
HAL Id: hal-03511473
https://hal.science/hal-03511473

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EndoNet: A Deep Architecture for Recognition Tasks
on Laparoscopic Videos

Andru Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel
de Mathelin, Nicolas Padoy

To cite this version:
Andru Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel de Mathelin, et al..
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos. IEEE Transactions on
Medical Imaging, 2017, 36 (1), �10.1109/TMI.2016.2593957�. �hal-03511473�

https://hal.science/hal-03511473
https://hal.archives-ouvertes.fr


1

EndoNet: A Deep Architecture for Recognition
Tasks on Laparoscopic Videos

Andru P. Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel de Mathelin, Nicolas Padoy

Abstract—Surgical workflow recognition has numerous po-
tential medical applications, such as the automatic indexing
of surgical video databases and the optimization of real-time
operating room scheduling, among others. As a result, phase
recognition has been studied in the context of several kinds
of surgeries, such as cataract, neurological, and laparoscopic
surgeries. In the literature, two types of features are typically
used to perform this task: visual features and tool usage sig-
nals. However, the visual features used are mostly handcrafted.
Furthermore, the tool usage signals are usually collected via a
manual annotation process or by using additional equipment. In
this paper, we propose a novel method for phase recognition that
uses a convolutional neural network (CNN) to automatically learn
features from cholecystectomy videos and that relies uniquely
on visual information. In previous studies, it has been shown
that the tool usage signals can provide valuable information in
performing the phase recognition task. Thus, we present a novel
CNN architecture, called EndoNet, that is designed to carry
out the phase recognition and tool presence detection tasks in
a multi-task manner. To the best of our knowledge, this is the
first work proposing to use a CNN for multiple recognition tasks
on laparoscopic videos. Extensive experimental comparisons to
other methods show that EndoNet yields state-of-the-art results
for both tasks.

Index Terms—Laparoscopic videos, cholecystectomy, convolu-
tional neural network, tool presence detection, phase recognition.

I. INTRODUCTION

In the community of computer-assisted interventions (CAI),
recognition of the surgical workflow is an important topic

because it offers solutions to numerous demands of the modern
operating room (OR) [1]. For instance, such recognition is
an essential component to develop context-aware systems
that can monitor the surgical processes, optimize OR and
staff scheduling, and provide automated assistance to the
clinical staff. With the ability to segment surgical workflows,
it would also be possible to automate the indexing of surgical
video databases, which is currently a time-consuming manual
process. In the long run, through finer analysis of the video
content, such context-aware systems could also be used to alert
the clinicians to probable upcoming complications.

Various types of features have been used in the literature
to carry out the phase recognition task. For instance, in [2],
[3], binary tool usage signals were used to perform phase
recognition on cholecystectomy procedures. In more recent
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studies [4], [5], surgical triplets (consisting of the utilized
tool, the anatomical structure, and the surgical action) were
used to represent the frame at each time step in a surgery.
However, these features are typically obtained through a
manual annotation process, which is virtually impossible to
perform at test time. Despite existing efforts [6], it is still
an open question whether such information can be obtained
reliably in an automatic manner.

Another feature type that is typically used to perform the
phase recognition task is visual features, such as pixel values
and intensity gradients [7], spatio-temporal features [8], and
a combination of features (color, texture, and shape) [9].
However, these features are handcrafted, i.e., they are empiri-
cally designed to capture certain information from the images,
leading to the loss of other possibly significant characteristics
during the feature extraction process.

In this paper, we present a novel method for phase recog-
nition that overcomes the afore-mentioned limitations.
First, instead of using handcrafted features, we propose to
learn inherent visual features from surgical (specifically chole-
cystectomy) videos to perform phase recognition. We focus on
visual features because videos are typically the only source of
information that is readily available in the OR. In particular,
we propose to learn the features using a convolutional neural
network (CNN), because CNNs have dramatically improved
the results for various image recognition tasks in recent years,
such as image classification [10] and object detection [11]. In
addition, it is advantageous to automatically learn the features
from laparoscopic videos because of the visual challenges
inherent in them, which make it difficult to design suitable
features. For example, the camera in laparoscopic procedures
is not static, resulting in motion blur and high variability of
the observed scenes along the surgery. The lens is also often
stained by blood which can blur or completely occlude the
scene captured by the laparoscopic camera.
Second, based on our and others’ promising results of using
tool usage signals to perform phase recognition [3], [12], we
hypothesize that tool information can be additionally utilized
to generate more discriminative features for the phase recogni-
tion task. This has also been shown in [7], where the tool usage
signals are used to reduce the dimension of the handcrafted
visual features through canonical correlation analysis (CCA) in
order to obtain more semantically meaningful and discrimina-
tive features. To incorporate the tool information, we propose
to implement a multi-task framework in the feature learning
process. The resulting CNN architecture, that we call EndoNet,
is designed to jointly perform the phase recognition and tool
presence detection tasks. The latter is the task of automatically
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determining all types of tools present in an image. In addition
to helping EndoNet learn more discriminative features, the tool
presence detection task itself is also interesting to perform
because it could be exploited for many applications, for
instance to automatically index a surgical video database by
labeling the tool presence in the videos. Combined with other
signals, it could also be used to identify a potential upcoming
complication by detecting tools that should not appear in a
certain phase. It is important to note that this task differs
from the usual tool detection task [13], because it does not
require tool localization. In addition, the tool presence is solely
determined by the visual information from the laparoscopic
videos. Thus, it does not result in the same tool information
as the one used in [3], which cannot always be obtained from
the laparoscopic videos alone. For example, the presence of
trocars used in [3] is not always apparent in the laparoscopic
videos. Automatic presence detection for such tools would
require another source of information, e.g., an external video.

Training CNN architectures requires a substantial capacity
of parallel computing and a large amount of labeled data. In
the domain of medicine, labeled data is particularly difficult
to obtain due to regulatory restrictions and the cost of manual
annotation. Girshick et al. [11] recently showed that transfer
learning can be used to train a network when labeled data is
scarce. Inspired by [11], we perform transfer learning to train
the proposed EndoNet architecture.

To validate our method, we build a large dataset of cholecys-
tectomy videos containing 80 videos recorded at the University
Hospital of Strasbourg. In addition, to demonstrate that our
proposed (i.e., EndoNet) features are generalizable, we carry
out additional experiments on the EndoVis workflow challenge
dataset1 containing seven cholecystectomy videos recorded at
the Hospital Klinikum Rechts der Isar in Munich. Through ex-
tensive comparisons, we also show that EndoNet outperforms
other state-of-the-art methods. Moreover, we also demonstrate
that training the network in a multi-task manner results in a
better network than training in a single-task manner.

In summary, the contributions of this paper are five-fold:
(1) for the first time, CNNs are utilized to extract visual
features for recognition tasks on laparoscopic videos, (2) we
design a CNN architecture that jointly performs the phase
recognition and tool presence detection tasks, (3) we present
a wide range of comparisons between our method and other
approaches, (4) we show state-of-the-art results for both tasks
on cholecystectomy videos using solely visual features, and (5)
we demonstrate the feasibility of using EndoNet in addressing
several practical CAI applications.

II. RELATED WORK

A. Tool Presence Detection

The literature addressing the problem of automatic tool
presence detection in the CAI community is still limited. The
approaches typically focus on other tasks, such as tool detec-
tion [13], [14], tool pose estimation [15], and tool tracking
[16], [17]. In addition, most of the methods are only tested on

1http://grand-challenge.org/site/endovissub-workflow/data/

short sequences, while we carry out the task on the complete
procedures.

In recent studies [18], [19], radio frequency identification
(RFID)-tagged surgical tools have been proposed for tool
detection and tracking. Such an active tracking system can
be used to solve the tool presence detection problem, but
this system is complex to integrate into the OR. Thus, it
is interesting to investigate other features that are already
available in the OR, e.g., visual cues from the videos. For
instance, in [20], Speidel et al. presented an approach to
automatically recognize the types of the tools that appear in
laparoscopic images. However, the method consists of many
steps, such as tool segmentation and contour processing. In
addition, it also requires the 3D models of the tools to perform
the tool categorization. In a more recent work [9], Lalys et
al. proposed to use an approach based on the Viola-Jones
object detection framework to automatically detect the tools
in cataract surgeries, such as the knife and Intra Ocular Lens
instruments. However, the tool presence detection problem on
laparoscopic videos poses other challenges that do not appear
in cataract surgeries where the camera is static and the tools
are not articulated. In this paper, we propose a more direct
approach to perform the tool presence detection task by using
only visual features without localization steps.

B. Phase Recognition

The phase recognition task has been addressed in several
types of surgeries, ranging from cataract [9], [21], neurological
[5], to laparoscopic surgeries [4], [7], [22]. Multiple types of
features have also been explored to carry out the task, such
as tool usage signals [3], [5], surgical action triplets [4], [23],
and visual features [7], [24]. Since we propose to carry out
the task relying solely on the visual features, we focus the
literature discussion on methods that use the visual features.

In [25], Padoy et al. proposed an online phase recognition
method based on Hidden Markov Model (HMM) that com-
bines the tool usage signals and two visual cues from the
laparoscopic images. The first and second cues respectively
indicate whether the camera is inside the patient’s body and
whether clips are in the field of view. However, to recognize
the phase, this method requires the tool signals which are
not always immediately available in the OR. Instead, Blum
et al. [7] proposed to use the tool usage signals to perform
dimensionality reduction on the visual features using CCA.
Once the projection function is obtained, the tool information
is not required anymore to estimate the surgical phase. At test
time, the visual features are mapped to the common space and
then later used to determine the phase. The method performed
well, resulting in an accuracy of 76%. However, it has only
been tested on a dataset of 10 videos. In addition, the method
is potentially limited by the choice of handcrafted features
that are used: horizontal and vertical gradient magnitudes,
histograms and the pixel values of the downsampled image.

In a more recent work [9], Lalys et al. presented a frame-
work to recognize high-level surgical tasks for cataract surg-
eries using a combination of visual information: shape, color,
texture, and mixed information. The features also contain the
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tool presence information which is automatically extracted
from the microscopic videos, as mentioned in Subsection II-A.
By using HMM on top of the features, the method yields 91%
accuracy. However, the method was evaluated on cataract surg-
eries, which are substantially different from cholecystectomy
surgeries. Cholecystectomy surgeries are generally longer than
cataract surgeries. In addition, cholecystectomy videos have
visual challenges that are not present in cataract surgeries,
such as rapid camera motions, the presence of smoke, and the
presence of more articulated tools. In [26], Lea et al. used
skip-chain conditional random field on top of kinematic and
image features to segment and recognize fine-grained surgical
activities, such as needle insertion and tying knot. However,
the method is tested on a dataset that contains short sequences
(around two minutes). Furthermore, the visual features that are
utilized in the afore-mentioned methods are handcrafted.

In [27], Klank et al. proposed to learn automatically the
visual features from cholecystectomy videos to carry out the
phase recognition task. The approach is based on genetic
programming that mutates and crosses the features using
predefined operators. The method is therefore limited by the
set of predefined operators. In addition, the learnt features
failed to give better recognition results than the handcrafted
features in some cases.

C. Convolutional Neural Networks

In the computer vision community, convolutional neural
networks (CNNs) are currently one of the most successful
feature learning methods in performing various tasks. For
instance, Krizhevsky et al. [10] addressed the image classi-
fication problem on the massive ImageNet database [28] by
proposing to use a CNN architecture, referred to as AlexNet.
They showed that the features learnt by the CNN dramatically
improve the classification results compared to the state-of-the-
art handcrafted features, e.g., Fisher Vector on SIFT [29].
Furthermore, in [30], it has been shown that the network
trained in [10] is so powerful that it can be used as a black-
box feature extractor (without any modification) to success-
fully perform several tasks, including scene classification and
domain adaptation.

CNNs are hard to train because they typically contain a high
number of unknowns. For instance, the AlexNet architecture
contains over 60M parameters. It is essential to have a high
computational power and a huge amount of annotated data to
train the networks. Recently, Girshick et al. [11] showed that a
new network can be learnt despite the scarcity of labeled data
by performing transfer learning. They proposed to take a pre-
trained CNN model as initialization and fine-tune the model to
obtain a new network. It is shown that the fine-tuned network
yielded a state-of-the-art performance for object recognition
task, despite being fine-tuned on a network trained for image
classification.

III. METHODOLOGY

The complete pipeline of our proposed approach is shown in
Fig. 1. The first step is to train the EndoNet architecture via a
fine-tuning process. Once the network is trained, it is used for

EndoNet fine‐tuning

Phase recognition

Training 
images Fine‐tuning EndoNet

Feature 
extraction

Images SVM
Hierarchical 

HMM

Tool presence detection

Images Tool presence 
detection

Fig. 1: Full pipeline of the proposed approach.

both the tool presence detection and phase recognition tasks.
For the former, the confidence given by the network is directly
used to perform the task. For the latter, the network is used
to extract the visual features from the images. These features
are then passed to the Support Vector Machine (SVM) and
Hierarchical HMM to obtain the final estimated phase.

A. EndoNet Architecture

The EndoNet architecture is designed based on two assump-
tions, which will be confirmed by the experiments presented
in Section V:
• more discriminative features for the phase recognition

task can be learnt from the dataset if the network is
fine-tuned in a multi-task manner, i.e., if the network is
optimized to carry out not only phase recognition, but
also tool presence detection;

• since the tool signals have been successfully used to
carry out phase recognition in previous work [3], [5], [9],
the inclusion of automatically generated tool detection
signals in the final feature can improve the recognition.

The proposed EndoNet architecture is shown in Fig. 2. The
architecture is an extension of the AlexNet architecture [10],
which consists of an input layer (in green), five convolutional
layers (in red, conv1-conv5), and two fully-connected layers
(in orange, fc6-fc7). The output of layer fc7 is connected
to a fully-connected layer fc tool, which performs the tool
presence detection. Since there are seven tools defined in the
dataset used to train the network, the layer fc tool contains 7
nodes, where each node represents the confidence for a tool to
be present in the image. This confidence is later concatenated
with the output of layer fc7 in layer fc8 to construct the
final feature for the phase recognition. Ultimately, the output
of layer fc8 is connected to layer fc phase containing 7
nodes, where each node represents the confidence that an
image belongs to the corresponding phase. The surgical tool
types and the surgical phases are described in Subsection IV-A.

B. Fine-Tuning

The network is trained using stochastic gradient descent
with two loss functions defined for the tasks. The tool presence
detection task is formulated as Nt binary classification tasks,
where Nt = 7 is the number of tools. For each binary clas-
sification task, the cross-entropy function is used to compute
the loss. Thus for Ni images in the batch, the complete loss
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Fig. 2: EndoNet architecture (best seen in color). The layers shown in the turquoise rectangle are the same as in the AlexNet
architecture.

function of the tool presence detection task for all tools is
defined as:

LT =
−1
Ni

Nt∑
t=1

Ni∑
i=1

[
kit log

(
σ
(
vit
))

+
(
1− kit

)
log
(
1− σ

(
vit
))]

,

(1)
where i ∈ {1, . . . , Ni} and t ∈ {1, . . . , Nt} are respec-
tively the image and tool indices, kit ∈ {0, 1} and vit are
respectively the ground truth of tool presence and the output
of layer fc tool corresponding to tool t and image i, and
σ (·) ∈ (0, 1) is the sigmoid function.

Phase recognition is regarded as a multi-class classification
task. The softmax multinomial logistic function, which is an
extension of the cross-entropy function, is utilized to compute
the loss. The function is formulated as:

LP =
−1
Ni

Ni∑
i=1

Np∑
p=1

lip log
(
ϕ
(
wi

p

))
, (2)

where p ∈ {1, . . . , Np} is the phase index and Np = 7 is
the number of phases, lip ∈ {0, 1} and wi

p are respectively the
ground truth of the phases and the output of layer fc phase

corresponding to phase p and image i, and ϕ (·) ∈ [0, 1] is the
softmax function.

The final loss function is the summation of both losses:
L = a ·LT + b ·LP , where a and b are weighting coefficients.
In this work, we set a = b = 1 as preliminary experiments
have shown no improvement when varying these parameters.
One should note that assigning either a = 0 or b = 0 is
equivalent to designing a CNN that is optimized to carry out
only the phase recognition task or the tool presence detection
task, respectively.

C. SVM and Hierarchical HMM

The output of layer fc8 is taken as the image feature. These
features are used to compute confidence values vp ∈ R7 for
phase estimation using a one-vs-all multi-class SVM. Since
the confidence vp is obtained without taking into account any
temporal information, it is necessary to enforce the temporal
constraint of the surgical workflow. Here, we use use an

extension of HMM, namely a two-level Hierarchical HMM
(HHMM) [31]. The top-level contains nodes that model the
inter-phase dependencies, while the bottom-level nodes model
the intra-phase dependencies. We train the HHMM adopting
the learning process presented in [31]. Here, the observations
are given by the confidence vp from the SVM. For offline
recognition, the Viterbi algorithm [32] is used to find the most
likely path through the HHMM states. As for online recog-
nition, the phase prediction is computed using the forward
algorithm.

One can observe that EndoNet already provides confidence
values through the output of layer fc phase, thus it is not
essential to pass EndoNet features to the SVM to obtain
the confidence values vp. Furthermore, in preliminary exper-
iments, we observed that there was only a slight difference
of performance between vp and fc phase in recognizing the
phases both before and after applying the HHMM. However,
this additional step is necessary in order to provide a fair
comparison with other features, which are passed to the SVM
to obtain the confidence. In addition, using the output of
layer fc phase as the phase estimation confidence is only
applicable to datasets that share the same phase definition
as the one in the fine-tuning dataset. Thus, this step is also
required for the evaluation of the network generalizability to
other datasets that might have a different phase definition.

IV. EXPERIMENTAL SETUP

A. Dataset
We have constructed a large dataset, called Cholec80,

containing 80 videos of cholecystectomy surgeries performed
by 13 surgeons. The videos are captured at 25 fps and
downsampled to 1 fps for processing. The whole dataset is
labeled with the phase and tool presence annotations. The
phases have been defined by a senior surgeon in our partner
hospital. Since the tools are sometimes hardly visible in the
images and thus difficult to be recognized visually, we define
a tool as present in an image if at least half of the tool tip
is visible. The tool and the phase lists can be found in Fig. 3
and Tab. I-a, respectively.

The Cholec80 dataset is split into two subsets of equal size
(i.e., 40 videos each). The first subset (i.e., the fine-tuning
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ID Phase Duration (s)

P1 Preparation 125±95
P2 Calot triangle dissection 954±538
P3 Clipping and cutting 168±152
P4 Gallbladder dissection 857±551
P5 Gallbladder packaging 98±53
P6 Cleaning and coagulation 178±166
P7 Gallbladder retraction 83±56

(a) Cholec80

ID Phase Duration (s)

P0 Placement trocars 180±118
P12 Preparation 419±215
P3 Clipping and cutting 390±194
P4 Gallbladder dissection 563±436
P5 Retrieving gallbladder 391±246
P6 Hemostasis 336±62
P7 Drainage and closing 171±128

(b) EndoVis

TABLE I: List of phases in the (a) Cholec80 and (b) EndoVis
datasets, including the mean ± std of the duration of each
phase in seconds.

subset) contains ∼86K annotated images. From this subset,
10 videos have also been fully annotated with the bounding
boxes of tools. These are used to train Deformable Part Models
(DPM) [33]. Because the grasper and hook appear more
often than other tools, their bounding boxes reach a sufficient
number from the annotation of three videos. The second subset
(i.e., the evaluation subset) is used to test the methods for both
tool presence detection and phase recognition. The statistics
of the complete dataset can be found in Fig. 4.

The second dataset is a public dataset from the EndoVis
workflow challenge at MICCAI 2015, containing seven chole-
cystectomy videos. Similarly, these videos are captured at 25
fps and processed at 1 fps. We only perform phase detection
on this dataset, because the types and the visual appearances of
the tools are different from the tools that EndoNet is designed
to detect. The list of phases in the EndoVis dataset is shown in
Tab. I-b. It can be seen that phase P3 is longer in Endovis than
in Cholec80. This is due to the fact that in Cholec80, P3 is
typically started when the calot triangle is clearly exposed. Yet,
this is not the case in EndoVis. As a result, extra dissection
steps are included in P3, leading to a longer P3 in EndoVis.

The phases in EndoVis have been defined differently from
the definition in Cholec80. For instance, a phase placement
trocars is defined in the EndoVis dataset, even though it
should be noted that this phase is not always visible from the
laparoscopic videos. Additional sources of information (e.g.,
external videos), which are not available in the dataset, are
required to label this phase correctly. Another difference is in
the definition of the preparation phase. In the EndoVis dataset,
the preparation phase includes the calot triangle dissection
phase (hence the ID P12 in Tab. I-b). The other phases are
defined similarly to the phases in Cholec80. The distribution
of the phases in EndoVis is shown in Fig. 5.

B. Fine-Tuning, SVM and HHMM Parameters

EndoNet is trained by fine-tuning the AlexNet network [10]
which has been pre-trained on the ImageNet dataset [28].
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Fig. 4: Distribution of annotations in the Cholec80 dataset for
(a) tool presence detection and (b) phase recognition tasks.
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The layers that are not defined in AlexNet (i.e., fc tool

and fc phase) are initialized randomly. The network is fine-
tuned for 50K iterations with Ni = 50 images in a batch.
The learning rate is initialized at 10−3 for all layers, except
for fc tool and fc phase, whose learning rate is set higher
at 10−2 because of their random initialization. The learning
rates for all layers decrease by a factor of 10 for every 20K
iterations. The fine-tuning process is carried out using the
Caffe framework [34]. The evolution of the loss function L
during the fine-tuning process is shown in Fig. 6. The graph
shows the convergence of the loss, indicating that the network
is successfully optimized to learn the optimal features for the
phase recognition and tool presence detection tasks.

The networks are trained using an NVIDIA GeForce Titan
X graphics card. The training process takes ∼80 seconds for
100 iterations, i.e., roughly 11 hours per network. The feature
extraction process takes approximately 0.2 second per image.
The computational time for SVM training depends on the size
of the features, ranging from 0.1 to 90 seconds, while the
HHMM training takes approximately 15 seconds using our
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Fig. 3: List of the seven surgical tools used in the Cholec80 dataset.
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Fig. 6: Evolution of the loss function during the fine-tuning
process of EndoNet.
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P5

P6

P7

Fig. 7: Graph representation of the two-level HHMM for
the surgical phases defined in Cholec80. The top-level states,
representing the phases defined in the dataset, are shown in
blue. The transitions for top-level states show all possible
phase transitions defined in the dataset. The bottom-level states
are shown in green.

MATLAB implementation.
To carry out phase recognition, all features are passed to a

one-vs-all linear SVM, except the handcrafted features, which
are passed through a histogram intersection kernel beforehand.
We tried to use non-linear kernels for other features in our pre-
liminary experiments, but this did not yield any improvements.

For the HHMM, we set the number of top-level states to
seven (equal to Np), while the number of bottom-level states is
data-driven (as in [31]). To model the output of the SVM, we
use a mixture of five Gaussians for every feature, except for
the binary tool signal, where one Gaussian is used. The type
of covariance is diagonal. In Fig. 7, the graph representation
of the HHMM used to recognize the phases in Cholec80 is
shown.

C. Baselines

For tool presence detection, we compare the results given
by EndoNet (i.e., the output of layer fc tool) with two
other methods. The first method is DPM [33], since it is an
ubiquitous method for object detection that is available online.
In the experiments, we use the default parameters, model each

tool using three components and represent the images using
HOG features. The second method is a network trained in
a single-task manner that solely performs the tool presence
detection task (ToolNet). We compare the ToolNet results with
the EndoNet results in order to show that performing the fine-
tuning process in a multi-task manner yields a better network
than in a single-task manner. The architecture of this network
can be seen in Fig. 8-a.

For phase recognition, we run a 4-fold cross-validation on
the evaluation subset of Cholec80 and full cross-validation on
the EndoVis dataset. Because the recognition pipeline contains
methods trained with random initializations, the results might
be different in each run. Thus, the displayed results are the
average of five experimental runs. Here, we compare the phase
recognition results using the following features as input:
• binary tool information generated from the manual anno-

tation; this is a vector depicting the presence of the tools
in an image, i.e. vt ∈ {0, 1}7 and vt ∈ {0, 1}10 for the
Cholec80 and EndoVis datasets, respectively;

• handcrafted visual features: bag-of-word of SIFT, HOG,
RGB and HSV histograms; these features are chosen
because they have been successful in carrying out classi-
fication [35] on laparoscopic videos;

• the afore-mentioned handcrafted visual features + CCA,
similar to the approach suggested in [7];

• the output of layer fc7 of AlexNet trained on the Im-
ageNet dataset (i.e., the initialization of the fine-tuning
process);

• the output of layer fc7 from a network that is fine-tuned
to carry out phase recognition in a single-task manner,
shown in Fig. 8-b (PhaseNet);

• our proposed features, i.e., the output of layer fc8 from
EndoNet.

We also include features called EndoNet-GTbin for phase
recognition on the Cholec80 dataset. These features consist
of the output of layer fc7 from EndoNet concatenated with
binary tool information obtained from the ground-truth annota-
tions. This evaluation allows us to investigate whether the tool
information automatically extracted from EndoNet, which is
included in our proposed features, is sufficient for the phase
recognition task.

D. Evaluation

The performance of the tool presence detection is measured
by the average precision (AP) metric. It is obtained by
computing the area under the precision-recall curve. For the
phase recognition task, several evaluation metrics are used,
i.e., precision, recall, and accuracy as defined in [3]. Recall and
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Fig. 8: Single-task CNN architectures for the (a) tool presence
detection and (b) phase recognition tasks. The AlexNet archi-
tecture is the same as the one used in EndoNet (see Fig. 2).
The single-task networks are also trained via transfer learning.

precision compute the number of correct detections divided by
the length of the ground truth and by the length of the complete
detections, respectively. Since they are computed for each
phase, we show the averages for recall and precision to present
summarized results. Accuracy represents the percentage of
correct detections in the complete surgery.

In order to show the improvements that the proposed
features yield, we compute the evaluation metrics for phase
recognition on the results before and after applying HHMM.
To provide a deeper analysis of the results, we also present
in Section VI the performance of EndoNet on two practical
applications.

V. RESULTS

A. Cholec80 Dataset

1) Tool Presence Detection: The results of the tool pres-
ence detection task are shown in Tab. II. It can be seen that
the networks yield significantly better results than DPM. It
might be due to the fact that the number of images used for
fine-tuning the networks is higher than the number of bounding
boxes used for DPM training, but this may only partly explain
this large difference. To provide a fairer comparison, we
compare the performance of DPM with ToolNet and EndoNet
models that are trained only with the 10 videos used to train
DPM (see also Subsubsection V-A3 for the influence of the
fine-tuning subset size). As expected, the performance of the
networks is lower compared to the networks trained on the
full fine-tuning subset. However, the mean APs are still better
than the one of DPM: 65.9 and 62.0 for ToolNet and EndoNet,
respectively. Note that, the networks are only trained using
binary annotations (present vs. not-present), while DPM uses
bounding boxes containing specific localization information.
Furthermore, the networks contain a much higher number of
unknowns to optimize than DPM. In spite of these facts, with
the same amount of training data, the networks perform the
task better than DPM.

From Tab. II, it can be seen that EndoNet gives the best
results for this task. This shows that training the network
in a multi-task manner does not compromise the EndoNet’s
performance in detecting the tool presence. For all methods,
there is a decrease in performance for scissors detection.
This might be due to the fact that this tool has the smallest
amount of training data (see Fig. 4-a), as it only appears
shortly in the surgeries. In addition, it could be confused with

Tool DPM ToolNet EndoNet
Bipolar 60.6 85.9 86.9
Clipper 68.4 79.8 80.1
Grasper 82.3 84.7 84.8
Hook 93.4 95.5 95.6

Irrigator 40.5 73.0 74.4
Scissors 23.4 60.9 58.6

Specimen bag 40.0 86.3 86.8
MEAN 58.4 80.9 81.0

TABLE II: Average precision (AP) for all tools, computed on
the 40 videos forming the evaluation dataset of Cholec80. The
best AP for each tool is written in bold.

the grasper since they share many visual similarities. Over
the seven tools and 40 complete surgeries in the evaluation
subset of Cholec80, EndoNet obtains 81% mean AP for tool
presence detection. The success of this network suggests that
binary annotations are sufficient to train a model for this
task. This is particularly interesting, since tagging the images
with binary information of tool presence is much easier than
providing bounding boxes. It also shows that the networks
can successfully detect tool presence without any explicit
localization pre-processing steps (such as segmentation and
ROI selection).

2) Phase Recognition: In Tab. III-a, the results of phase
recognition on Cholec80 before applying HHMM are shown.
These are the results after passing the image features to
the SVM. The results show that the CNNs are powerful
tools to extract visual features: despite being trained on a
completely unrelated dataset, the AlexNet features outperform
the handcrafted visual features (without and with CCA) and
the binary tool annotation. Furthermore, the fine-tuning step
significantly improves the results: the PhaseNet features yield
improvements for all metrics compared to the AlexNet fea-
tures. In addition to yielding the tool presence detection as
a by-product, the multi-task framework applied in EndoNet
further improves the features for the phase recognition task. It
is also interesting to observe that the phase recognition results
using the EndoNet-GTbin features are only slightly better
than the ones using the EndoNet features, with approximately
0.1% improvement in accuracy. In other words, the tool
information generated from the ground-truth does not bring
more information than the EndoNet features and the visual
features extracted by EndoNet alone are sufficient to carry out
the phase recognition task.

In Tab. IV, the phase recognition results after applying
HHMM are shown. Due to the nature of offline phase recog-
nition, where the algorithm can see the complete video,
the offline results are better than the online counterparts.
However, when we compare the feature performance, the
trend is consistent across the offline and online modes. By
comparing the results from Tab III-a and Tab IV-a, we can see
the improvement that the HHMM brings, which is consistent
across all features.

In Fig. 9, we show the top-5 and bottom-5 recognition
results based on the accuracy from one (randomly chosen)
experimental run in both offline and online modes. In offline
mode, it can be seen that the top-5 results are very good,
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(a) Top-5 offline (b) Top-5 online

(c) Bottom-5 offline (d) Bottom-5 online

P1 P2 P3 P4 P5 P6 P7

Fig. 9: Phase recognition results vs. ground truth on Cholec80
in a color-coded ribbon illustration. The horizontal axis of the
ribbon represents the time progression in a surgery. The top
ribbon is the estimated phase and the bottom ribbon is the
ground truth.

resulting in over 98% accuracies. In addition, the bottom-5
results in offline mode are comparable to the ground truth.
The drop of accuracy for the bottom-5 are caused by the jumps
that can happen between P5 and P6, which are shown by the
alternating blue and red in Fig. 9-c. These jumps occur because
of the non-linear transitions among these phases (see Fig. 7).

In online mode, one can observe more frequent jumps in
the phase estimations. This is due to the nature of recognition
in online mode, where future data is unavailable, so that the
model is allowed to correct itself after making an estimation.
Despite these jumps, the top-5 online results are still very close
to the ground-truth, resulting in accuracies above 92%.

In order to provide more comprehensive information regard-
ing the performance of EndoNet over the whole dataset, we
present the recognition results for all phases in both offline
and online modes in Tab. V. It can be seen that the EndoNet
features perform very well in recognizing all the phases. A
decrease in performance can be observed for the recognition
of P5 and P6. This is likely due to the fact that the transitions
between these phases are not sequential and that there is not
always a clear boundary between them, especially as some
images sometimes do not show any activity. This creates some
ambiguity in the phase estimation process.

3) Effects of Fine-Tuning Subset Size : In order to show
the importance of the amount of training data for the fine-
tuning process, we fine-tune our networks using fine-tuning
subsets with gradually increasing size: 10, 20, 30, and ulti-
mately 40 videos. We perform both tool presence detection and
phase recognition tasks on the evaluation subset of Cholec80
using the trained networks. The results are shown in Fig.
10. As expected, the performance of the networks increase
proportionally to the amount of data in the fine-tuning subset.
It can also be seen that EndoNet performs better than the
single-task networks (i.e., PhaseNet and ToolNet), except for
the tool presence detection task where fewer videos are used
to train the networks. This indicates that EndoNet takes more
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Fig. 10: Evolution of network performance on Cholec80 with
respect to the number of videos in the fine-tuning subset.

advantage of the big dataset compared to ToolNet.

B. EndoVis Dataset

Similar results for phase recognition are obtained from the
EndoVis dataset, as shown in Tab. III and IV-b. It can be
observed that the improvements obtained by PhaseNet and
EndoNet on EndoVis are not as high as the result improve-
ments on Cholec80, which is expected since these networks
are fine-tuned using the videos from Cholec80. In spite of
this fact, the results on the EndoVis dataset also show that
the EndoNet features improve the phase recognition results
significantly. It indicates that the multi-task learning results in
a better network than the single-task counterpart. The fact that
the features from EndoNet yield the best results for all cases
also shows that EndoNet is generalizable to other datasets.

One should note that we use the output of layer fc8 from
EndoNet as the image feature, which includes confidence
values for tool presence. Because the tools used in EndoVis
dataset are not the same tools as the ones in the Cholec80
dataset (which is used to train EndoNet), these confidence
values can simply be regarded as 7 additional scalar features
appended to the feature vector. The results show that these
values help to construct more discriminative features.

VI. MEDICAL APPLICATIONS

Here, we demonstrate the applicability of EndoNet for
practical CAI applications. We present the results from the
same experimental run that is used to generate Fig. 9. First,
to show the feasibility of using EndoNet as the basis for
automatic surgical video indexing, we show the error of the
phase estimation in seconds to indicate how precise the phase
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Feature Cholec80
Avg. Precision Avg. Recall Accuracy

Tool binary 42.8±33.9 41.1±32.3 48.2±2.7
Handcrafted 22.7±28.8 17.9±28.9 44.0±1.8

Handcrafted+CCA 21.9±14.1 18.7±23.3 39.0±0.6
AlexNet 50.4±12.0 44.0±22.5 59.2±2.4
PhaseNet 67.0±9.3 63.4±11.8 73.0±1.6
EndoNet 70.0±8.4 66.0±12.0 75.2±0.9

EndoNet+GTBin 70.1±9.1 66.7±11.1 75.3±1.1

EndoVis
Avg. Precision Avg. Recall Accuracy

44.3±32.5 48.5±39.3 49.0±9.7
35.7±6.6 33.2±10.5 36.1±2.6
31.1±4.6 31.6±22.6 32.6±5.3
60.2±8.0 57.8±9.3 56.9±4.1
63.5±5.7 63.2±9.3 62.6±4.9
64.8±7.3 64.3±11.8 65.9±4.7

TABLE III: Phase recognition results before applying the HHMM (mean ± std) on Cholec80 and EndoVis.

Feature Overall-Offline (%)
Avg. Precision Avg. Recall Accuracy

Binary tool 68.4±24.1 75.7±13.6 69.2±8.0
Handcrafted 40.3±20.4 40.0±17.8 36.7±7.8

Handcrafted+CCA 54.6±23.8 57.2±21.2 61.3±8.3
AlexNet 70.9±12.0 73.3±16.7 76.2±6.3
PhaseNet 82.5±9.8 86.6±4.5 89.1±5.4
EndoNet 84.8±9.1 88.3±5.5 92.0±1.4

EndoNet-GTbin 85.7±9.1 89.1±5.0 92.2±3.5

Overall-Online (%)
Avg. Precision Avg. Recall Accuracy

54.5±32.3 60.2±23.8 47.5±2.6
31.7±20.2 38.4±19.2 32.6±6.4
39.4±31.0 41.5±21.6 38.2±5.1
60.3±21.2 65.9±16.0 67.2±5.3
71.3±15.6 76.6±16.6 78.8±4.7
73.7±16.1 79.6±7.9 81.7±4.2
75.1±15.6 80.0±6.7 81.9±4.4

(a) Cholec80

Feature Overall-Offline (%)
Avg. Precision Avg. Recall Accuracy

Binary tool 81.4±16.1 79.5±12.3 73.0±21.5
Handcrafted 49.7±15.6 33.2±21.5 46.5±24.6

Handcrafted+CCA 66.1±22.3 64.7±22.1 61.1±17.3
AlexNet 85.7±13.2 80.8±10.4 79.5±11.0
PhaseNet 86.8±14.2 83.1±10.6 79.7±12.2
EndoNet 91.0±7.7 87.4±10.3 86.0±6.3

Overall-Online (%)
Avg. Precision Avg. Recall Accuracy

80.3±18.1 77.5±18.8 69.8±21.7
46.6±16.2 48.0±18.5 43.4±21.6
52.3±22.2 49.4±21.5 44.0±22.3
78.4±14.1 73.9±11.4 70.6±12.3
79.1±15.0 75.7±15.3 71.0±9.2
83.0±12.5 79.2±17.5 76.3±5.1

(b) EndoVis

TABLE IV: Phase recognition results after applying the HHMM (mean ± std) on: (a) Cholec80 and (b) EndoVis. The best
result for each evaluation metric is written in bold. The results from our proposed features (EndoNet) are written in italic.

Feature Metric P1 P2 P3 P4 P5 P6 P7

EndoNet - offline Prec. 83.5±9.6 97.1±2.0 81.0±7.7 97.3±2.1 73.1±8.0 79.7±10.4 81.9±11.8
Rec. 90.9±5.7 80.8±4.3 88.1±7.4 94.7±1.0 83.7±5.6 79.6±8.8 86.7±11.8

EndoNet - online Prec. 90.0±5.6 96.4±2.0 69.8±10.7 82.8±6.2 55.5±11.9 63.9±10.5 57.5±11.0
Rec. 85.5±3.9 81.1±8.9 71.2±9.7 86.5±4.3 75.5±3.8 68.7±9.1 88.9±7.5

TABLE V: Precision and recall of phase recognition for each phase on Cholec80 using the EndoNet features.

boundary estimations from EndoNet are. Second, we inves-
tigate further how accurately EndoNet detects the presence
of two tools: clipper and bipolar. These tools are particularly
interesting because: (1) the appearance of the clipper typically
marks the beginning of the clipping and cutting phase, which
is the most delicate phase in the procedure, and (2) the bipolar
tool is generally used to stop haemorrhaging, which could lead
to possible upcoming complications.

A. Automatic Surgical Video Database Indexing

For automatic video indexing, the task corresponds to
carrying out phase recognition in offline mode. From the
results shown in Fig. 9-a,c, one can already roughly interpret
how accurate the phase recognition results are. To give a
more intuitive evaluation, we present the number of phase
boundaries that are detected within defined temporal tolerance
values in Tab. VI. We can see that EndoNet generally performs
very well for all the phases, resulting in 89% of the phase
boundaries being detected within 30 seconds. It can also be
seen that only 6% of the phase boundaries are detected with
an error over 2 minutes. It is also important to note that this
error is computed with respect to the strict phase boundaries

Tolerance (s) Phase
P1 P2 P3 P4 P5 P6 P7

<30 40 34 34 34 40 30 33
30-59 0 0 0 0 0 0 0
60-89 0 4 1 0 0 1 3
90-119 0 0 1 2 0 0 2
≥120 0 2 4 4 0 4 2

TOTAL 40 40 40 40 40 35 40

TABLE VI: Number of phases that are correctly identified
in offline mode within the defined tolerance values in the 40
evaluation videos of Cholec80. The number of P6 occurrences
is not 40 since not all surgeries go through the cleaning and
coagulation phase.

defined in the annotation. In practice, these boundaries are not
as harsh or visually obvious. Thus, this error is acceptable in
most cases. In other words, it indicates that the results from
EndoNet do not require a lot of corrections, which will make
surgical video indexing a lot faster and easier.
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Tolerance (s) Bipolar Clipper
<5 114 49

6-29 9 10
30-59 1 0
≥60 0 1

Missed 0 1
False positives 3.8% 8.3%

TABLE VII: Appearance block detection results for bipolar
and clipper, including the number of correctly classified blocks
and missed blocks, and the false positive rate of the detection.

B. Bipolar and Clipper Detection

In addition to showing the AP for detection of both tools
in Tab. II, we present a more intuitive metric to measure the
reliability of EndoNet for the bipolar and clipper presence
detections. We define a tool block as a set of consecutive
frames in which a certain tool is present. Since the tools
might not always be visible in an image even though they are
currently being used, we merge the blocks (of the same tool)
in the ground-truth data that have a gap that is less than 15
seconds. Then, we define a tool block as identified if EndoNet
can detect the tool in at least one of the frames inside the block.
To show the performance of EndoNet in terms of temporal
precision, we also present the time difference between the first
frame of the tool block and the first frame of the detection. In
this experiment, we determine the tool presence by taking a
confidence threshold that gives a high precision for each tool,
so that the system can obtain the minimal amount of false
positives and retain the sensitivity in correctly detecting the
tool blocks. Since the false positive rate is measured using the
tool block definition, we also close the gaps between the tool
presence detections that are less than 15 seconds.

We show the block detection results in Tab. VII. It can be
seen that all the bipolar blocks are detected very well by En-
doNet. Over 90% of the blocks are detected under 5 seconds.
EndoNet also yields a very low false positive rate (i.e., 3.8%)
for the bipolar. This excellent performance is obtained thanks
to the distinctive visual appearance that the bipolar has (e.g.,
the blue shaft). For the clipper, it can be seen that the false
positive rate is higher than for the bipolar. This could be due
to the fact that it has the second lowest amount of annotations
in the dataset, because, similarly to the scissors, the clipper
only appears shortly in the surgeries. However, EndoNet still
performs very well for clipper detection, showing that 80%
and 97% of the blocks are detected under 5 and 30 seconds,
respectively.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we address the problem of phase recognition
in laparoscopic surgeries and propose a novel method to learn
visual features directly from raw images. This method is
based on a convolutional neural network (CNN) architecture,
called EndoNet, which is designed to perform two tasks
simultaneously: tool presence detection and phase recognition.
We show through extensive experiments that this architecture
yields visual features that outperform both previously used

features and the features obtained from architectures designed
for a single task. Interestingly, the EndoNet visual features
also perform significantly better in the phase recognition
task than binary tool signals indicating which tools can be
seen in the image, even though these signals are obtained
from ground truth annotations. These results therefore suggest
that the images contain additional characteristics useful for
recognition in addition to simple tool presence information
and that these characteristics are successfully retrieved by
EndoNet. Additionally, we have shown that EndoNet also
performs well on another smaller dataset, namely EndoVis,
and is therefore generalizable.

To train and evaluate EndoNet, we constructed a large
dataset containing 80 videos of cholecystectomy procedures
performed by 13 surgeons. Even though the cholecystectomy
procedure is a common focus for surgical workflow analysis,
to the best of our knowledge, the cholecystectomy datasets
used in previous work are limited to less than 20 surgeries.
This is therefore the first large-scale study performed for these
recognition tasks. This is also the first extensive comparison
of the features that can be used to perform phase recognition
on laparoscopic surgeries2. Furthermore, it is shown by the
std of the phase durations in Tab-I-a that the dataset in itself
contains a high variability. The state-of-the-art results from
EndoNet indicates that our proposed method can cope with
such complexity.

The results of varying sizes of the fine-tuning subset sug-
gest that taking more videos from Cholec80 to fine-tune the
networks will lead to better performance. However, it should
be noted that the videos in Cholec80 come from one hospital,
thus the complexity of the data is limited to the variability of
procedure executions by surgeons from the same institution.
Training a CNN network with such a dataset can lead to
over-fitting and subsequently reduce the generalizability of the
network. To obtain more generalizable networks, videos from
other medical institutions should be included to ensure a higher
variability in the dataset. The success of EndoNet in carrying
out the tool presence detection and phase recognition tasks
should be considered as a call for action in the community to
open their data to accelerate the development of generalizable
solutions for these tasks.

We have shown the applicability of EndoNet for two differ-
ent applications. These applications focus on video database
management, which is one of the demands from our clinical
partners. In future work, other related applications should
be addressed, such as context-aware assistance during live
surgeries. It will also be interesting to explore whether the
features generated by EndoNet can be used to perform other
tasks in laparoscopic videos, such as the estimation of the
completion time of the procedure [3], the classification of
surgical videos [35], and the recognition of the anatomy.

Despite yielding state-of-the-art results, the presented phase
recognition pipeline still has some limitations. For example,
the phase recognition still relies on the HHMM, which is

2Since no significant database is currently available to compare the ap-
proaches, to encourage open research in this direction, we will make the
complete annotated video dataset as well as the trained CNN architectures
available to the community upon publication of this work.
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required to enforce the temporal constraints in the phase
estimation. Thus, the features learnt by EndoNet do not include
any temporal information present in the videos. In addition,
since the HHMM is trained separately from the EndoNet fine-
tuning process, the EndoNet features are not optimized on the
entire phase recognition task. With additional training data,
these limitations could be solved by using long short term
memory (LSTM) architectures. Such an approach will form
part of future efforts to improve phase recognition.
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