
HAL Id: hal-03511590
https://hal.science/hal-03511590v1

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HPC Scheduling Simulator
Daniel Rauch

To cite this version:

Daniel Rauch. HPC Scheduling Simulator. [Research Report] IIT. 2022. �hal-03511590�

https://hal.science/hal-03511590v1
https://hal.archives-ouvertes.fr


HPC Scheduling Simulator
Daniel Rauch

Abstract—Scheduling jobs on HPC systems can impact per-
formance, efficiency, and utilization greatly. It can be costly to
try out experimental job scheduling algorithms on an actual
HPC system because of the unknown performance implications.
Because of this it is important to be able to test out the
implications of a job scheduling algorithm before implementing it
into the system. Introduced here is an event-driven job scheduling
simulator called Schedulus. It uses the Simulus Python library
to implement a first come first serve job scheduling algorithm.
Some comparisons are made to other job scheduling simulators.

Index Terms—Event-driven simulator; Job scheduling simula-
tor; Simulus

I. INTRODUCTION

The motivations for this project are as follow:
• Design an Event-Driven Job Scheduling Simulator
• Implement a FCFS with EASY Backfilling job scheduling

algorithm
• Utilize the Simulus discrete-event simulation library
• Analyze our simulator
The discussion will begin with an introduction into what

scheduling is and why scheduling simulators are important.
Discrete-event simulation is discussed and several contempo-
rary job scheduling simulators are reviewed. After that there is
a description of what the Simulus Python library is and how to
use it as well as a description of what job scheduling algorithm
was tested with the Schedulus job simulator. In section two
some technical information is given about Schedulus and how
it works. Section three will be the results followed by the
conclusion in section four.

II. BACKGROUND

Scheduling and simulation are proven tools for increased
productivity. Scheduling is defined as, “the process of alloca-
tion of scarce resources over time” [1]. The desired outcome of
scheduling is to optimize one or more objectives in a decision-
making process [2]. Simulation is a tool that is used to
describe a certain process in a time-dependent manner [1]. For
computer systems, system resources are allocated to processes
for some period of time based on the systems job scheduling
policies [3]. The scheduling policies for any computer system
greatly impact the performance of that system [4]. It is often
impractical to test experimental scheduling policies on the
hardware they are intended to run on. This is especially
the case for distributed systems and supercomputers. For
this reason, scheduling simulators for computer systems are
invaluable tools for increasing and fine tuning the performance
of a system [5], [6]. In the context of a computer system,
a scheduling simulator is used to test different scheduling
policies independent of the physical computer hardware. A

scheduling simulator is a virtual model of a system used to
test and optimize the distribution of resources and the decision
making process behind those distributions in that system [7].

A. Discrete-Event Simulation

There are several different paradigms that could be applied
to scheduling simulation. The discrete-event driven paradigm
was used for the Schedulus simulator. A discrete-event simula-
tor “models the operation of a system as a discrete sequence of
events in time. Each event occurs at a particular instant in time
and marks a change of state in the system” [8]. The state of
the system is assumed unchanged between consecutive events
which allows the simulation time to directly jump ahead to
the next occurrence of an event, called the next- event time
progression. This is important because it allows the simulation
to run much faster than it would under real time constraints,
continuous-time simulation, ect [8], [9].

Fig. 1: Discrete-event simulator.

B. Scheduling Simulators

The following are some examples of currently available job
scheduling simulators:

• CQsim: An event driven job scheduling simulator [10]–
[17]. Can take user parameters via a command line
interface or can be taken via a standard workload format
(SWF) file [18].

• Alea 2: A Grid and cluster event driven job scheduling
simulator. Supports several common scheduling algo-
rithms working either on the queue or the schedule
based principle. Includes a visualization interface for data
representation [19].

• Slurm Simulator: This simulator is actually a modification
of the Slurm resource manager for HPC [20]–[22]. This
simulator allows the modeling of a system using Slurm,
then the ability to run workload information through that
model with the option of different system settings. This
case is good because it allows experimentation on the
system without actually impacting performance on the
actual system.

• GridSim: A Java-based discrete-event grid simulation
toolkit. This toolkit supports modeling and simulation of
heterogeneous grid resources, users and their application
models [23].



C. Simulus

Simulus is an open-source discrete-event simulator that is
both event-driven and process-oriented. It offers high-level
modeling abstractions to ease simulation and synchronized
groups supporting model composition and parallel simulation
[24]. Simulus is a programming tool written in the Python
programming language and can be easily obtained via the
command line using pip. There are two primary ways to use
Simulus. One way is through events. The user can sched-
ule events and simulus makes sure all events are sorted in
timestamp order. When an event occurs, Simulus advances the
simulation time to the event and calls the event handler, which
is a user-defined function. While an event is being processed,
the user can schedule new events into the simulated future
which is called “direct event scheduling” in Simulus [24].

The second way to use Simulus is through processes. The
user can create and run processes that can interact with
each other. Each process is a seperate thread of control. The
approach of “process scheduling” is implemented during a
process’s execution where a process may be suspended by
either sleeping for some time or becoming blocked while
waiting for a currently unavailable resource. Both direct event
scheduling and process scheduling are to be used in Simulus
together to achieve modeling tasks.

D. First Come First Serve w/ EASY Backfilling

The first come first serve (FCFS) job scheduling algorithm
is pretty self explanatory. The system runs each job in the order
that they were received and if there are enough resources to
do so. If there are not enough available resources then the
jobs are placed in a queue where they wait their turn to run.
This is a very simple algorithm to implement but can cause
fragmentation [25]. An example of fragmentation would be
if a large job is next up in the queue but is unable to run
because there are not enough resources available for that large
job. If there are enough resources available to run smaller
jobs that are further down the queue then this would result in
fragmentation. It has a negative impact on resource utilization
and performance.

In order to avoid the fragmentation and poor utilization of
FCFS one could also implement the EASY backfilling algo-
rithm. EASY stands for the “Extensible Argonne Scheduling
sYstem” [25]. This algorithm allows smaller jobs to skip ahead
of the line if it is able to run given the available resources if
a larger job earlier in the queue can not. There are some rules
to this however. To avoid starvation of resources from larger
jobs, the smaller job has to be sure not to delay the start of
the larger job. The run time estimates of the jobs are known
beforehand [26].

The two schenarios where EASY is applicable are repre-
sented by the two populated schedule spaces in Figure 3.
Suppose the job labeled “first” in both depictions in Figure 3
is the next in like job to run given our FCFS schedule, and call
that job J. The top depiction in Figure 3 shows the importance
of shadow space. Shadow space is the region in the schedule
space that is not currently occupied by another job and begins

Fig. 2: Example Scheduling Space.

Fig. 3: EASY Backfilling [27]

now and ends at the shadow time, or the time at which job J is
scheduled to run. The bottom depiction in Figure 3 represents
the importance of calculating the number of extra processors
available while job J is being executed. The region in schedule
space including these extra processors while J is running will
be called the extra processor space. It is always permissible
for a scheduler operating under EASY backfilling semantics
to fill the shadow space and extra processor space with jobs
while backfilling. The implementation and rationalization for
EASY backfilling in Schedulus was taken from [27].

III. SCHEDULING CONCEPTUAL OVERVIEW

Schedulus operates by maintaining a schedule space, as
respresented visually by Figure 1. Schedulus does this by
maintining object types representing fundamental concepts in
HPC, where objects types are defined as classes in object
oriented programming (OOP) [28]. Schedulus orchestrates
these objects by responding to discrete-events generated by
Simulus. Schedulus defines event semantics that determine
how jobs are processed. At any given time during execution,
Schedulus maintains a list of scheduled jobs and a list of
running jobs.



A. Jobs

A job object represents a computational activity that has
not yet been run, is running, or has already been run by the
scheduler. It stores data as specified by the Parallel Workloads
Archive in the standard workload format. Examples of this
data are the jobs’s time of submission, the time it was started,
and the time it ended. It also has methods for handling the
submission, start, and finish of the job during its lifecycle in
Schedulus.

A job in Schedulus maintains state regarding its current
position in its lifecycle. A jobs lifecycle is defined as the time
interval from when it is scheduled for submission until it is
ended and removed from the Schedulus data structures. At
any given moment a job’s ID can be found residing in the
schedule’s queue waiting to run, in the set of running jobs, or
in neither.

B. Cluster

A cluster object represents the state of the computational
machinery Schedulus is simulating. Possibilities for compu-
tational machinery can range from actual hardware such as
Summit located at Oak Ridge National Laboratory to theo-
retical designs for hardware. Currently the specification for
a cluster object contains the number of total available nodes
and the number of currently idle nodes. Included are methods
for safely allocating and deallocating these nodes to and from
jobs. In the future this specification will be expanded to capture
more sophisticated hardware characteristics.

C. Event Semantics

The scarce resource in most HPC systems is the num-
ber of available nodes, or more granularly processors [29].
Schedulers like Schedulus aim to maximize the use of these
resources to maximize performance. Schedulus uses events
to simplify the process of changing job state. By not having
to worry about orchestrating job state transition events, more
attention can be given to the evaluation of performance of
different scheduling strategies. Schedulus responds to two
types of discrete-events: job submission and job termination.
Using these events Schedulus can treat each job independently
from one another; it only has to sychronize the allocation
and deallocation of the scarce resources defined by the cluster
object.

D. Job Submission Events

The workload log define a submission time for all jobs given
in the log. Schedulus uses this time, usually given in seconds,
to schedule a discrete-event at that time. Simulus then fires an
event at that time that takes the form of a submission event
handler, that is just a Python function. This function takes
care of determining if the job can be run immediately, or if it
should be appended to the schedule.

E. Job Termination Events

When a job ends its execution phase, it is removed from the
running list and the number of computing units it was using is
returned to the cluster. Schedulus then runs as many jobs as is
allowed by the schedule space taking one at a time from the
schedule queue. Running a job in Schedulus means add it to
the list of running jobs and schedule a job termination event at
some time t equal to the current simulation time plus the time
it takes for the job to run. If at some job termination event
time no jobs can be safely run during a job termination event,
Schedulus runs a backfilling operation if one is predefined at
runtime.

IV. RESULTS

To test the effectiveness and correctness of Schedulus,
experiments were run to gather statistics. The worload logs
used in the experiments were the HPC2N log, the CTC-SP2
log, and the MetaCentrum log given in the Parallel Workloads
Archive. The HPC2N log contains 202,871 jobs. The CTC-
SP2 log contains 77,222 jobs. The MetaCentrum log contains
103,656 jobs. Any times reported here are simulation times,
but can be interpreted as seconds because the workload logs
report event times in seconds. The statistics calculated were
the average number of running jobs in the system, the average
bounded slowdown of jobs, and the average wait time of
jobs. More specifically, the average number of running jobs
was calculated by summing the number of running jobs each
time an event was fired and dividing by the number of events
fired. The average bounded slowdown was calculated by taking
the mean of all jobs’ bounded slowdown. It reduces the
emphasis on short jobs exhibited by the typical slowdown
metric. Bounded slowdown is defined as:

max(
Tw + Tr
max(Tr, τ)

, 1)

where Tw and Tr are the waiting time and running time
of a job. τ is a discretionary parameter called the “interactive
threshold” in the formula and is set to 10 seconds for our
experiments [2], [18].

The average wait time was calculated as the mean of the
job wait times. Wait time is calculated internally by Schedulus
and is equal to the time the job started running minus the time
the job was submitted.

TABLE I: Average Number of Running Jobs Result Table

FCFS FCFS w/ EASY Backfilling
Ave. Num. Running Jobs Ave. Num. Running Jobs

HPC2N 47 47
CTC-SP2 35 35
MetaCentrum 267 267

V. DISCUSSION

The ability to simulate full workloads and collect standard
statistics shows the viability of the event-driven approach
to HPC scheduling simulation. Some improvements can be
made to Schedulus to move it closer to being a contender for



TABLE II: Average Bounded Slowdown Result Table

FCFS FCFS w/ EASY Backfilling
Ave. Bounded Slowdown Ave. Bounded Slowdown

HPC2N 208 86
CTC-SP2 4276 181
MetaCentrum 7 7

TABLE III: Average Wait Time Result Table

FCFS FCFS w/ EASY Backfilling
Ave. Wait Time Ave. Wait Time

HPC2N 16189 9570
CTC-SP2 768179 67508
MetaCentrum 1459 1458

conducting real academic research. The granularity and com-
plexity of the cluster representation can be extended to better
capture the hardware characteristics. Doing so would allow for
more realistic simulation of actual scheduling systems. Also, in
the future we will compare performance of Schedulus to other
scheduling simulators like the ones mentioned above. This
will give us better indications for areas where improvement
still needs to take place, both in terms of overall runtime
and simulation quality. An area of immediate neccesary im-
provement for Schedulus is the backfilling algorithm strategy.
Establishing a computationally less expensive way to find
backfilling candidates would greatly improve the runtime of
Schedulus. Currently, research is being conducted to use
parallelism to find backfilling candidates.

VI. CONCLUSION

Scheduling systems in HPC are extremely important. They
are principal components of maximizing utilization and there-
fore performance. It is expensive to test new scheduling algo-
rithms on real hardware. HPC supercomputers are expensive,
costing hundreds of millions of dollars annually to operate.
There is no room for experimental scheduler testing that
could lead to long job delays and even errors. Schedulus
is an experimental event-driven HPC scheduling simulator
capable of running full HPC system workloads. It simplifies
the maintence of job state so more attention can be paid to
the research and development of better scheduling algorithms.
Promising intial experimental results confirm the viability of
event-driven scheduling semantics. Schedulus is being actively
developed.

REFERENCES

[1] J. W. Fowler, L. Monch, and O. Rose. Scheduling and simulation: The
role of simulation in scheduling. In Handbook of Production Scheduling
(pp.109-133), 2006.

[2] Y. Fan, Z. Lan, P. Rich, W. Allcock, M. Papka, B. Austin, and D. Paul.
Scheduling Beyond CPUs for HPC. In HPDC, 2019.

[3] P. Qiao, X. Wang, X. Yang, Y. Fan, and Z. Lan. Joint Effects
of Application Communication Pattern, Job Placement and Network
Routing on Fat-Tree Systems. In ICPP Workshops, 2018.

[4] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. Papka. Deep
Reinforcement Agent for Scheduling in HPC. In IPDPS, 2021.

[5] L. Yu, Z. Zhou, Y. Fan, M. Papka, and Z. Lan. System-wide Trade-off
Modeling of Performance, Power, and Resilience on Petascale Systems.
In The Journal of Supercomputing, 2018.

[6] Y. Fan. Application Checkpoint and Power Study on Large Scale
Systems. In IIT Tech. Report, 2021.

[7] P. Qiao, X. Wang, X. Yang, Y. Fan, and Z. Lan. Preliminary Interference
Study About Job Placement and Routing Algorithms in the Fat-Tree
Topology for HPC Applications. In CLUSTER, 2017.

[8] N. Matloff. Introduction to discrete-event simulation and the simpy
language. Davis, CA. Dept of Computer Science, 2008.

[9] Y. Fan. Job Scheduling in High Performance Computing. In Horizons
in Computer Science Research, 2021.

[10] W. Allcock, P. Rich, Y. Fan, and Z. Lan. Experience and Practice of
Batch Scheduling on Leadership Supercomputers at Argonne. In JSSPP,
2017.

[11] Y. Fan and Z. Lan. Exploiting Multi-Resource Scheduling for HPC. In
SC Poster, 2019.

[12] Y. Fan and Z. Lan. DRAS-CQSim: A Reinforcement Learning based
Framework for HPC Cluster Scheduling. In Software Impacts, 2021.

[13] B. Li, S. Chunduri, K. Harms, Y. Fan, and Z. Lan. The Effect of System
Utilization on Application Performance Variability. In ROSS, 2019.

[14] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. ROME: A Multi-
Resource Job Scheduling Framework for Exascale HPC System. In
IPDPS poster, 2018.

[15] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. Hybrid Workload
Scheduling on HPC Systems. In Advances in Computer and Network
Simulation and Modelling, 2021.

[16] Y. Fan, Z. Lan, and M. Papka. Intelligent Job Scheduling for Next
Generation HPC Systems. In SC Doctoral Showcase, 2021.

[17] Y. Fan. Intelligent Job Scheduling on High Performance Computing
Systems. In IIT Dissertation, 2021.

[18] D. Feitelson, D. Tsafrir, and D. Krakov. Experience with using the
Parallel Workloads Archive. JPDC’14.

[19] D. Klusáček and H. Rudová. Alea 2 - job scheduling simulator.
SIMUTools 2010 - 3rd International ICST Conference on Simulation
Tools and Techniques, 2010.

[20] N. A. Simakov, M. D. Innus, M. D. Jones, R. L. DeLeon, J. P. White,
S. M. Gallo, A. K. Patra, and T. R. Furlani. A slurm simulator: Im-
plementation and parametric analysis. In High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation, 2018.

[21] M.Chadha, J. John, and M. Gerndt. Extending SLURM for Dynamic
Resource-Aware Adaptive Batch Scheduling, 2020.

[22] M. Jette, A. Yoo, and M. Grondona. SLURM: Simple Linux Utility for
Resource Management. In JSSPP’03.

[23] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing. Concurrency and Computation: Practice and Experience,
2002.

[24] J. Liu. Simulus: Easy breezy simulation in python. In 2020 Winter
Simulation Conference (WSC), pages 2329–2340, 2020.

[25] A.W. Mu’alem and D.G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling.
IEEE Transactions on Parallel and Distributed Systems, 2001.

[26] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. Trade-Off
Between Prediction Accuracy and Underestimation Rate in Job Runtime
Estimates. In CLUSTER, 2017.

[27] A. Mu’alem and D. Feitelson. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling.
TPDS’01.

[28] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. Exploring Machine
Learning to Adjust Job Runtime Estimate for High-Performance Com-
puting. In Greater Chicago Area System Research Workshop (GCASR),
2017.

[29] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. Next generation
workload management system for high performance computing systems.
In Greater Chicago Area System Research Workshop (GCASR), 2018.


