in Figure S1 in Supporting 
Information S1 along with those of other randomly selected parameters.
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Posterior correlations are generally very small, with 99% of the off-diagonal terms of the posterior correlation 
matrix being below 0.1. The highest correlations are observed for spatial hyperparameters, which may explain 
their slower MCMC convergence. Posterior correlations between parameters related to a same site are all close 
to zero.

While the number of HCIs was primarily chosen to enable comparisons with a 3-SCI model, it also appears to 
be an adequate choice. A model including a fourth HCI was estimated and it shows that by the fourth HCI the 
standard effects have dropped for all variables (Figure S2 in Supporting Information S1). MCMC convergence 
also deteriorates for this fourth HCI, suggesting that it may not be very informative.

4.2.  Estimated HCIs and Their Effects

Figure 5 shows that the three HCIs are precisely estimated in the sense that the credibility intervals are small 
with respect to the interannual variability. Intervals also tend to be wider at the beginning of the analysis period 
(Figure S3 in Supporting Information S1), reflecting the smaller number of available stations (Figure 4). The 
three HCIs represent modes of climate variability that are quite distinct from those represented by the SCIs: 
cross-correlations are generally small, with the largest one (in absolute value) being equal to 0.34 between the 
second HCI and the SAM index (not shown).

The first two HCIs show no significant trends or autocorrelation. The third HCI, however, shows a significant up-
ward trend (p-value𝐴𝐴 𝐴 0.001, Mann-Kendall test), suggesting that it may be associated with some long-term change 

Figure 5.  Estimated hidden climate indices (HCIs; posterior median) with 90% credibility intervals.
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affecting at least part of the data set. Some autocorrelation coefficients are also significant, but they become non-
significant after detrending (not shown). This suggests that low-frequency variability, if it exists, is rather weak.

Figure 6 maps the effects of HCIs and SCIs for the four studied variables. Recall that all HCIs and SCIs are cen-
tered and scaled, so that their effects can be compared for a given variable. Overall, HCI effects λ are much larger 
(in absolute value) than SCI effects, suggesting that the former account for more of the observed variability than 
the latter. The first HCI has a global effect on all variables and in the whole studied region. The second HCI has 
both a smaller effect and a more spatially contrasted one, with generally negative effects in the East and positive 
ones in the West. The effect of the third HCI is quite small for the streamflow variable Qd (more than four times 
smaller than the effect of the first HCI on average). Conversely, it is quite high for temperature variables Tx and 
Tn: it is the largest effect amongst the three HCIs for 78% and 37% of the sites, respectively. The fact that this third 
HCI mostly affects temperature variables suggests that its upward trend may be interpreted as a warming signal.

Figure 6.  Estimated effects (posterior median) of hidden climate indices (HCIs) and standard climate indices NINO, DMI, and SAM for the four variables of the case 
study. Boxplots represent the absolute values of the effects and maps allow visualizing spatial patterns. For a given variable, boxplots and maps can be compared across 
indices.
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In addition to HCI effects, the model also estimates spatial processes controlling intercepts or time-invariant pa-
rameters (λ0's in Equation 20). Corresponding maps are provided in Figure S4 in Supporting Information S1 and 
illustrate well-known climate gradients in Australia. For example, the dry-day duration Pd tends to get smaller 
and more variable as one moves eastward in the studied region.

4.3.  Time-Varying Predictions

Figure 7 shows the time-varying predictions obtained using the HCI and the SCI models for the four variables at 
a few sites, as described in Section 2.4. These sites have been selected because they allow illustrating some key 
features of the models. The three sites for variables Qd and Pd are located in northern Victoria and are quite close 
to each other (≈200  km). The temperature site is located ≈600  km further away to the Northeast, to the North of 
Sydney.

Overall, HCI predictions are sharper than SCI ones: they are more precise and their temporal variability is larger. 
The latter is a direct consequence of HCI effects being much larger than SCI effects, hence inducing larger tem-
poral variations. Figure 8a shows the distribution of the sharpness ratio at all sites. It indicates that HCI predic-
tions are overall sharper than the SCI predictions across all sites, not just at those shown earlier in Figure 7. The 
difference in sharpness is particularly salient for variables Qd and Pd, for which the ratio is five times higher for 
HCI than for SCI predictions. On the other hand, the sharpness ratio is low for both the HCI and SCI models for 
variable Tx. This is probably due to the fact that the time-varying parameter is the scale parameter of the GPD 
distribution for this variable (see Equation 20c), which induces temporal variation in the variance of the distribu-
tion. This is to be compared with the other three variables for which the time-varying parameter is the location 

Figure 7.  Examples of time-varying predictions obtained using the hidden climate indices (HCI) and the standard climate indices (SCI) models. Colored bands 
represent nested prediction intervals up to the 95% level, black dots are observed values. Rotated panels on the right represent the mixture marginal distribution (shaded 
area = continuous pdf, bars = discrete probabilities).
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parameter (see Equation 20), inducing temporal variations in the mean. Finally, the PIT diagrams in Figure 8b 
indicate that both the HCI and SCI predictions are reliable across all sites. This implies that the larger sharpness 
of HCI predictions compared with SCI ones comes at no cost in terms of reliability.

Some covariability is evident in the HCI predictions of Figure 7. Predictions for Pd at sites 54 and 56 have very 
similar temporal patterns, which is indicative of spatial dependence. There is also some similarity between the 
predictions of Pd and Qd. Near-zero Qd predictions are generally associated with low predictions for Pd, which 
indicates some intervariable dependence.

Note that for variable Qd, predictions can be made at the beginning of the period, despite the fact that no stream-
flow data was available before 1951 (at any site). These predictions correspond to the “missing period” situation 
discussed in Section 2.4 and are feasible because the HCIs have been estimated based on the other variables 
available at this time. This suggests a potentially interesting application of HCI modeling to perform probabilistic 
reanalyzes of multivariable data sets.

The rotated panels in Figure 7 represent the marginal mixture distribution (see Section 2.4). Both the HCI and 
SCI models are able to handle continuous and discrete distributions. The censoring mechanism also allows com-
puting the probability for a continuous variable to reach a physical bound. As an illustration, the variable Qd is 
continuous with a discrete mass at zero, and the HCI and SCI models are able to estimate the probability of a zero 
duration (HCI: 0.55, SCI: 0.59, observed frequency: 0.56). Overall the HCI and SCI marginal distributions are 
remarkably similar, despite their time-varying distributions being very different.

4.4.  Multivariate Predictions

Figure 9 shows bivariate distributions for a few combinations of the variables shown in Figure 7. Both the HCI 
and SCI models are able to handle complex dependence structures, including dependence between discrete and 
continuous distributions. This is made possible by the conditional independence assumption, with dependence 
being induced indirectly by the effect of common covariates (hidden or not).

The first two rows of Figure 9 indicate that the HCI model leads to a stronger dependence than the SCI model, 
which is a consequence of the HCI effects being larger, leading to more covariability. This is particularly evident 
for variable Pd at sites 54 and 56, where the SCI model leads to a nearly independent bivariate distribution which 
is not consistent with the observed scatterplot.

The ability to describe dependence can be evaluated in more depth by computing joint or conditional probabilities 
from the bivariate distributions. The bottom left panel of Figure 9 shows the probability for the dry duration Pd 
to be larger than some value at both sites 54 and 56. The HCI model achieves a good fit to the observed frequen-
cies, while the SCI model systematically underestimates this probability, due to the underestimation of spatial 
dependence. The second panel shows the probability of seeing a hydrological drought (Qd 𝐴𝐴 𝐴 0 ) given that the 
dry duration Pd is larger than some value. The HCI model correctly recognizes that longer dry periods lead to 
a larger probability of hydrological drought. By contrast, the SCI model suggests a nearly constant conditional 
probability. A similar finding is obtained for the number of heat waves Tn: when the dry duration increases, the 

Figure 8.  (a) Distributions (across stations) of the sharpness ratio. (b) PIT diagram to evaluate the reliability of predictions. For one given variable, the PIT curve is 
derived from all stations.
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probability of seeing more than two heat waves increases according to the data and the HCI model, while the SCI 
model suggests a near-constant probability, thus underestimating the dependence between these two variables.

The ability to describe dependence can be evaluated beyond the bivariate case by considering events involving 
all variables at all sites. For instance, consider the question of estimating the fraction of sites where conditions 
are drier (variables Qd and Pd) or hotter (Tx and Tn) than some predefined threshold (e.g., a local p-quantile). 
Figure 10 shows that this fraction varies around 1 − p for both the HCI and SCI models. However, the HCI model 
leads to a much larger temporal variability of this fraction, in agreement with the observed frequencies. As an 
illustration, the probability of seeing >75% of the sites with above-median conditions is equal to 0.07 according 
to the HCI model, but is equal to 0.0 according to the SCI model (observed frequency: 0.05). The better reliability 
of the HCI model also holds for more extreme thresholds. For instance, only the HCI model is able to recognize 
that half of the stations may be simultaneously affected by a 10-year event (bottom panel). Reliably estimating the 

Figure 9.  Top two rows: bivariate distributions derived from the hidden climate indices (HCI) and the standard climate 
indices (SCI) models. The colored area represents the bivariate pdf (estimated by counting Monte Carlo simulations over 
a two-dimensional grid), the points are the observed values. Bottom row: examples of joint and conditional probabilities 
extracted from the joint distributions (red = HCI, blue = SCI), and comparison with observed frequencies (points).
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large temporal variability of such hazard measures is important for practical purposes. Indeed, hazard response 
should be designed to cope with an alternation of severe and relatively problem-free years, rather than with the 
repetition of a hypothetical “average” year.

4.5.  Split-Sample Experiment

Results of the split-sample experiment are presented by comparing the predictions obtained with: (a) the reduced 
calibration data set described in Section 3.3, leaving out 1/3 of the sites for all variables and all values from the 
period 1971–1990 for variable Pd; (b) the full calibration data set.

Figure 11 focuses on predictions for 1971–1990 Pd values, which are included in the full calibration data set but 
not in the reduced one. It suggests that the ability of the model to predict unobserved decades for one variable is 
satisfactory. Indeed, the reduced calibration data set does not lead to any marked loss of performance compared 
with the full calibration data set. In particular, Figure 11a shows a slight increase of the scatter, mostly visible for 

Figure 10.  Modeled versus observed fraction of above-threshold stations. Colored bands represent nested prediction intervals up to the 95% level (red = hidden climate 
indices (HCI), blue = standard climate indices (SCI)), black dots are observed values.
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high Pd values, and no systematic underestimation or overestimation for specific years. Figures 11b and 11c also 
indicate that the reliability and sharpness of predictions remain similar.

Figure 12 focuses on predictions at left-out sites. Figure 12a shows results for variable Pd only. As previously, the 
scatter is slightly larger when prediction sites are ungauged (reduced calibration data set), but the performance 
remains satisfactory. Results for other variables are summarized in Figures 12b and 12c. While reliability is very 
similar for both calibration data sets, sharpness is slightly decreased for all variables when prediction sites are 
ungauged. This is due to the propagation of the Kriging variance (Equation 19), which leads to more uncertain 
(but still reliable) predictions. A similar figure was made for the stations located in Tasmania to verify that the 
stationary covariance function used in this case study was reasonable in an island configuration. Figure S5 in 
Supporting Information S1 suggests that reliability indeed remains acceptable.

Figure 11.  Split-sample experiment: ability to predict variable Pd during the unobserved decades 1971–1990. (a) Observed versus predicted values; (b) PIT diagrams 
(red = full calibration data set, black = reduced calibration data set); (c) distribution of sharpness ratios.

Figure 12.  Split-sample experiment: ability to predict variables at ungauged sites. (a) Observed versus predicted values for variable Pd; (b) PIT diagrams for all 
variables (red = full calibration data set, black = reduced calibration data set); (c) distribution of sharpness ratios for all variables.
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5.  Discussion
5.1.  Comparison of HCI and SCI Models

The basic idea behind HCI models is to extract the relevant temporal covariates directly from the target variables, 
rather than to rely on predefined SCIs. The case study confirms that HCIs can be precisely estimated from the 
target variables, thus identifying the strong temporal structures in the data that cannot be easily described by 
SCIs. Moreover, the case study shows that HCIs have much stronger effects on the target variables than SCIs. 
This finding is not surprising, since HCIs are estimated and are hence “tuned” to the target variables. Stronger 
HCI effects induce larger temporal variability, leading to sharper time-varying predictions. In addition, they 
induce larger covariability between sites and/or variables, leading to a more reliable description of spatial and/or 
intervariable dependencies.

However, there is a price to pay for this additional explanatory power: HCIs are highly specific to the target pre-
dictand data set. In a sense, they can be considered as “disposable” temporary variables that are used to reproduce 
the variabilities and dependencies existing in the target data set. However, they should not be reused for other 
predictand data sets—they would not be hidden anymore! By contrast, SCIs are extracted from atmospheric and 
oceanic circulation variables, which are the main drivers of surface variables. They have hence more potential to 
be useful for many variables in many places of the world. In addition, the mechanisms behind at least some SCIs 
have been thoroughly studied and are well understood (e.g., the role of atmospheric/oceanic dynamics and ther-
mocline variability for ENSO). This gives SCIs some legitimacy as distinct climatic phenomena, compared with 
HCIs which are purely data-driven devices. Another practical limitation of HCIs is that their identification relies 
on the availability of many time series (i.e., many sites and/or variables). HCI models are therefore not adapted to 
studies involving a small number of time series, whereas SCI models can be applied to even a single time series.

5.2.  On the Indirect Treatment of Dependence in HCI Modeling

The HCI model treats both spatial and intervariable dependence in an indirect way: dependence is induced by the 
strong and spatially structured effects of common HCIs, but all data are assumed conditionally independent. This 
assumption has strong practical advantages. First, it easily accommodates “nonrectangular” data sets, where data 
availability strongly varies in time. This is an important strength for station-based hydroclimatic data sets, since 
it simplifies the use of all available data, including old data which are often discarded because spatial coverage 
is deemed insufficient. By contrast, approaches modeling data dependence more directly (e.g., geostatistical 
models) require implementing a specific treatment of missing data (e.g., imputation, case-deletion, data augmen-
tation, etc.). In addition, HCI modeling also accommodates data sets containing both continuous and discrete 
variables with no extra effort, whereas such data sets require a specialized and nontrivial treatment with geosta-
tistical approaches (Emery & Silva, 2009; Faugeras, 2017; Genest & Nešlehová, 2007; Leblois & Creutin, 2013).

The ability of HCI models to accommodate data sets with strongly varying data availability allows using them 
as reanalysis tools. Indeed, when the HCI model has been calibrated with data from S sites over T time steps, 
probabilistic predictions can be made for all S × T combinations, including combinations for which data were 
missing. For instance, streamflow data Qd are not available during the “partially observed” period pre-1951 in 
the case study. However, Qd predictions can still be made for this period because the HCIs have been estimated 
from other available variables.

As noted in Section 1, the HCI framework shares similarities with principal component analysis (PCA). In both 
cases, dependence in the data set is summarized by means of unobserved factors (here, HCIs). When only a 
small number of factors is used, the representation of dependence is necessarily approximate. In the case study 
of Section 3, three HCIs were sufficient to provide a reasonable description of the overall dependence structure; 
however, small-scale dependence might be underestimated unless many HCIs are used. A geostatistical approach 
might be more adapted if small-scale dependence is deemed important for the analysis at hand, since it naturally 
induces strong dependencies at short distances. Note that, in principle, both approaches could be combined; 
however, giving up the conditional independence assumption would cancel the practical advantages described in 
the previous paragraphs.
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5.3.  Model Improvements

Some assumptions made in this paper may be relaxed without fundamentally changing the general HCI frame-
work. Consider for instance the linear space-time decomposition used in Equation 6 and the Gaussian hyperd-
istributions for the HCIs (Equation 9) and their effects (Equation 7). These default assumptions are reasonable 
but could be modified if necessary. For instance, implementing the max-stable model of Reich and Shaby (2012) 
is feasible but requires both a nonlinear space-time decomposition and a non-Gaussian “positive-stable” hy-
perdistribution for the HCI. Nonstationary spatial covariance functions could also be needed in configurations 
including islands, large elevation range or orographic barriers, etc. Likewise, iid temporal processes were deemed 
sufficient for the purpose of this paper but other applications may require introducing trends, seasonality, and 
autocorrelation structures.

The covariance matrix in the spatial hyperdistribution (Equation 7) requires 𝐴𝐴 (𝑛𝑛3) operations, which becomes 
intractable beyond a few hundreds of sites. A similar bottleneck may exist for the temporal covariance matrix 
when analyzing either very long or fine-time-step data sets. This computational bottleneck could be overcome by 
using adapted models such as the nearest neighbor Gaussian process (Banerjee, 2017; Datta et al., 2016a, 2016b). 
Note, however, that using a high number of variables does not induce a similar issue thanks to the conditional in-
dependence assumption prevailing between variables. This is to be contrasted with the treatment of multivariable 
data sets in geostatistics, which require specifying cross-covariance functions. Further work is needed to assess 
whether this theoretical advantage really holds in practice.

Finally, estimation of the HCI model could benefit from improvements in two directions. First, the K HCIs could 
be estimated jointly rather than through a stepwise procedure. To achieve this, another identifiability constraint is 
needed, namely that HCIs are orthogonal (in addition to having mean zero and unit standard deviation, see e.g., 
Murphy, 2012, chapter 12). Unfortunately, this constraint is not straightforward to implement, but recent work 
by Pourzanjani et al. (2020) may offer a solution. Second, HCI models could be implemented in general-purpose 
Bayesian frameworks such as STAN (Carpenter et al., 2017). While the handling of identifiability constraints 
makes this task not straightforward, such implementations would allow benefiting from built-in STAN function-
alities such as alternative MCMC samplers, convergence diagnostics, approximate variational inference tools, etc.

5.4.  Predicting HCIs From Large-Scale Climate Information and Potential Applications

Previous studies suggested that while being extracted from the target station data, HCIs may also be associated 
with specific patterns in large-scale atmospheric or oceanic variables (Ahn et al., 2017; Renard & Lall, 2014; 
Renard & Thyer, 2019). In order to investigate such association for the Australian case study of this paper, Fig-
ure 13 shows correlation maps between HCIs and selected atmospheric variables. At each pixel, the color denotes 
the correlation between two time series: (a) the atmospheric variable at this pixel and (b) the HCI (Figure 5). The 
first HCI is correlated with temperatures in the tropics, while the other two HCIs are more locally correlated with 
wind and temperature.

These correlation maps are indicative of a relation between HCIs and large-scale climate that could be exploited 
to predict the former from the latter. If sufficient predictability exists, the model of Equation 20 could then be 
used in a second stage to make predictions for all variables at individual stations. This would result in a down-
scaling tool between large-scale climate information and station data which would open the way for several inter-
esting applications. For instance, a seasonal forecasting tool (e.g., Lima & Lall, 2010a; Lima et al., 2015) could 
be derived by downscaling the outputs of an atmospheric-oceanic forecasting system (e.g., Johnson et al., 2019). 

Figure 13.  Examples of correlation maps between hidden climate indices (HCIs) and DJF-averaged atmospheric variables from the NCEP-NCAR reanalysis (Kalnay 
et al., 1996). Contour plots denote correlation values of 0.4 (dashed) and 0.6 (solid). T400 = temperature at 400 hPa, U850 = zonal wind component at 850 hPa.
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Alternatively, past reconstructions (e.g., Caillouet et al., 2016, 2017) or future projections (e.g., Schlef et al., 2018; 
Tramblay et al., 2012) could be obtained from long reanalyzes such as 20CR (Compo et al., 2011) or from GCM 
outputs (e.g., Eyring et al., 2016).

Note that predicting HCIs from large-scale climate variables is not straightforward because the number of poten-
tial predictors is very large (whole climate fields for many atmospheric or oceanic variables) and is much larger 
than the number of predictands (a few HCIs). Candidate methods include regularized regression approaches such 
as ridge, lasso, or elastic net (Hastie et al., 2015), inverse regression (Devijver & Perthame, 2020), and possibly 
many other machine learning algorithms (Bishop, 2006; Giannakis & Majda, 2012). Developing such an addi-
tional predictive layer constitutes a key future objective.

6.  Conclusion
A general probabilistic framework was introduced to model the time-varying joint distribution of multivariable 
space-time data. Instead of using predefined standard climate indices to model time variability as usually done 
in similar frameworks, the proposed approach extracts a set of hidden climate indices from the observed vari-
ables. These hidden climate indices correspond to temporal latent variables in a Bayesian hierarchical model. 
The framework can be applied to both discrete and continuous variables, and any distribution can be used. Data 
are assumed to be conditionally independent, which has strong practical advantages in terms of accommodating 
irregular station-based data sets. Intersite and intervariable dependencies are not modeled directly, but are both 
induced by the strong effect of common HCIs.

The proposed framework is applied to a case study in Southeast Australia aimed at jointly modeling hydrological 
droughts, meteorological droughts, and heat waves at many stations. The case study first illustrates that the HCI 
framework can easily be applied to a typical station-based data set that includes several noncolocated variables 
with very different spatial and temporal coverage. Moreover, the HCI model delivers reliable time-varying distri-
butions that are much sharper than the ones resulting from an equivalent SCI model. In addition, the HCI model 
is able to reliably describe both spatial and intervariable dependencies, while an equivalent SCI model clearly 
underestimates them. Such dependencies include complex dependence structures between continuous and dis-
crete variables.

This paper illustrated that the HCI framework is flexible and generic, and can be applied to a wide range of 
different hydrometeorological variables. Future work will investigate methods to predict HCIs from large-scale 
climate data. This would allow using the HCI framework as a downscaling tool to estimate the joint distribution 
of several variables at many stations from climate models or reanalyzes.

Data Availability Statement
The data and the scripts used for setting up models, analyzing results, and preparing figures are available in a Ze-
nodo repository (https://doi.org/10.5281/zenodo.5721783). Original and updated versions of the data can also be 
downloaded using the url's given in Table 1. MCMC simulations have been performed with the computing code 
STooDs v0.1.0 (Renard, 2021b, https://github.com/STooDs-tools/STooDs) and its R interface RSTooDs v0.1.1 
(Renard, 2021a, https://github.com/STooDs-tools/RSTooDs). Data and hidden climate indices are illustrated in a 
sonified animation at https://vimeo.com/600898709
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